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Preamble

This work was motivated by investigations of approximate graph products.
Such products arise in several entirely different contexts, for example theo-
retical biology and computational engineering. The latter is of considerable
relevance at this University of Mining and Metallurgy.

In both contexts one of the problems is the design of fast factorization
algorithms of graphs with respect to various products, which is the main
topic of this dissertation.

To illuminate this connection, we include a short description of the envi-
sioned applications in theoretical biology and computational engineering.

Theoretical biology

In theoretical biology graph products arise in two rather different contexts.
The first context pertains to the evolution of genetic sequences, which
is conveniently discussed in the framework of sequence spaces. Sequence
spaces are Hamming graphs, that is Cartesian products of complete graphs,
see Eigen [11], Dress and Rumschitzki [10]. It turns out to be of interest to
understand the structure of localized subsets. Gavrilets [15], Griiner [16],
and Reidys [30], for example, describe subgraphs in sequence space that
correspond to the subset of viable genomes or to those sequences that give
rise to the same phenotype. The structure of these subgraphs is intimately
related to the dynamics of evolutionary processes [17, 29].

The second context pertains to a topological theory of the relation-
ships between genotypes and phenotypes [13, 14, 37, 36, 35]. In this
framework a so-called character (Merkmal) is identified with a factor of a
generalized topological space that describes the variational properties of a
phenotype. If recombination and sexual inheritance are disregarded, this
framework reduces to strong products of graphs. Since characters are mean-
ingfully defined only for subsets of phenotypes (for example, “only craniates

iv



PREAMBLE v

have a noses”) it is necessary to use a local definition [39]: A character
corresponds to a factor in a factorizable induced subgraph with non-empty
interior (where z is an interior vertex of H C G if = and all its neighbors
within G are contained in H.)

In both this and the previous application the graphs in question have
to be either obtained from computer simulations (e.g. within the the RNA
secondary structure model as in [13, 14, 8]) or they need to be estimated
from biological data. In both cases they are known only approximately. In
order to deal with such inaccuracies, a mathematical framework is needed
that allows us to deal with graphs that are only approximately products and
of which only subgraphs are (approximate) products.

Computational engineering

In the case of computational engineering the objects that one wishes to in-
vestigate are routinely modeled by grids. This has to be done with respect
to the type of problem one wishes to solve and may result in rather compli-
cated graphs. The structure of these graphs is then reflected in the systems
of linear equations whose solutions have to be found repeatedly, fast, and
accurately.

If the graphs are products or product-like one understands them suffi-
ciently well in order to build efficient equation solvers. The reason is that
data structures to store and algorithms to operate on sparse matrices are
more efficient when the graph factors into a product or can be covered by
a few product-like subgraphs. On a regular rectangular grid, for example,
a matrix-vector multiplication will access data from memory with constant
stride. On the other hand, a general sparse matrix algorithm would have to
fetch the data by individual addressing in a more random way.

Frequently, when designing the computational grids, large parts of the
underlying model could be covered by regular product-like grids, with some
modifications or irregularities along the boundaries. To date there are no
algorithms to optimize and exploit the approximate data structure, although
this is certainly done manually when recognized by the programmers.

It will be highly significant to pursue this new direction and to develop
good heuristics together with appropriate algorithms for the decomposition
of large graphs into products or product-like subgraphs.



Chapter 1

Introduction

The subject of this dissertation are prime factorizations of directed graphs
with respect to the cardinal product. This work is based on results of
Sabidussi, McKenzie, Feigenbaum, Schéffer and Imrich. Sabidussi wrote
several seminal papers on products of graphs, notably ”The composition of
graphs” [31], ”Graph Multiplication” [32], "The lexicographic product of
graphs” [33] and ”Subdirect representations of graphs” [34]. Of special in-
terest was the question whether the prime factor decomposition with respect
to any of these products is unique. In case of the Cartesian product this
problem was affirmatively answered for connected graphs by independent
papers of Sabidussi [32] and Vizing [38].

Decompositions of graphs with respect to the cardinal product were first
studied in the context of finite and infinite relational structures by McKenzie
in 1971 [27]. For finite directed and undirected graphs McKenzie’s results
imply unique prime factorization under certain connectedness conditions.
Since the development of complexity theory just goes back to the late 70’s,
it is not surprising that McKenzie does not address factorization algorithms.

For the strong product, which can be considered as a special case of the
cardinal product, this problem was first settled by Feigenbaum and Schéffer.
In [12] they presented a polynomial algorithm for the prime factorization of
connected graphs with respect to the strong product. Their procedure con-
sists of three parts: First the problem of factorizing a graph G is reduced to
the factorization of a thin graph G/R. This follows the ideas of McKenzie
[27]. Then G/R is factored. This is the main and most difficult part. It is ef-
fected by construction of the so-called Cartesian skeleton H and subsequent
prime factor decomposition of H with respect to the Cartesian product.
Finally the factorization of G/R is extended to the original graph G.
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A variant of this algorithm was proposed by Imrich [19] for the prime
factorization of undirected nonbipartite connected graphs with respect to
the cardinal product.

The aim of this thesis is the generalization of Imrich’s algorithm to di-
rected graphs. Hence, in the first chapters we begin with a short description
of fundamental properties of directed graphs and prove several lemmas con-
cerning thinness and connectedness.

Then we list important results about prime factorizations with respect to
products that are relevant in this thesis. Following the ideas of Feigenbaum
and Schéffer we define the Cartesian skeleton and present an algorithm to
compute it. It is the most important tool for the proof of Theorem 6.1.2,
the first main result, which gives us a polynomial algorithm to compute the
prime factor decomposition (PFD) with respect to the cardinal product for
finite, N -connected and R*-thin graphs.

As in the case of the cardinal product of undirected graphs, the proof
of the correctness of the algorithm also shows that the prime factorization
is unique. This is important, because the class of NT™-connected R'-thin
graphs is not identical with the class of N™- and N —connected thin graphs,
for which McKenzie showed unique prime factorization. (McKenzie’s con-
nectivity condition is stronger, but his thinness condition weaker than ours.)

Thus, Theorem 6.1.2 extends the class of directed graphs that are known
to have unique prime factorizations with respect to the cardinal product.
To our knowledge this is the only such extension since 1971. Furthermore
Theorem 6.1.4 describes the structure of automorphisms of finite, directed
graphs that are N'-connected and R*-thin.

Chapter 7 is devoted to generalizations of Theorem 6.1.2 to graphs that
are finite, N -connected, but not R*-thin. To do this a new class of graphs,
so-called R;’fr—graphs, is introduced. In the second section we characterize
prime graphs and divisors of graphs in this class. Furthermore problems and
examples concerning these graphs are considered in the third section.

In the next chapter we prove Theorem 8.2.4, the second main result. It
tells us that the PFD with respect to the cardinal product of graphs, for
which McKenzie showed uniqueness of the PFD and which fulfill a weak
additional assumption, can be found in polynomial time.

Chapter 9 is concerned with the distinguishing number of products of
graphs. The distinguishing number D(G) of a graph G is defined as the
least integer d such that G has a d-distinguishing labelling that has the
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property that the identity is the only label preserving automorphism. It
was introduced 1996 by Albertson and Collins [2].

This number varies between 1 and |[V(G)|. (It is 1 if G is asymmetric
and |V(G)] if G is complete.) One can, loosely speaking, consider d as the
minimum number of colors needed to brake the symmetries of G. Thus, it
should be easy to compute for graphs whose automorphism groups have a
well understood structure. Clearly this is the case for products, as Theorems
6.1.3 and 6.1.4 demonstrate. Therefore it was a very natural task to apply
the results on products of prime graphs and their automorphism groups to
the computation of distinguishing numbers.

Our results are summarized in Corollary 9.2.2 and Theorem 9.2.4, in which
we determine the distinguishing numbers of arbitrary finite or countable
Cartesian products of Ko’s and K3’s with at least four factors. Note that
Aut(IT;L K3) = Aut(IL;  K3), whence D(IT}.  K3) = D(I[;L  K3).

In the last sections we consider variations of the distinguishing number:
We prove that the distinguishing chromatic number of the 4-cube is four,
which extends a result by Choi, Hartke and Kaul [6], and that the 1-local
distinguishing number of the 4-cube is three.

In the final chapter we develop a local algorithm to compute prime factor-
izations with respect to the strong product. The purpose of this approach is
to speed up the strong product PFD algorithm by Feigenbaum and Schéffer
[12]. Furthermore we note that this algorithm can also be adapted for cardi-
nal product decompositions if all subgraphs induced by closed neighborhoods
are cardinal products of subgraphs of all factors.



Chapter 2

Definitions and Notations

2.1 Directed Graphs

A directed graph, or shortly digraph, G = (V, E) is a set V together with a
set E of ordered pairs [z, y] of vertices of G. We allow that both [z,y] and
[y, z] are in E and do not require x, y to be distinct. Thus, E is a subset of
the Cartesian product V x V.

V' is the vertex set and FE the edge set of G. The vertex z is the origin
and y the terminus of [x,y]. In the case when = = y we speak of a loop. In
analogy to the undirected case we call a graph G with E(G) = V(G) x V(G)
complete. If it has n vertices it will be denoted by K¢ to distinguish it
from the ordinary complete graph K, (where any two distinct vertices are
connected by an undirected edge.)

A graph is called totally disconnected if it has no edges (and thus also
no loops). Clearly a cardinal product is totally disconnected if and only
if at least one factor is totally disconnected. We call a graph connected if
for all vertices x, y of G there is a finite sequence of vertices (x;)o<i<n SO
that zo = =, z,, = y and [z;,x;41] € E(G) for (0 <i < n). A graph G is
bipartite if there exists a partition V4 U Vo = V(@) so that all edges of G
can be written as [z,y] or [y, z|, where z € V] and y € V5.

We say E(G) is reflezive if E(G) contains all loops [z,x], where = €
V(GQ). It is symmetric if [z,y] € E(G) if and only if [y,z] € E(G). By
abuse of language one also says that G is reflexive, respectively symmetric.
Symmetric directed graphs correspond to undirected graphs by identification
of pairs of edges with opposite directions.

The out-neighborhood Nt(x) of a vertex x, compare Figure 2.1, is defined
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NT(z)

/v'/"

Figure 2.1: NT(x)

as the set
lyeV|[z,yl € E}.

