Department Mathematics and Information Technology

Organisational unit: Departments and Institutes

Research output

  1. Published
  2. Published

    Quadratische Kegel und AutoCAD

    Kopetzky, H. & Sachs, H., 2007, In: KoG. p. 39-41

    Research output: Contribution to journalArticleResearchpeer-review

  3. Published

    Carbon microparticles from organosolv lignin as filler for conducting Poly(lactic acid)

    Köhnke, J., Fürst, C., Unterweger, C., Rennhofer, H., Lichtenegger, H. C., Keckes, J., Emsenhuber, G., Mahendran, A. R., Liebner, F. & Gindl-Altmutter, W., 2016, In: Cellular polymers. 8, 6

    Research output: Contribution to journalArticleResearchpeer-review

  4. Published
  5. Published

    Factoring Directed Graphs with respect to the Cardinal Product in Polynomial Time

    Klöckl, W. & Imrich, W., 2007, In: Discussiones mathematicae / Graph theory. 27, p. 593-601

    Research output: Contribution to journalArticleResearchpeer-review

  6. Published

    On the Cardinal Product

    Klöckl, W., 2007

    Research output: ThesisDoctoral Thesis

  7. Published

    Particle Size Estimation in Mixed Commercial Waste Images Using Deep Learning

    Kittiworapanya, P., Pasupa, K. & Auer, P., 29 Jun 2021, IAIT 2021 - 12th International Conference on Advances in Information Technology: Intelligence and Innovation for Digital Business and Society. Association for Computing Machinery (ACM), 3471273. (ACM International Conference Proceeding Series).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  8. Published

    On a parametrized family of relative Thue equations

    Kirschenhofer, P., Lampl, C. & Thuswaldner, J., 2007, In: Publicationes mathematicae. 71, p. 101-139

    Research output: Contribution to journalArticleResearchpeer-review

  9. Published

    On a class of recursive-based binomial coefficient identities involving Harmonic numbers

    Kirschenhofer, P. & Larcombe, P. J., 2007, In: Utilitas mathematica. 73, p. 105-115

    Research output: Contribution to journalArticleResearchpeer-review

  10. Published

    The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs

    Kirschenhofer, P., Larcombe, P. J. & Fennessey, E. J., 2014, In: Utilitas mathematica. 93, p. 3-23

    Research output: Contribution to journalArticleResearchpeer-review