Norbert Seifter

(Former)

Research output

  1. 1996
  2. Published

    Geodesics in transitive graphs

    Seifter, N., Imrich, W. & Bonnington, P., 1996, In: Journal of combinatorial theory. Series B.

    Research output: Contribution to journalArticleResearchpeer-review

  3. 1995
  4. Published

    Dominating Cartesian products of cycles

    Seifter, N. & Klavžar, S., 1995, In: Discrete applied mathematics.

    Research output: Contribution to journalArticleResearchpeer-review

  5. 1994
  6. Published

    Domination and independent domination numbers of graphs

    Seifter, N., 1994, In: European journal of combinatorics .

    Research output: Contribution to journalArticleResearchpeer-review

  7. 1993
  8. Published

    On the girth of infinite graphs

    Seifter, N., 1993, In: Discrete mathematics.

    Research output: Contribution to journalArticleResearchpeer-review

  9. 1992
  10. Published

    Automorphism groups of graphs with linear growth

    Seifter, N., 1992, In: Glasnik matematički.

    Research output: Contribution to journalArticleResearchpeer-review

  11. Published

    Graphs with polynomial growth are covering graphs

    Seifter, N. & Godsil, C., 1992, In: Graphs and combinatorics .

    Research output: Contribution to journalArticleResearchpeer-review

  12. Published

    On the Hadwiger number of infinite graphs

    Seifter, N., 1992, In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg.

    Research output: Contribution to journalArticleResearchpeer-review

  13. 1991
  14. Published

    A survey on graphs with polynomial growth

    Seifter, N. & Imrich, W., 1991, Discrete Math..

    Research output: Chapter in Book/Report/Conference proceedingChapterResearch

  15. Published

    Groups acting on graphs with polynomial growth

    Seifter, N., 1991, In: Discrete mathematics.

    Research output: Contribution to journalArticleResearchpeer-review

  16. Published

    Properties of graphs with polynomial growth

    Seifter, N., 1991, In: Journal of combinatorial theory. Series B.

    Research output: Contribution to journalArticleResearchpeer-review