Analogously one defines the in-neighborhood N—(x) = {y € V | [y,z] € E}.
Sometimes we call N (x) the N*neighborhood of z and N~ (x) the N~
neighborhood. The cardinality of the out-neighborhood or in-neighborhood
of a vertex x is called out-degree or in-degree of this vertex, respectively. The
out-degree of z is denoted by d*(z), the in-degree by d~ (z). Clearly a di-
rected graph is uniquely defined by its vertex set and the out-neighborhoods
of the vertices.

For symmetric graphs, i.e. undirected graphs, we have N*(z) = N~ (z)
for all vertices x. Hence, we shortly speak of the neighborhood N (z) of some
vertex x. The cardinality of N(z) defines the degree of the vertex x. The set
N{z] defined as N(z)U{z} is called closed neighborhood of x. If all vertices
have the same degree n € N, the graph is n-regular. Every n-regular graph
is regular.

P, (n € N) denotes the path on length n that is defined by V(P,) =
{0,1,2,...,n} and E(P,) = {[a,b] | a,b € V(P,), |a—b] =1}. C, (n > 3)
is the circle of size n. It is defined by V(C,,) = Z/nZ and E(C,,) = {[a, b] |
a,beV(P,), a—b==+1}.

G is N*-connected if for all z, y € V(G) an n € N and a sequence (z;)o<i<n
can be found such that zg = z, , = y and

NT(@)NNT(z41) #0 for 0<i<n. (2.1)

If one replaces the out-neighborhoods in 2.1 by in-neighborhoods one gets
the definition of N ~-connectedness.

We continue with the definition of three binary relations: Two vertices
a, b of G are in the relation R (= in McKenzie’s terminology) if both their
out-neighborhoods and their in-neighborhoods are the same. We write aRb.

A graph G is called thin if no two different vertices of G are in the relation
R.
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JAVAVAVA

T = Xo T z2 z3 Yy =124

Figure 2.2: An x-y sequence in an N *-connected graph

R is an equivalence relation on the set of vertices of GG, which means
that it is symmetric, reflexive and transitive. As usual the equivalence class
@ is defined as {b € V(G) | aRb}, thus we can define the quotient graph
G/R as follows: the vertex set of G/R is the set of all equivalence classes
{Z|z € V(G)} of V(G) with respect to R, and [z,y] € E(G/R) if there are
vertices a € T, b € ¥ with [a,b] € A(G).

Two vertices of G are in the relation R if their N -neighborhoods are the
same. Clearly RT is an equivalence relation, too, R~ is defined analogously.
A graph is then called R*-thin, respectively R™-thin, if all equivalence classes
of the relation R, respectively R™, consist of just one element. The quotient
graphs G/R* and G/R™ are defined in analogy to G/R.

Clearly a graph is thin if it is R~ or R-thin. However, a graph can be
thin even if it is neither R*- nor R™-thin, as the graph G in Figure 2.3 shows.
N*t(2) = N*(5) and N~ (3) = N~ (4). Thus G is neither R*™- nor R™-thin,
but it is thin, because no two vertices have both equal out-neighborhoods
and equal in-neighborhoods.

G 1 2

Figure 2.3: Thin, but neither R™-thin nor R -thin.

2.2 The Cartesian, the cardinal and the strong
product

The cardinal product G1 x Gy of two directed graphs G1, G2 is defined on
the Cartesian product V(G1) x V(G2) of the vertex sets of the factors. The
out-neighborhood of a vertex (x1,x2) € V(G1) x V(G3) is the Cartesian
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product of the out-neighborhoods of 1 in G1 and 9 in Ga:
Ng o, ((@1,22)) = N& (21) X N§&(22).

More general, we can define the cardinal product (consistent with the
above definition) for arbitrarily many, also infinitely many factors:

Let I be a possibly infinite index set and {G,},er a set of digraphs. Then
the cardinal product G = [],.; G, is defined as follows:

(i) V(Q) is the Cartesian product of the vertex sets of the factors. In
other words, V(G) is the set of functions z : ¢ — z, € V(G,) of I
into | J,¢; V(GL).

(ii) FE(G) consists of all unordered pairs [z, y] of vertices of G such that
[z,,y.] € E(G,) for all v € I.

GQ G'2

X G O]

Figure 2.4: The cardinal and the Cartesian product

The Cartesian product C' = HLDGI G, and the strong product H = HEI G,
are defined on the same vertex set as the cardinal product. The edge set
E(C) of the Cartesian product consists of all unordered pairs [z, y] of vertices
of G which have the property that there exists one ¢ € I so that [z,,y,] €
E(G,) and z, =y, for all u € I\ {c}. For two factors G and G2 we denote
the Cartesian product by G10G3. The edge set E(H) of the strong product
is the set of all Cartesian and all direct product edges E(C) U E(]],c; G.).
An example can be viewed in Figure 2.5.

The three products are commutative and associative. The loop on one
vertex is a unit for the cardinal product and the graph consisting of one
vertex and no edge is a unit for the Cartesian and the strong product.

If € V([[,e;G.) we call the z, the coordinates of x or projections of
x onto the factor GG,. Note that the endpoints of every edge in a cardinal
product of k graphs without loops differ in all £ coordinates.
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G

X Gy

Figure 2.5: The strong product

Let be G = [],.; G, and a € V(G). Then the G;-layer G is the subgraph
of G induced by the vertex set {« |x; = a; for all j # ¢}. If G has no loop
these layers are totally disconnected.

For the Cartesian product layers are defined analogously and for this
product it is easy to see that every G;-layer is isomorphic to GG; and that
every edge of G is in some Gj-layer (i € I). Thus, layers of Cartesian
products are also called copies (of the respective factors).



Chapter 3

Basic lemmas

Here we investigate under which conditions products inherit thinness and
connectedness properties from their factors.

3.1 Thinness

The first lemma is due to McKenzie [27](Lemma 2.3).

Lemma 3.1.1 Let G be a directed graph. Then:
(i) G/R is thin.
(ii) If G = G1 x Go is N*- and N~ -connected, then G/R = G1/R x
Ga2/R.

Since we wish to study R*-thin graphs, we need an analogous lemma, for
the relation R™.

Lemma 3.1.2 Let G be the cardinal product of two nontrivial directed graphs
G1 and Go. If all out-neighborhoods of the vertices of G are nonempty, then

G/R+ = Gl/R+ X GQ/R+.

Proof. Two vertices = (z1,22) and y = (y1,y2) are in the relation R™
if and only if N*(z) = N*(y). This is equivalent to NT(z1) x N (xq) =
N*(y1) x NT(y2). Since N*(z) and N*(y) are both nonempty this is pos-
sible if and only if N*(z1) = NT(y1) and N*(z2) = NT(y2), that is, if
1Ry and 2o RTys. O
Remark: N T-connectivity implies that the N neighborhoods are non-
empty. Even in this case G/R*' need not be R™-thin as Figure 7.2 shows.

9
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Corollary 3.1.3 Let G be the cardinal product of two nontrivial directed
graphs Gy and Gg. If all NT-neighborhoods of the vertices of G are non-
empty, then the following statements are equivalent:

(i) G is Rt-thin.

(1) Gi1 and Go are R™-thin.

Clearly Lemma 3.1.2 and Corollary 3.1.3 remain valid if N is replaced
by N—, and R™ by R™.

3.2 Connectedness

Lemma 3.2.1 Let G = G10OG20---0OGy, be the Cartesian product of undi-
rected graphs. Then the following conditions are equivalent:

(i) G is connected.
(ii) All factors G; (i € {1,2,...,k}) are connected.

Lemma 3.2.2 Let G = Gy xGa X+ --x Gy, be the direct product of undirected
graphs. Then the following conditions are equivalent:
(i) G is connected.
(i) G; (i € {1,2,....,k}) is connected and at most one factor G; (i €
{1,2,...,k}) is bipartite.

Proof. Using induction this lemma follows immediately from the Theorem
of Weichsel [40], whose content is the statement of this lemma for k = 2. O

Lemma 3.2.3 Let G = G1 X G x -+ - x Gy, be the cardinal product of directed
graphs. Then the following conditions are equivalent:

(i) G is NT-connected.
(ii) G; (i €{1,2,...,k}) is NT-connected.

Remark: The statement holds also if one substitutes NT by N~ in (i) and

(ii).

Proof. By induction it is sufficient to prove the lemma for k = 2.

(i) = (ii): Given two vertices vy, w1 € Gi. Let’s take an arbitrary
vy € (g, then there is by condition i) an n € N and a sequence (z;)o<i<n With
xo = (v1,v2), T, = (w1, v2) and for alli (0 < i < n) Nt(z;) NNt (2i51) # 0.
If 2; = (24,1, 242) for 0 < i < n, the sequence (z;1)o<i<n Will have the
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G
Y2 = w2
29 %3
Y1 1
V2 = Yo %0
V1 = Zo x1 X2 r3 = w1

Figure 3.1: Connectedness

property Nf(xm) N Nf(mzurm) # () for 0 < i < n. Therefore G; is NT-
connected and by analogous projection of a sequence onto (G5 one can prove
N*-connectedness of Go.

(il) = (i): Given two vertices v = (vi,v2), w = (w1,w2) € G. Then
there are n,m € N and sequences (z; € Gi)o<i<n and (y; € G2)o<i<m
with N{™(z;) 0 N{ (2541) # 0 for 0 < i < n, 29 = v1, Tp = w1, Ny (y:) N
N;(yiﬂ) # () for 0 < i< m, yo = v9 and y, = we. W.lo.g. n < m. Let
z; denote (z;,y;) for 0 < i < n and (xy,y;) for n < i < m. Then (z;)o<i<m
is a sequence from v to w in G which fulfills: N*(z;) " Nt (z;41) # 0 for
0 < i < n as you can see in Figure 3.1. This means G is N T-connected, too.
O



Chapter 4

Prime factorizations

Prime graphs will be defined, examples of graphs with non-unique prime
factor decomposition will be given and results that guarantee uniqueness of
the prime factorization under certain conditions will be listed.

4.1 The Cartesian product

Definition 4.1.1 A graph G is prime with respect to the Cartesian, respec-
tively the cardinal product, if it cannot be written as a Cartesian, respectively
a cardinal product, of two nontrivial graphs, i.e. of two graphs with at least
two vertices each.

Any finite graph can clearly be represented as a product of prime graphs.
If any two representations of a graph G as a product of prime graphs are the
same up to isomorphisms and the order of the factors, we say that G has
a unique prime factor decomposition (UPFD). For any of the two products
considered there are graphs without UPFD.

Turning to the Cartesian product, denote the disjoint union of graphs by
+ and, for the time being, the n-th power of a graph with respect to the
Cartesian product by G™. Then it is not hard to see that the identity

(K1 4+ Ko+ K2 O (K1 + K3) = (K1 + K2 + K3) O (K, + K»)

holds and that both sides of the identity are products of prime graphs,
no two of which are isomorphic. Even though you can surely imagine that
there are many graphs with a non-unique PFD, we know an old result about
uniqueness:

12
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Theorem 4.1.2 (Sabidussi [32] and Vizing [38]) Let G be an undirected,
connected and finite graph without loops. Then G has a unique representa-
tion as a Cartesian product of prime graphs, up to isomorphisms and the
order of the factors.

4.2 The cardinal product

When we are looking for a counterexample to the UPFD with respect to the
cardinal product, we can take the Cg, the undirected cycle on six vertices.
It is the product of the K3 and the K5, but also the product of the Ky and
Py, where P (n € N) denotes the path of length n with two loops added to
the end vertices.

Ko Ko

X vKg X O'—'—‘OG

Figure 4.1: Two different Cs-decompositions

Using neighborhood considerations we can prove Lemma 4.2.1, which
yields many examples of prime graphs.

Lemma 4.2.1 FEvery undirected, connected graph G with an odd number of
vertices and mazximal degree less than or equal to 3 is prime.

Proof. Let |V(G)| = n. If n is prime, we are done. Otherwise the prime fac-
tor decomposition of n consists only of odd numbers. Thus every nontrivial
divisor of GG has at least three vertices. We can conclude from connectedness
that at least one vertex of this divisor has to have a degree greater than or
equal to 2. Every vertex of G has a degree less than or equal to 3, hence G
cannot have a nontrivial decomposition. O

Generally we can determine, distinguishing the size, all possible PFDs of
circles by the next theorem.
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Theorem 4.2.2 Let G = C,,.
(i) Ifn is odd, G is prime.
(ii) If 4n, G has a unique PFD with respect to the cardinal product,
namely P; X P(*n/Q)_l.
(iii) Ifn is even and 4 no divisor of n, G has ezxactly two different PFDs,
namely P; X P(2/2)—1 and Py x Cy, 5.

Proof. (i) All vertices of G clearly have degree 2, thus this statement is an
immediate consequence of Lemma 4.2.1.

(ii) From the fact that every vertex of G has degree 2 and that neigh-
borhoods in G are products of neighborhoods of factors of G we know that
every G-decomposition consists of only one 2-regular factor and that every
other factor must be 1-regular. But P; is the only nontrivial, 1-regular,
connected graph. The only 2-regular, connected graphs are circles and P;’s.
By multiplying one can see that the decomposition given in the statement
is the only nontrivial one of G.

(iii) Analogous to (ii). O
In the same way we can determine the PFDs of all paths.

Theorem 4.2.3 All P, (n € N) have a unique PFD with respect to the
direct product. More precisely we have:
(i) Ifn is even or n =1, then P, is prime.
(i) If n is odd and greater than one, then the unique PFD of P, is
Ky x P(lnil)/z, where P (m € N) denotes the path of length n with
a loop added to one end vertex.

Proof. (i) This follows immediately from Lemma 4.2.1.

(ii) P, contains (n — 1) vertices of degree 2 and two vertices of degree 1.
Suppose A X B is a nontrivial decomposition of F,,. Then one factor, say
A, has exactly one vertex of degree 1 the other, B, two such vertices. Only
one factor can contain vertices of degree 2. This factor must be A, because
otherwise A is trivial.

Thus we know B consists of two vertices of degree 1. From connectedness
we conclude B = K».
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Since all vertices of A have a degree less than 3, a spanning tree of A must
be a path. Adding a loop to an end vertex is the only way of adding an edge
that increases only the degree of one end vertex. a

Ky

Ps

X | ——O P}

Figure 4.2: The Ps-decomposition

In the following lemma we consider hypercubes that are Cartesian powers
of KQ.

Lemma 4.2.4 FEvery nontrivial decomposition A x B of a hypercube Q con-
tains a Ko.

Proof. For all x = (x4,2p) € Q we know that N(z) = Na(xa) x Np(zp).
It is not hard to see that for arbitrary u, v € N(x) there is a unique y € Q
with N(z) N N(y) = {u,v}. Since neighborhoods but also intersections of
neighborhoods are products of vertex sets in the factors, pa(u) = pa(v) or
pp(u) = pp(v). Assume the first equation holds. Then for all w € N(x)
pa(u) = pa(w), because otherwise neither ps(v) = pa(w) nor pp(v) =
pp(w) could hold. Thus, [pa(N(x))| = 1.

We have shown that for every vertex in @) there is a projection (p4 or pp)
such that all vertices of the neighborhood are projected to one vertex. This
is only possible if A or B equals Ks. O

After this short visit at undirected graphs we return to oriented ones, since
we want to investigate oriented cycles (77;, defined by V(C—)Z) ={0,1,....,n—1}
and E(E’Z) ={ab|a,be V(E’Z) A (a—b) € {—-1,n—1}} for n > 2. Note
that for each x € V(C—*;) dT(x) = d (xz) = 1. From this we conclude that
the same equations hold for every vertex of a divisor of C’_;, too. But this
implies that all nontrivial divisors are oriented cycles.
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In the next lemma we will show, how cardinal multiplication of oriented
cycles works in general. Using it we can simply prove that E’Z is prime if
and only if n is a prime power and that there is a unique PFD of oriented
cycles (Theorem 4.2.7). Before we start with the lemma we explain that
for n € N, G a graph, n * GG is the graph defined as the disjoint union of n
graphs, each one isomorphic to G.

Lemma 4.2.5 Given a,b € N. Then G = C.)’a X C—>’b = ged(a, b) * E)lcm(a,b)-

Proof. The vertex set V of the given product is {(z,y) |0 <z < a, 0 <
y < b} and we note that every u € V has in- and out-degree 1. This implies
that the components of a X C_{, are oriented cycles. Consider the vertex
(0,0), its only out-neighbor is (1,1), but this vertex has also exactly one
out-neighbor. Going from a vertex to its unique out-neighbor will be called
step in the following.

Starting at (0,0) it is clear that we reach the vertex (n mod(a),n mod(b))
after n steps. Now the question arises after which minimal natural number
n of such steps do we come back to (0,0), with other words, when does
(n mod(a),n mod(b)) = (0,0) hold? Since the considered product has a * b
vertices it is obvious that n < a % b. The stated question has a rather easy
answer:

(n mod(a),n mod(b)) = (0,0) < aln, bln

< lem(a,b)|n

So the minimal possible n is lem(a, b). Thus we know G contains ggcm(a,b)’
which denotes the cycle of length lem(a,b) containing (0,0), as one compo-
nent. If lem(a,b) = a x b we are done, because in this case all vertices of G
are in this cycle and ged(a,b) = 1.

If lem(a, b) < axb, the vertex sets V; = {(z+i,z) | 0 < z < lem(a,b)} (1 <
i < ged(a,b))induce cycles chm(a’b) in GG, which are exactly the remaining
components of G. O

Corollary 4.2.6 A graph 6’)n is prime with respect to the cardinal product
if and only if n is a prime power.

Proof. If n is a prime power, then every nontrivial decomposition n = px*q
= — =
has the property gcd(p, q) > 1, thus Lemma 4.2.5 implies C, x C'y # C,.
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If n (> 1) is not a prime power, there ex1sts a decomp031t10n n=mp*q
with ged(p, q) = 1, hence Lemma 4.2.5 implies C X Cq = Cn. O

This corollary immediately implies the following theorem that represents
a class of directed graphs, which have a unique PFD, although they are
neither N*- nor N~- connected.

Theorem 4.2.7 The PFD with respect to the cardinal product is unique for
—
oriented cycles C',.

Proof. If n = pi' * py* * ... x p;l, where the prime numbers p; are pairwise
— — —
different, then Lemma 4.2.5 gives us the unique PFD C,, = Cpil X Cp;2 X
—
. X Cplrl. O

The next theorem, due to McKenzie, proves uniqueness of the PFD for
graphs fulfilling more general conditions. Interestingly oriented cycles do
not fulfill the conditions of this theorem.

Theorem 4.2.8 (McKenzie [27]) Let G be an N~ and N -connected finite
graph. Then G has a unique representation as a cardinal product of prime
graphs, up to isomorphisms and the order of the factors.

Feigenbaum and Schéffer [12] showed that this factorization of a graph
G can be found in polynomial time if E(G) is reflexive and symmetric.
Imrich [19] extended this result to graphs that are not reflexive. Of course
the connectivity conditions still have to be met. We formulate this as a
theorem.

Theorem 4.2.9 (Feigenbaum and Schéffer [12], Imrich [19]) Let G = (V, E)
be an NT- and N -connected finite graph, where E is symmetric, that is,
where [z,y] € E if and only if [y,x] € E. Then the prime factor decompo-
sition of G with respect to the cardinal product can be found in polynomial
time.

In the two following chapters a proof is presented that enlarges the class
of graphs which have a unique prime factorization. It will be shown that all
R*-thin, N-connected finite graphs have a unique PFD and that it can be
found in polynomial time for those graphs.



Chapter 5

The Cartesian skeleton

5.1 The idea

The idea of the proof is to reduce the problem (a) of finding the PFD
of G with respect to the cardinal product to the problem (b) of finding
the PFD of an undirected, connected finite graph H with respect to the
Cartesian product. Problem (b) that is solved first by Sabidussi and Vizing,
see Theorem 4.1.2. An in the number of edges linear algorithm to compute
the PFD is due to Imrich and Peterin [23].

Definition 5.1.1 We call an undirected graph H, defined on the set of ver-
tices of G, Cartesian skeleton of G, if every decomposition Gy x Gy of G

with respect to the direct product induces a decomposition H{OHs of H such
that V(HZ) = V(GZ) (Z S {1, 2})

To find such a graph H we need two additional definitions:

Definition 5.1.2 Let G be the cardinal product of two graphs G1 and G5. A
pair {(z1,x2), (y1,y2)} of distinct vertices in a product G1 x G is Cartesian
with respect to the decomposition G1 X Go if either x1 = y1 or xo = yo. If
G is a product of several factors G1 x Gg X -+ X Gy, then a pair of distinct
vertices {(z1,z2,...,2k), (Y1,Y2,--.,Yk)} is Cartesian if there is an index j
so that x; = y; fori # j.

The concept of Cartesian pairs is due to Feigenbaum and Schéffer [12] and
was motivated by the fact that the edge set of strong products G = G1 XG>
contains the edge set of the Cartesian product G;0G3. (The strong product
of G1 and G5 has the same vertex set as the Cartesian product, but its

18
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edge set is F(G10G2) U E(Gy x G2)). The problem of factoring a graph
with respect to the strong product can then be reduced to that of factoring
a graph with respect to the Cartesian product if one can remove the non-
Cartesian edges.

We try to proceed analogously. The difference will be that the Cartesian
edges are in general not in E(G; X G2). (They can be in the product if
the factors contain loops). If H is a Cartesian product HOHs, all so-called
copies [(u1, z2)(u1,y2)] of edges [(z1,z2)(z1,y2)] € E(G) are in E(G), too.
This motivates the following definition, which describes a basic property of
the Cartesian skeleton:

Definition 5.1.3 We call a set F of pairs of distinct vertices of G copy
consistent with respect to the decomposition Gy X Gy of G if F' consists of
Cartesian pairs, and if for every pair {(z1,22), (y1,y2)} in F with z1 = y;
all pairs {(u1,x2), (u1,y2)} for uy € V(G1) are in F and, if xo = ya, then
{(z1,u2), (y1,u2)} € F for us € V(Ga).

5.2 Key lemmas

In this section we present two lemmas that can be used to find Cartesian
pairs and sets of pairs that are copy consistent. Both of them are related
to Lemma 2 and Lemma 3 of [20] and they will help us to compute the
Cartesian skeleton.

The idea of the first key lemma is that the out-neighborhood Nt (y1,y2)
is a maximal subset of the set Nt (x1,z2) among all proper subsets N1 (z)
of NT(x1,z2) if and only if {(z1,x2), (y1,y2)} is a Cartesian pair:

Lemma 5.2.1 Let G be a finite, R"-thin, nontrivial cardinal product G =
G1 X Ga of directed graphs with the property that all out-neighborhoods are
nonempty, F a set of Cartesian pairs of vertices of G, that is copy consistent
with respect to the decomposition G1 x Go and H the undirected graph with
the same set of vertices as G, and edge set F. Let

Qz) ={y | N"(y)  N"(x)}
and P(x) denote the set of vertices in the connected component of H con-
taining x. Furthermore define J(z) = {N*(y) |y € Q(x) \ P(x)}.
Then the set F' of all pairs {x,y}, for which N*(y) is mazimal in J(z)

with respect to inclusion, is copy consistent. Hence FUF’ is copy consistent,
too.
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Proof. We show first that all pairs {z,y} € F” are Cartesian. Let N*(y) be
maximal (with respect to inclusion) in J(z). Set x = (x1,22), y = (y1,¥2)
and suppose that {x,y} is not Cartesian. Then z; # y; and zo # y2 by
definition. Consider ¥’ = (y1,72) and y" = (21, y2).

If 4/ and y” are in P(z), then there exists a (simple) path from z to vy’
in H. By the copy consistency of F' one can also find a path from z to 7/,
that contains just vertices whose second component is xo. If we substitute
the second components of all vertices of this path by y2, we obtain, by the
copy consistency of F, a path from y” to y in H. Together with a path from
x to y” this yields a path from = to y in H. Thus y € P(z), contrary to
N*(y) € J(x). For this reason we can assume without loss of generality,
that v/ & P(x).

G

b oy = (71,92) y = (y1,92)
N*(y2)

N*(y)

Nt (22) N*(x)

T2, xr = (21,22) v = (y1,22) »

o N+(CL‘1) o
>< T N*(yl) Y1 Gl

Figure 5.1: Situation of Lemma 5.2.1

Since Ni (y1) x N (y2) C Ny (21) x Ny (2) we have N, (y;) C N;"(z;),
see Figure 5.2. This implies N;"(y;) C N;"(z;), since G; is R*-thin (i €
{1,2}). But then

N*(y') = Ni (1) x Ny (z2) € NiF(21) x N3 (22) = N (),
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y' € Q(x)\ P(z) and N*(y) C NT(y') contrary to the maximality of N T (y)
in J(x).

For the proof of the copy consistency assume now that {u,v} € F’, where
u plays the role of . We may assume w.l.o.g. that {u,v} lies in a copy of
Gy. Then u = (u1,u2) and v = (v1, ug) for some fixed uy, v1 and us. Nfr(vl)
must be maximal in {N;"(w1) | (w1,us) € Q(u) \ P(u)}.

Consider another copy {u/,v'} of this pair. Then v’ = (u1,u}) and v/ =
(v1,uh). Can any vertex v’ = (v{,v4) in Q(u’) \ P(u’) prevent the pair
{v/,v'} from being in F’? If this were the case, this vertex v” would have
to satisfy N*(v') € N*t(v") € NT(«'), or equivalently,

Ny (v1) x Ny (up) € Ny (1) x N (v5) € Ny (ua) x N (u).

But this is only possible if N (v5) = N5 (uh), whence vl = u)y since Gy is
R*-thin and N; (v1) C Ny (vf) € N{ (u1). This implies (v}, u2) € Q(u).
From the maximality of N;"(v1) we infer (v{,us) € P(u). By the copy con-
sistency we thus have v” = (v}, u}) € P(u’), which is not possible. O

The second lemma is a generalized version of the first. Simplified it
tells us that {(z1,x2), (y1,y2)} is a Cartesian pair if and only if the out-
neighborhood N*(y1,y2) has under additional conditions maximal intersec-
tion with NT(z1,25), see Figure 5.2.

Lemma 5.2.2 Let G be a finite, N -connected, nontrivial cardinal product
G = G1x Gy of Rt-thin, directed graphs, F a copy consistent set of Cartesian
pairs of vertices of G that is closed under applications of Lemma 5.2.1, and
H the undirected graph with the same set of vertices as G and edge set
F. For every x € V(G) let, as in Lemma 5.2.1, P(x) denote the set of
vertices in the connected component of H that contains x. Furthermore, set
I(z,y) = Nt (z) N N (y) and

I(z) ={I(z,y) |y & P(x),1(z,y) # 0}.

Let F' be the set of all pairs {x,y} that satisfies one of the following condi-
tions:
(i) I(x,y) is strictly mazimal in I(x) or
(ii) I(z,y) is nonstrictly maximal in I(x) and NT(2) ¢ NT(y) for all
z & P(x) with I(x,z) = I(x,y).

Then F' is copy consistent with respect to the decomposition G1 X G, and
F U F' is copy consistent. too.
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Proof. We show first that all pairs {z,y} € F’ are Cartesian. W.l.o.g.
I(x,y) is maximal in Z(z) (and not necessarily in Z(y)). Set x = (x1,z2)
and y = (y1,y2) and suppose that {z,y} is not Cartesian. Then z1 # 1
and x5 # yy by definition. Consider y' = (y1,x2) and y” = (21, y2).

If 4" and y” are in P(z), then y € P(x) by copy consistency (as in Lemma
5.2.1). Therefore we can assume without loss of generality that y' & P(z).
From

(N (1) NNY (1) % (N5 (22) O N (112))
C (Vy (1) NN (1) x Ny (@2).
we know I(z,y) C I(x,y'), and therefore I(z,y") # (). The maximality of
I(x,y) implies
I(z,y) = I(x,y),
and thus N5 (z2) € Ny (y2). Since G is R*-thin, we infer No(x2) C No(y2)
and

N*(y') = Ni (11) x N (z2) € Ny (y1) x Ny (y2) = N*(y),

contrary to Nt(z) ¢ N*(y) for all 2 & P(z) with I(x,2) = I(z,y).

We continue with the copy consistency property of F’ and first remark
that Jx), as defined in Lemma 5.2.1, must be empty for every x € G when
H is closed under applications of Lemma 5.2.1.

Let {u,v} € F'. Thus I(u,v) satisfies condition (i7), where w.l.o.g. I(u,v)
is maximal in Z(u). Furthermore, let {u’,v'} be a copy of {u,v}. Clearly
v' ¢ P(u’) by the copy consistency property of H and I(u’,v") # (). Without
loss of generality we can assume u = (u1,uz2), v = (v1,u2), v’ = (u1,u)) and
v = (v, ub).

We wish to show that (u',v") € F’. Suppose (u/,v") ¢ F'. Then there is a
2= (21,20) & P(v) with i) I(uv/,2) D I(v/,v") or ii) I(v/,2) = I(u/,v") and
N*t(z) C N*T(V).

Assume zy = u). Then (u,(z1,u2)) € F' instead of (u,v), so we know
2o # ub. But I(u«/,v") C I(v/,z) means (N; (u1) N Ny (v1)) x Ny (uh) C
(N () 1 VT (1) X (N () O NS (22)). = N3 (uh) € Ny (z2). Ga R*-
thin = N, (uh) C Ny (22). = N*t(/) € N*((u1,22)). F closed under
applications of Lemma 5.2.1 = a)(u1, z2) € P(u’). This shows z1 # uj.

From Ny (ub) C Ny (22) we have (v, 2) = I(«/, (21,u})). = I(u, (21, u}))
I(v/,v") and in the case of =" NT((z1,u})) C NT(2) C NT(v) =

I(u, (21,u2)) 2 I(u,v) and in the case of "=" N*((z1,u2)) C N*(v). This
is only possible if (z1,u2) € P(u).

V)
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G
N+(22)

22 o o 2= (21, 22)
N*(uy) | v = (vi, ub)
Uy
N*(uz) I(u,v)
U2 o |U U:(U17u2)

N*(uy)
X X . Gy
g _ NT(w) vy

Figure 5.2: Situation of Lemma 5.2.2

But copy consistency of F' implies b)(z1,u5) € P(u'). From a), b) and the
copy consistency again we know z € P(u'), contradiction. 0

5.3 The Cartesian skeleton algorithm

In this section we use the key lemmas to calculate the Cartesian skeleton.
The following algorithm, which applies those lemmas is modelled after the
marking algorithm of Imrich [19]: It gives us the edges of the Cartesian skele-
ton in form of found pairs of vertices. Further it will be proved in Lemma
5.3.2 that the Cartesian skeleton of a finite, R*-thin and NT'-connected
graph G is connected.

Algorithm 1

Input: A finite, R™-thin and N"-connected graph G.
Output: A set of marked pairs of vertices of G that is copy consistent with
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respect to any decomposition of G.
Begin
For Each x € V(G)
P(x) := {x}; Insert P(z) into P; Q(x) :={y | N"(y) C NT(x)}
Next z
M1: While 3z € V(G) for which Q(z) \ P(z) # 0
For Each such z
G(z) :={N*(y) |y € Q) \ P(2)}
If N*(y) is maximal in G(z), then mark {z,y}
Next z
If {z,y} has been marked, then join P(z) and P(y) in P
End M1:
Set all I(x,y) = NT(z) N Nt (y)
M2: While #P > 1
M3: For Each z € V(G)
Cle) = U(e.y) |y ¢ Pla), I(x.y) # 0}
If G(x) # 0, Then
For Each y ¢ P(z) with I(x,y) # 0
If (I(x,y) is maximal in G(z)) And
(NT(2) ¢ N*(y) For Each z ¢ P(x) with
I(xz,y) = I(x, z)) Then mark {z,y}
End If
Next y
End If
End M3
If {z,y} has been marked, Then join P(z) and P(y) in P
End M2
End

Remark: All computations in the algorithm are polynomial in the number
of vertices n.

Lemma 5.3.1 Let G be finite, R -thin, Nt -connected and H an undirected
graph with the same vertex-set as G. If the edges of H are the pairs of
vertices marked by the Cartesian skeleton algorithm, then H is a Cartesian
skeleton of G and connected.

Proof. At the begin the Cartesian skeleton algorithm applies Lemma 5.2.1
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for F' = (), which is copy consistent with respect to any decomposition of G.
But then we get copy consistency with respect to any decomposition of the
set of found pairs step by step. =

The edge set of H is copy consistent with respect to any decomposition
of G. By that reason we know that every cardinal decomposition of G in-
duces a decomposition of H with respect to the Cartesian product, where
the vertex sets of the factors are in both products the same. Thus H is a
Cartesian skeleton of G.

To prove the connectedness of H it suffices to show that M2 of our Carte-
sian skeleton algorithm is no endless loop, which can be understood easily:
If #P > 1, we have two vertices x and y with P(x) # P(y), but then we
take a sequence T = g, 1, ..., Tn_1,Tn = y wWith NT(x;) N NT(2;11) # 0.
There exists a minimal index j € {1,2,...,n} so that P(z;_1) # P(x;). This
implies G(z;—1) # 0. Hence the cardinality of P will be reduced when the
loop M2 is finished. O

From now on we can use the unique PFD of H. By the uniqueness of
the layers for the Cartesian PFD of H we have then also unique layers in
the cardinal PFD of G. The problem of finding factors with respect to the
cardinal product is reduced then to project the edges onto vertex sets of
possible factors.

In the class of undirected graphs there exists an analogous result for non-
bipartite graphs, but for bipartite ones (which implies that they are not
N*-connected) we can prove only an a little bit weaker result:

Lemma 5.3.2 Let G be undirected, finite, connected, thin and H an undi-
rected graph with the same vertex-set as G. If the edges of H are the pairs
of vertices marked by Algorithm 1 of [19], then H is a Cartesian skeleton of
G. It consists of two connected components if and only if G is bipartite .

Proof. H is a Cartesian skeleton of G by the same reasons as in the last
proof.

a) Suppose G is bipartite:

While |P| > 2, the cardinality of P will be reduced with every repetition
of the loop M2, which means that the number of connected components of
H is less or equal 2:

G connected = There exists an edge [z, y| € E with P(x) # P(y). |P| > 2
implies that there exists a vertex z with P(z) # P(z) # P(y). Since G is
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connected, we can find a path C from y to z. C = ¢gKjc1Ks....Kncn,
co =y and cy = 2. Let ¢; (j € {1,2,..., N}) be the first vertex of C', which
is not in P(z) U P(y).

Jj>1:¢; & P(cj—2), ¢j—1 € (N(¢;) N N(cj—2)) # 0 = |P| reduced.

j=1: 1 € P(x), y € (N(c1) N N(z)) # 0 = |P| reduced.

Next we show that H has at least two connected components:

Suppose V(G) = A; U Ay is a partition of the vertex set such that every
edge in GG joins one vertex in A; with one vertex of As. In H then there can
be no edge joining A; and As, because a vertex in A; and a vertex in Ao
have always empty neighborhood intersection.

b) Suppose H consists of two connected components, let us call them A
and B.

Be aware that for x € A and y € B the neighborhood intersection I(z,y)
must be the empty set, otherwise y would be in P(z) after applying Algo-
rithm 1. Using this it is not hard to show that there can be no edge in E(G)
joining x with another vertex a € A: By connectedness of G there is a path
from a to a vertex b € B. Without loss of generality we can assume that
[a,b] is an edge in G, but then I(z,b) # ), contradiction. O



Chapter 6

Factoring N*-connected
R*-thin graphs

6.1 The first main result

In this section we show that every NT-connected, RT-thin finite graph has a
unique PFD with respect to the cardinal product and that it can be found in
polynomial time. For finite graphs the UPFD is an immediate consequence
of the common refinement property, which will be explained in the next
lemma.

Lemma 6.1.1 Let G be a finite, N*-connected and R™-thin graph and let
A x B and C x D be two decompositions of G with respect to the cardinal
product. Then there exists a decomposition

G =Ac x Ap x Bc x Bp

so that A= Ag X Ap, B= Bc x Bp, C = Ag X Bg and D = Ap x Bp.
We call the decomposition Ao X Ap X Bo X Bp a common refinement of
the decompositions A x B and C x D of G.

We omit the proof of this lemma, because it is tedious and the same as
the proof of Lemma 6 in [19]. Further it is used that the PFD with respect
to Cartesian product can be found in polynomial time, or even, as a new
result [23] shows, in linear time.

Theorem 6.1.2 Every finite, N -connected and R -thin graph G has a
unique PFD with respect to the cardinal product. It can be computed in
polynomzial time.

27
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Proof: We prove only uniqueness. Let us assume we have two PFDs

Gi XGa X ... XxGr=0Q1 X Q2 X ... x Qg

of G (r,s > 1). We proceed by induction with respect to the number
of vertices, assuming that the statement is true for all graphs with fewer
vertices than GG. Let be B = G2 X ... X G and D = @3 X @3 X .... X Qs,
so we clearly have G = G1 x B = Q1 x D. Now we use the existence of a
common refinement: G = Ac x Ap X Bo X Bp, where 1) G1 = Ag x Ap, 2)
B> Be x Bp, 3) Q1 =2 Ac x Bo and 4) D = Ap x Bp. G prime implies
G1 =2 Ac or Gy = Ap. If the first relation is true, we know from (Q; prime
and 3): Q1 = Ac =2 Gy and Be = Ap = K. But then 2) and 4) show
B = Bp = D and the induction hypothesis (IH) proves the uniqueness of
the PFD.

In the second case G1 = Ap implies D = G1 X Bp = Q9 X ... X Q. IH
= w.lo.g Gi; = @2 and Bp = Q3 X ... X Q5. From Ac = K{ we have
@1 = Be. By the definition of B and 2) we have then:

GoXx .. XGEBXEBoXxBp=Q1 XQ3XQ4qX ... xQs.

Again the induction hypothesis shows the uniqueness of the PFD. O

The proof of the second assertion is the same as the proof of Lemma 8 in
[19]. It can also be found in [20]. Furthermore Imrich proved in [19] (The-
orem 3) that every automorphism of a undirected cardinal product graph
G which is nonbipartite, connected and R-thin is a permutation, possibly
trivial, of isomorphic factors combined with automorphisms of the G-factors.

We want to generalize this theorem to directed graphs. Since it is an
important tool we cite the following theorem which describes automorphisms
of Cartesian product graphs.

Theorem 6.1.3 (Imrich [18], Miller [28]) Let ¢ be an automorphism of a
connected graph G with PFD G10G20...0Gy. Then there exists a permuta-
tion m of {1,2,...,k} together with isomorphisms ; : G; — Gr; such that

§Z5(’01, V2, -1y Uk) = (1/)7r—11?}7r—11, ¢7r*12v7r*127 ey wwflkvwflka )
Now we can prove the final theorem of this chapter:

Theorem 6.1.4 Let G1 X Go X ... Xx G4 be the PFD of the finite, directed,
N7 -connected and Rt -thin graph G and ¢ an element of Aut(G). Then
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there exists a permutation ™ of {1,2, ..., s} together with automorphisms 1; €
Aut(G;) such that

d)(vlh ) v21“27 ceey US’I’S) = (wlvlrw(l) ’ 1/}21)21”,7(2)7 ceey wsv's’rﬂ.(s))7

where the v; are vertices of Gj.

Proof. Neighborhoods are mapped on neighborhoods by automorphisms.
Therefore a pair of vertices with maximal neighborhood intersection will be
mapped to a pair with maximal neighborhood intersection. This means that
Cartesian pairs and also the Cartesian skeleton H of GG are invariant under
automorphisms.

With other words: Every automorphism of G induces an automorphism
of H. But from the last theorem we know that the automorphisms of H
are given by permutations of isomorphic factors of the Cartesian PFD of H
together with automorphisms on the factors itself. Hence, automorphisms
of GG have the structure that we claimed in the theorem. a



Chapter 7

Graphs that are not R"-thin

7.1 General considerations

It is really natural to ask if it is possible to generalize the result of Theorem
6.1.2 to graphs that are only finite and N *-connected, because for undirected
graphs we know this generalization: Suppose a graph G is not thin. Then
we can apply the relation R and get a thin quotient graph G/R. The PFD of
G/ R can be found by Lemma 8 of [19] and there is a well described (blowing-
up) procedure (McKenzie [27] and Imrich [19] did it in detail and we used
it in the first part) that can be used to reconstruct the G-factorization from
the (G/R)-factorization.

What about directed graphs? Of course there are thin graphs that are
neither R nor R-thin, as Figure 2.3 and the following simpler example
show, so Theorem 6.1.2 and its —-version cannot always be applied to obtain
a (G/R)-factorization of a directed graph.

d c

Figure 7.1: A thin graph G that is neither R*- nor R-thin

30
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For this reason R does not seem to be the appropriate relation for directed
graphs. Another idea is to use the relation R™ instead of R, because the
R*-quotient graph of the graph in Figure 7.1 is R*-thin. But unfortunately
this does not always work: If you take a look at Figure 7.2, you see that
RT-quotient graphs need not be R™-thin.

c C/ C//
b a/ b/ a/l

Figure 7.2: G/R™" need not be R*-thin

But be aware: We investigate finite graphs, thus we surely get some R™-

thin graph after a finite number of RT-applications. Since we know induc-
tion the main problem is still to reconstruct the G-decomposition from the
(G/R*)-decomposition. If we are able to do this one time, we will be able
to repeat this procedure for a finite number of times.
In the blowing up procedure of [19] (Section 8) complete factors were firstly
extracted and vertices of the quotient graph then blown up to R-classes
(Lemma 14) of a larger graph. We would like to do something analogous
for R*-classes, but we cannot do it if we do not know the structure of the
graphs that are induced by vertices in such classes.

Definition 7.1.1 Let r and s be integers, r > 0, s > 0. R;’fr s a graph

consisting of a complete subgraph Kg and r—s other vertices that have empty
in-neighborhoods and whose out-neighborhoods consist exactly of the vertices
in the complete subgraph K¢.

Remark: RIT has totally r vertices and s loops (s is also the size of the
largest complete subgraph), compare Figure 7.3.

Lemma 7.1.2 Graphs induced by vertices in R™-classes are RZT—gmphs.

Proof. For vertices in those graphs there exist two possibilities: Their in-
neighborhoods can be empty or nonempty. In the second case the vertex
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must be in the out-neighborhood of all vertices in the R*-class. Thus those
vertices induce a complete subgraph K¢, the out-neighborhoods of the other
vertices consist exactly of the vertices in the complete subgraph K¢ and their
in-neighborhoods are empty. a

7.2 R} -graphs

Obviously the structure of those graphs is much richer than the structure
of graphs induced by R-classes, which can only be totally disconnected or
complete. A big difference can be seen if one considers the PFD. For R-
classes the PFD corresponds to the PFD of natural numbers, but for graphs
induced by R™-classes PFD is difficult, although multiplication is easy:

RS . xRl  =RS

S1,T1 52,72 S§1%82,T1%T2 "

Figure 7.3 shows that the PFD need not be unique.

RT RS
1,3 2,6 + +
’ R1,2 RQ,ﬁ

K =0

R; 3
OO R}, o.p@\

Figure 7.3: Non-unique PFD

If one looks carefully at this figure, one may recognize that the drawn
graphs are N *-connected. Thus it is in general not possible to prove unique-
ness of the PFD for graphs that are only finite and N -connected. For this
reason we do not plan to enlarge the class of graphs that are known to have
a unique PFD one more time, but we will use the considerations of this
chapter to find a polynomial algorithm to compute the PFD of graphs in a
large subclass of the class for which McKenzie showed UPFD.
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As we have seen in the last section, the subgraphs of a graph G induced
by the equivalence classes of the relation R are RIT—graphs. Of course
computing with these graphs is more difficult than working with complete
graphs. One reason is, that the PFD of RIT—graphs is not unique as Figure
7.3 shows. However, if we want to work with such graphs and their PFDs
we have to characterize prime R;r:

Lemma 7.2.1 Given the graph R;T. Then the following statements are
equivalent:
(i) Rf, is not prime.
(ii) There is a nontrivial decomposition v = ri * ry and a (possibly
trivial) decomposition s = s1 * sy so that s; <11 and sy < ry.

Proof. (i)==(ii): Assume R} = A x B is a nontrivial factorization, then
r=|V(A)|x |V(B)| ([V(A)| > 1,|V(B)| > 1). Let us call the number of
loops of A s4 and the number of loops of B sg. Obviously we have then:
saxsp=3s, s(A) <|V(A)| and s(B) < |V (B)|

(ii)=(i): RS ., x RS ., =R{, O

In analogy to the undirected case we want to compute ged’s of R;T—graphs,
but to do this we need a characterization of divisors of R, which will be
given in the next lemma:

Lemma 7.2.2 The following statements are equivalent:
(i) A[R;fr.
(ii) There exist integers si, r1 with s1 > 0 and 11 > 0, so that A =

R{ ., and the relations si|s, r1|r and s/s1 < r/r1 hold.

The inequality means that the number of loops in the cofactor RIT/A has to
be smaller then the number of vertices.

Proof. (i)=(ii): Let be r; = |V(A)| and s; the number of loops of A.
Then the first two relations of statement (ii) hold. The last must be true,
because the cofactor can not have more loops than vertices. Projection of
R, onto A shows that A contains a Kgl and that the out-neighborhoods
of the other r1 — s1 vertices of A consist exactly of the vertices of the K gl
(Their in-neighborhoods are empty). Hence A = R

81,71°
(i)=(1): RS, x R, 0 = RS =

S,T
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Let us assume now that B is the set of all subgraphs Ry, of G induced
by the classes of the equivalence relation R*. How can we define a greatest
common divisor for B and how can we compute it? The answer to the first

part of the question is:

Definition 7.2.3 Let B be a finite set of R;’fr—gmphs. A greatest common
divisor, shortly ged, of B is a common divisor with a mazximal number of
vertices.

For the second part we use the following simple but important consideration:
The ged z of {|b| | b € B} must be divided by the size of every common
divisor. Hence we just have to check, if an R;Z with 0 < s < z divides all
b € B. In the case that no R, divides all b € B we check the Rf,, where
y is the second largest divisor of z and so on.

Remark: Unfortunately a ged is not uniquely defined if we just want it to

have a maximal number of vertices as the following example illustrates:

+  ptopt +
Ry, RyglR3 5 Rion-

7.3 Counterexamples and problems

The first example shows that the quotient graph G/R* of a thin graph G is
not necessarily thin, which really leads to problems (additional assumptions)
in the next chapter.
d/
b d
/R+ a v

& &
6/

Figure 7.4: G/R™ need not be R-thin

Even if we demand N and N ~-connectedness, we can find some R-thin
graph G, that has a quotient graph G/R% which is not R-thin. We just
have to draw some additional edges in the graphs of the last example as we
see in Figure 7.5. G is thin, but the vertices d’ and €’ in the quotient graph
have both equal in- and equal out-neighborhoods.

Interestingly this graph G of Figure 7.5 has a quotient graph G/R~ which
is not R-thin, too. We can see this in Figure 7.6.
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When I studied ged’s of R;’fr—graphs, once I wanted to prove the following:
If b= (b1,...,br)" is a column- and a = (ay, ..., a;) a row-vector consisting of
R;T—graphs, M = b x a some m X [-matrix and g,, g, gcd’s of the graphs
in a, respectively b. Then the product g, X g is a ged of the graphs in the
matrix M.

After some successless tries I found this counterexample: b = (Rfj, R; )L

a = (Rf,) and
Rf
M ——bxa——< L4 )

Here is R1+,1 a gcd of the set of all entries in b and R1+,2 a ged of a, but
Rfj is a ged of the entries in M.
From Figure 7.3 we can learn that R;f ¢ has two different PFDs. This leads
to the following question: Is the number of different (non-isomorphic) PFDs
of one R;fn—graph bounded polynomially or even stronger linearly in n?
Yet we could find no counterexample to the conjecture in the linear and
no proof in the polynomial case.



Chapter 8

Factoring graphs that are
not R-thin

8.1 Blowing up

The only thing we are not so happy with in Theorem 6.1.2 is the strong
thinness condition. As described in the first section the proof of a more
general theorem is based on successive transformations of a given graph
until we can apply the last theorem. Graphs are transformed in this paper
by computing their R™-quotient graphs, but G/ RT need neither be R™-thin
as Figure 4 in [24], nor thin as Figure 7.4 in this paper shows. However, after
a finite number of R*-applications we obtain an R™-thin graph. Therefore
it is clear that the main task of this section is the reconstruction of the G-
from the G/R*-factorization. By the next lemmas we solve the problem in
the case where the PFD of G/R™ consists only of two factors.

This main task is realized by a blowing up procedure. To describe it we
have introduced in the last chapter a new class of graphs, those R;’fr—graphs.
It is not too hard to prove that graphs induced by RT-classes are exactly
R{,-graphs (for details see Lemma 7.1.2).

Let A; X By be the PFD of G/R™ and the vertex sets labelled as fol-
lows: V(Al) == {al,ag,...,al}, V(Bl) = {bl,bg,...,bm} and V(G/R+) ==
{v1,v2,...,v,}. In the proofs of the next lemmas we will also use a matrix
M that consists of all subgraphs of G that are induced by the vertices in
R*-classes in G. The element in row j and column ¢ be the graph induced
by the vertices in the R*-class (bj, a;). The idea is that every decomposition
GG = B x A induces a decomposition M = b X a, where b is a column-vector
containing the R'-classes of B and a is a row-vector with the R™-classes of

36
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A. If G/R* is thin, the matrix M is unique up to the order of the rows and
the columns.

In the following we try to obtain the G-decomposition of the not R™-thin
graph G by "blowing up” vertices of A; and B; to R'-classes of G-factors.
The question for an estimation of the number of different ways to blow up
a given PFD A; x B; will be answered by Lemma 8.1.1: It bounds this
number polynomially.

Lemma 8.1.1 Assumptions: Let G be an N'- and N~ -connected, R-thin
finite graph. Further let By x Ay be a PFD of the thin graph G/R™, where
V(Al) = {al, ag, ..., al} and V(Bl) = {bl, bg, veey bm}

By D(bj,a;) we denote the subgraph of G induced by the vertices in the
R-equivalence class (bj,a;) in G/RT. Next we define an m x | matriz M,
where the element in row j and column i is the R;ﬁr—graph D(bj,a;).

In the statements (ii) and (iii) we assume G not to be prime.

Then the following statements hold:

(i) G has at most two nontrivial prime divisors. Hence G is prime
itself or it has a PFD G = A x B, where A/RT™ = Ay and B/R" =
B;.
(ii) M is the product of a column-vector b and a row-vector a, therefore
rk(M) =1 holds.
(iii) In general the number of M -decompositions b x a is bounded by n>.

Proof. (i) Since G is N~ -connected, it does not allow an R{ -graph as
divisor. For that reason every decomposition into three nontrivial factors of
G induces by Lemma 3.1.2 a decomposition of G/R" into three nontrivial
factors. Hence G has at most two prime divisors.

Now we assume that G = A x B. Of course it is no restriction if we
assume additionally A/RT = A; and B/R™ = Bj.

(ii) We define the row-vector a as (D(a1), D(a2), ..., D(a;)), where D(a;)
is the subgraph of A that is induced by an RT-class (a;) of A, the column-
vector b analogously. By Lemma 3.1.2 the following equations hold, which
proves ().
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D(bl,a1> D(bl,(ZQ) D(bl,al)
D(by,a1) D(bg,az) - D(ba,aqp)
. . . =M
D(by,a1) D(bm,az) -+ D(bpy,aqp)

(iii) Let be a and b as in (ii). At first one must recognize that an entry
D(by) in b determines all other entries of b and a uniquely. D(b;) must be a
divisor of D(by, a1), but however, the size of D(b1) is bounded by n and the
number of loops, too. Thus the number of ways to define D(b;) is bounded
by n2, which bounds also the number of M-decompositions. a

Why did we assume G/R™ to be thin in the last lemma? Well, if it
is not thin, it may happen that one R-class r consists of the six vertices
V1,02, ...,06. By a lemma of McKenzie [27] we know that this class is a
product of R-classes in A; resp. Bj. Let us assume they consist of two,
resp. three vertices. Of course the order of the vertices can be chosen,
so that V' = {v1,va,...,u6} = {b1,b2,b3} X {a1,as}. For vy there are six
different pairs of coordinates possible. Of course there are totally 6! ways
to define the coordinates of the vertices in r and the problem is that this
number is in general not polynomial bounded. This is the reason for which
we assume G/ R to be thin. However, by McKenzie the PFD of G is unique
as its coordinatization, so maybe one can use this once to prove the lemma
without those annoying assumption.

Of course at this state the new graphs are not completely defined, because
yet we know nothing about the edges between the R™-classes.

Lemma 8.2.1 will tell us, how to find the edges between the R™-classes
of the blown up graphs and Lemma 8.2.2 shows that we do not get into
troubles, if G/R* has more than 2 prime divisors.

8.2 The second main result

Lemma 8.2.1 Let G be a finite, thin, N*- and N =connected graph and Ay x
By the PFD of G/R*. We use the notations of Lemma 8.1.1 and assume M
(uniquely defined only if G/R™ is thin) to be the product (D(ay), ..., D(a;)) *
(D(B1), D(B2), -, D(by)).

Suppose there is a decomposition G = B x A, where V(A) consists of
the wvertices in the D(a;) (i € 1,2,...,1), V(B) of the vertices in the D(b;).
(The edge sets of A and B are unknown in the beginning.) Then the A- and
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B-layers of G as well as A and B can be computed in polynomial time.

Proof. By the thinness of G we know that the A- and B-layers are unique
and of course z € V(@) can be written as (z4,zp) andy € V(G) as (y4,yB),
where x4, ya € A and xp, yp € B. We denote the subgraph of GG induced
by all vertices in D(b;,a;) with j € {1,2,...,k} by l(a;). In some sense it is
a generalized layer: 1(a1) = B x D(a1). The [(b;) be defined analogously.
Before layers are determined we list three important basic facts:

(i) Layers are subgraphs of generalized layers.
(i) From the definition of R*-classes we also know that the in-neighbor-
hoods are unions of R*-classes.
(iii) If G is N™-connected = All in-neighborhoods are nonempty. This
holds also for all factors of G.

In(z) ={j | e{l,2,...,1} s.t. (bj,a;) C N (x)}.
From (i) - (iii) we can conclude, as proved below in detail, that:
Two vertices x,y € l(b;) are in the same A-layer <= I4(z) = 1a(y).

”=": We suppose at first that x,y € I(b;) are in the same A-layer, hence
xp = yp. From (ii) we infer that

N~ (zp) =N"(ys) = [ Jb;
jel

for some subset I of {1,2,...,k}. But one can obtain this information about
the in-neighborhoods also from the known generalized layers, which allows
to prove: I4(z) =1 = I4(y). We will show the first equation in detail, the
second can be proved analogously.

Given some jy € I. From (iii) we know that N~ (z4) # 0, hence we have
from (ii) that there is some ig € {1,2,...,l}, so that a;, C N~ (z4). This
implies (bj,, ai,) C N~ (x). Definition of I4(z) = jo € Ia(x).

For any jo € Ia(x) the definition of I4(z) implies that there exists an
ig such that (bj,,a;,) C N~ (z). Thus the Cartesian product of R'-classes
bj, X ai, is a subset of N~ (zp) x N~ (z4). ai, # 0 = bj, C N~ (zp). From
the definition of I we know now that jo € I, which completes the proof of
the first equation.

”«<": Here we suppose I4(x) = I4(y). This implies N~ (xp) = N~ (yB).
[Otherwise there would exist without loss of generality some bj, C N~ (zp)\
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N~ (yg). Then we also have some (bj;,,a;,) C N~ (x)\ N~ (y), which implies
jo € La(x) \ Ia(y), contradiction.] But x and y are in the same generalized
layer 1(bj), which means N*(zg) = N*(yg). G thin implies directly that
all divisors of G are thin, too, which would follow under our assumptions
also from Lemma 3.1.1. Thus xp equals yp. The vertices x and y are in the
same A-layer.

By statement (i) layers are completely described now. Sets of vertices
with equal sets I4(.) can be found in polynomial time. Let be |V(G)| =
n, |V(G/R")| = n'. The algorithm for finding these layers consists of three
parts:

1.) Compute for all vertices € V(G) the index set 14(x).

For every z (factor: n)

For every R*-class (b;,a;) of G (factor: n)
Take a y € (bj,a;) and check
If y € N~ (z) (factor: n)
Ia(z) = Ta(z) U {j}

2.) Sort all I4(x). The cardinality of those index sets is of course not
bigger than |Bj;|. Hence the effort for doing this part is n % |B1| * log(| B1]),
which is roughly bounded by n? x log(n).

3.) Find maximal sets L C V(G) which fulfill: V&, y € L: Is(x) = Ia(y).
Those sets induce layers. To find the A-layer through = € V(G), we have
to check for all y € V(G) or more efficient for all y in the same generalized
A-layer as x, if

I(z) = I(y).
The effort for checking the last equation is bounded by n, since the index sets

are sorted. Totally we have a bound n? for the last part of the algorithm.

If all coordinates of G with respect to A and B are known, then it is easy
to compute E(A) and E(B): Project E(G) to the vertex sets of A and B.
O

The following algorithm applies this lemma. It can be used to compute
the PFD of a graph G that fulfills the conditions of Lemma 8.2.1.

Algorithm 2
Input: A graph G that fulfills the conditions of Lemma 8.2.1.
Output: The PFD of G.

If (There is no decompositions b x a of M.)
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Return (G is prime).
Determine the A- and B-layers using the algorithm of Lemma 8.2.1.
If (All A-layers have the same cardinality and the same holds for all B-
layers.)

E(A) = pa(E(G))

E(B) = pp(E(G))

If (G=AxB)
Return (A and B are the prime factors of G.)
G is prime.

Remarks: If there is no M-decomposition, then G is prime, because a
nontrivial G-decomposition would induce an M-decomposition. The func-
tion p4, respectively pp, is the projection of G onto A, resp. B. Since we
know that V(G) = V(A x B) and E(G) C E(A x B), checking the equation
G = A X B is easy:

G=AxB < E(G)=E(AxB) < |E(G)|=|E(A)|-|EB)

If the projection does not lead to a G-decomposition, then Lemma 8.2.1
implies that G is prime. Lemma 8.2.1 bounds the complexity of the layers
computation polynomially in |V (G)|. Therefore Algorithm 2 is polynomial
in |[V(G)|.

Lemma 8.2.2 If G is a finite, thin, N*- and N~ -connected graph and
Ay X ... x Ay a PFD of the thin graph G/R™", then the PFD of G can be

found in polynomial time O(n*), where n is the number of vertices of G.

Proof. For [ = 2 the statement of the corollary follows immediately from
Lemma 8.1.1, Lemma 8.2.1 and the last algorithm. In general we take all
PF A; (i € I ={1,2,...,1}) times the cofactor G/A; and try to blow up this
decomposition of G/R™ to a decomposition of G.

Let be |V(G/R")| = n. We have to find all layers at first. From Lemma
8.2.1 we know that the complexity of this computation is bounded by O(n?)
and by Algorithm 2 we bound the effort for proving if blowing up the vertices
of A; really leads to a factor of G by |E(G)|.

If the blown up graph Aj over A;, (this means A] /R* = A;;) is really
a divisor of G it must be prime by Lemma 3.1.2. We extract it from G and
cancel ig from 1.

Then we try to blow up decompositions A; x A; (i,j € I) times the
cofactor with respect to G/R™ to decompositions of G. Note that the factor
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over A; x Aj;, if existing, must be prime, because otherwise we had found
factors over A; and A;. Analogously we proceed with factors consisting of
three PF’s and so on.

Since G/R™ has at most loga(n) PF’s, it has at most n different divisors.
For this reason Lemma 8.2.1 must be applied at most n times. Hence the
complexity for finding the PFD of G is bounded by O(nf). 0

Lemma 8.2.3 If G is a finite, N*- and N -connected graph and G/R =
[Tic; Ai a PFD, then the PFD of G can be found in O(n?) time, where n is
the number of vertices of G.

Proof. We can proceed as in the case of undirected graphs, compare [19]:
Determine all minimal subsets S of I = {1,2,...,r} so that there are graphs
A and B with G = Ax B, A/R =[];c¢ Aj and B/R = [[;c j g 4;. From
minimality of S we can conclude that A is prime. Now we can extract A
and compute the other divisors of G analogously.

Those graphs A and B can be found by the blowing up procedure de-
scribed in Lemma 13 of [19]. Since r < log2(n), the lemma must be applied
at most n times.

To get one R-class of A respectively B, we just have to do one gcd-
computation of less than /n natural numbers, because it is not possible
that both A and B consist of more than or of exactly y/n R-classes if G
is not thin. We can get every other R-class of A and B by one division.
Clearly the number of divisions is bounded by n.

The effort of the gcd-computation of less than y/n natural numbers smaller
than n is bounded by +/n * log(n). Hence, the total complexity of this
procedure is bounded by O(n?). O

Theorem 8.2.4 Let G be a finite, thin, N~ and N ~-connected graph. Fur-
thermore we assume that all quotient graphs Tyx1 = T;/RY (k>4 >0 and

To = G) that we compute until we arrive at an R™-thin graph T, are thin.
Then the PED of G can be computed in O(n®) time.

Proof. We apply the relation RT until we obtain an R*-thin graph. The
graph we got after the i-th quotient graph computation will be denoted by
T;. Thus G = T. After a finite number k of R™applications we obtain an
R*-thin graph 7.

Now we have to compute the PFDs of the graphs T; (i € {0,1,2,...,k}).
To determine the PFD of T in polynomial time (complexity n°) we use
Theorem 6.1.2.
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The idea at this point is of course to win the Tj-factorization from the
T;+1-factorization (¢ € {0,1,2,...,k — 1}). Since

Tiy1 =T;/R" (8.1)

we can apply Lemma 8.2.2. It tells us that the complexity for finding the
PFD of T; is bounded by O(n?).

After at most k£ (k < n) steps we know the PFD of G. Thus the com-
plexity of our algorithm is bounded by O(n®). a

Corollary 8.2.5 If the first thinness condition of Theorem 8.2.4 is not sat-
isfied, then the PFD of G can still be computed in O(n®) time.

Proof. If G is not thin we simply apply the relation R before we start, if
necessary, with the R™-applications. To get the G-decomposition from the
G/ R-decomposition we just have to apply Lemma 8.2.3. O

Corollary 8.2.5 is our most general result concerning PFDs with respect to
directed cardinal products. It gives us a polynomial algorithm to compute
the PFD of graphs that are N*T-; N~ -connected - those are shown to have
a unique PFD by McKenzie (Theorem 4.2.8) - and additionally fulfill the
assumption that all quotient graphs in Theorem 8.2.4 are thin.

It is quite clear that all results in the last chapters, especially Theorem
6.1.2, also hold if we replace R™ by R~, N* by N~ and vice versa. In view
of this further theorem we assume that it is possible to prove Theorem 8.2.4
without using the thinness conditions concerning the quotient graphs of G.



Chapter 9

Distinguishing product
graphs

9.1 Definitions

Definition 9.1.1 A labeling ¢ : V(G) — {1,2,...,d} of a graph G is d —
distinguishing if no nontrivial automorphism of G preserves the labeling.

Definition 9.1.2 The distinguishing number D(G) of a graph G is the
least integer d so that G has a d-distinguishing labeling.

This concept was introduced by Albertson and Collins in [2] and has
received considerable attention, cf. [4] and [5].

All graphs in this chapter are assumed to be connected. Assuming con-
nectivity is possible without loss of generality, because a graph and its com-
plement have the same automorphism group (and hence equal distinguishing
numbers) and because the complement of a disconnected graph is connected.

If a graph has no nontrivial automorphism its distinguishing number is
1. In other words, D(G) = 1 for asymmetric graphs. The other extreme,
D(G) = |G|, occurs if and only if G = K,,. This follows from the fact that
D(G) < A(G) for all graphs G # K,,, K, and Cs (see [25]).

The Cartesian and the cardinal product of graphs have under certain
conditions automorphism groups that are well understood. Hence it is not
surprising that there exist many results about distinguishing numbers of
product graphs.

It all started with the paper [3] of Bogstad and Cowen in which the distin-
guishing number of finite hypercubes Qg was determined, where Qg = KJ

44
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and G" means the rth power of G with respect to the Cartesian product.
The result was: D(Q2) = D(Q3) = 3 and D(Qq) = 2 for d > 4. In Section
9.2 we show the proof for their result, which will be generalized for arbitrary
finite or countable products of Ko and K3 with at least four factors.

Then Albertson [1] proved that for a connected prime graph G, D(G") = 2
for r > 4 and, if |V(G)| > 5, then D(G") = 2 for all r > 3.

The state of the art for finite Cartesian powers is the following result by
Imrich and Klavzar in [22]:

Theorem 9.1.3 Let G # Ko, K3 be a connected graph and k > 2. Then
D(G*) = 2.

9.2 Finite and countable Cartesian products of K,
and K;

We start with a repetition of the Cartesian product definition of possibly
infinitely many factors. To this end let I be an index set and G;, i € I, be
a family of graphs. Then the Cartesian product

O
G=]]¢:
i€l
is defined on the set z of all functions x : i — x;, z; € V(G;), where two
vertices x, y are adjacent if there exists a k € I such that zpy, € E(Gy)
and z; = y; for i € I\ {k}.

For products of infinitely many nontrivial graphs G;, we note the first
fundamental difference to the finite case. If we have only finitely many
factors, then the product is connected if and only if the factors are. If we have
infinitely many nontrivial factors, there are vertices that differ in infinitely
many coordinates x;. One cannot connect them by paths of finite length,
since the endpoints of every edge differ in just one coordinate. Therefore such
products are disconnected and we call the components of G weak Cartesian
products. To identify a component, it suffices to know a single vertex of it.
Thus the weak Cartesian product

O a
¢=]]a
il

is the connected component of G = H,L»De ; G containing the vertex a. Since
we consider (only) countably infinite products, we can identify vertices with
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sequences, for example: The vertex z : N — |J,.n V(Gi), i — x; € V(G))
can be identified with the sequence (z1,z2,...).

The goal of this section is to prove D(H) = 2, where H is the weak
Cartesian product [T P with P; € {Kp, K3}, V(K;) = {0,1,...,i — 1},
and vg = (0,0,...). We begin with the labeling that was used by Bogstad
and Cowen to show that the distinguishing number of the n-dimensional
hypercube K7 is 2 for n > 3, since variants of this labeling will also be used
to prove new results.

Theorem 9.2.1 (Bogstad and Cowen [3]) D(K3) =2 forn > 3.

Proof. Given n € N, n > 3. We represent the vertices of K3 by all 0 — 1
vectors of length n, denote the vertex all of whose coordinates are zero by vg
and the vertices whose first ¢ coordinates are 1 and all the others zero by v;
(1=1,2,...,n). Clearly vgvivs... is a path P of length n that is isometrically
embedded in KJ.

(a) We color all vertices of P and v = (1,0,0,....,0,1) white, the others
black, and claim that this is a distinguishing coloring. The only white vertex
with three white neighbors is vy, thus it is fixed by any color preserving
automorphism «. The vertices v, vy and v,, are the only white ones, which
have exactly one white neighbor. From n > 3 we conclude that v, has the
largest distance to v; among them. Hence the the vertices vy, va, ..., v, are
fixed by a. But then vy is fixed as the antipode of v, and also v as the only
remaining white vertex.

(b) Consider two different vertices z, y of the hypercube that are not on
the path P. Suppose they differ in coordinate i: z(i) = 1 # 0 = y(i).
If they have different distance to v;, © cannot be mapped on y by «. If
they have equal distance to v;, we know that d(z,v;—1) = d(z,v;)) +1 =
d(y,v;) + 1 = d(y,vi—1) + 2, which means that x and y have different dis-
tance to v;_1. Therefore we know again that  cannot be mapped on y by
a. Since z and y were arbitrarily chosen, all vertices of K3 are fixed by a.. O

The main additional idea of the following corollary is that two fixed ver-
tices in a triangle also fix the third vertex in the triangle. Using this fact we
can generalize the result of Bogstad and Cowen to arbitrary finite Cartesian
products of Ks-s and K3-s with more than three factors.

Corollary 9.2.2 D(Hz‘mes P;)) =2 for P, € {Ka, K3} if S is a finite set with
|S| > 3.
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Proof. H = [[;_s P, |S| = n. The vertex set of H be the set of all vectors
of length n with entries 0, 1 or 2 in the coordinates ¢ with P, = K3 and
entries 0 or 1 in the coordinates j with P; = Ks. The vertices vy, v1, ..., vp
and v and the path P be defined as in the proof of Theorem 9.2.1.

We color all vertices of P and v = (0,1,0,0,....) white, the others black.
Then each single vertex of P is fixed by any color preserving automorphism
a by the same arguments as in part (a) of the last proof.

Furthermore we define the vertex wu;, for every index iy with P;, = K3 as
follows: wu;, is the vertex with i — 1 entries 1 in the first 79 — 1 coordinates,
2 in the ip-th and 0 in the other coordinates. wu;, is fixed, because it is the
only common neighbor of v;,—1 and v;,.

Consider two different vertices z, y of the given product that are not
on the path P. Suppose they differ in coordinate i. W.l.o.g. we assume
x(i) = 2 # 0 = y(i). If they have different distance to wu;, x cannot
be mapped on y by a. If they have equal distance to u;, we know that
d(z,v;i—1) = d(x,u;) + 1 = d(y,u;) + 1 = d(y,v;—1) + 2, which means that z
and y have different distance to v;_1. Therefore we infer that x cannot be
mapped onto y by a. Since xz and y were arbitrarily chosen, all vertices of
the product are fixed by a. a

Using the fact that connected Cartesian products and nonbipartite con-
nected cardinal products have the same automorphism group (see Imrich
[19], Theorem 3) we can formulate one more corollary. The proof of the last
corollary works here, too.

Corollary 9.2.3 D(][,cq K3) =2 if S is a finite set with |S| > 3.

Now to the main result of the section. It states that the distinguishing
number of the weak Cartesian product of Ks-s and Kj3-s is 2. The proof
extends the preceding ideas.

Theorem 9.2.4 D([[.§f P) =2 for V(EK;) = {0,1,...,i~1}, P; € {K3, K3}
and vo = (0,0, ...).

Proof. Given H = HlD fif P; as in the statement. The vertex set of H is
the set of all sequences with finitely many entries different from 0, where
the entries in the coordinates ¢ with P; = K3 are from the set {0, 1,2} and
the other entries are in {0,1}. Let the vertices v1, ve, ... be defined as in
the proof of Theorem 9.2.1 and P be the one-sided infinite path vgvivs....
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We color all vertices of P white, the others black, and claim that this is a
distinguishing coloring.

Every color-preserving automorphism « of H stabilizes P. