Ronald Ortner

Research output

  1. 2022
  2. Published

    Predicting Packaging Sizes Using Machine Learning

    Heininger, M. & Ortner, R., 22 Aug 2022, In: Operations research forum. 43.2022, 3, 14 p., 43.

    Research output: Contribution to journalArticleResearchpeer-review

  3. 2021
  4. Published

    A new heuristic and an exact approach for a production planning problem

    Auer, P., Dósa, G., Dulai, T., Fügenschuh, A., Näser, P., Ortner, R. & Werner-Starkne, A., Sept 2021, In: Central European Journal of Operations Research. 29, 3, p. 1079-1113 35 p.

    Research output: Contribution to journalArticleResearchpeer-review

  5. Published

    Regret Bounds for Reinforcement Learning via Markov Chain Concentration

    Ortner, R., 26 Aug 2021.

    Research output: Contribution to conferencePosterResearchpeer-review

  6. 2020
  7. Published

    Regret Bounds for Reinforcement Learning via Markov Chain Concentration

    Ortner, R., 23 Jan 2020, In: The journal of artificial intelligence research. 67.2020, 1, p. 115-128 14 p.

    Research output: Contribution to journalArticleResearchpeer-review

  8. 2019
  9. Published

    Regret Bounds for Learning State Representations in Reinforcement Learning

    Ortner, R., Pirotta, M., Lazaric, A., Fruit, R. & Maillard, O.-A., Dec 2019.

    Research output: Contribution to conferencePosterResearchpeer-review

  10. Published

    Adaptively Tracking the Best Bandit Arm with an Unknown Number of Distribution Changes

    Auer, P., Gajane, P. & Ortner, R., 27 Jun 2019.

    Research output: Contribution to conferencePosterResearchpeer-review

  11. Published

    Achieving Optimal Dynamic Regret for Non-stationary Bandits without Prior Information

    Auer, P., Chen, Y., Gajane, P., Lee, C.-W., Luo, H., Ortner, R. & Wei, C.-Y., 2019.

    Research output: Contribution to conferenceAbstractpeer-review

  12. Published

    Adaptively Tracking the Best Bandit Arm with an Unknown Number of Distribution Changes

    Auer, P., Gajane, P. & Ortner, R., 2019, Proceedings of the 32nd Conference on Learning Theory, COLT 2019. p. 138-158

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  13. E-pub ahead of print

    Regret Bounds for Learning State Representations in Reinforcement Learning

    Ortner, R., Pirotta, M., Lazaric, A., Fruit, R. & Maillard, O.-A., 2019, (E-pub ahead of print) Advances in Neural Information Processing Systems. Vol. 32. p. 12717 12727 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  14. Published

    Variational Regret Bounds for Reinforcement Learning

    Ortner, R., Gajane, P. & Auer, P., 2019.

    Research output: Contribution to conferencePaperpeer-review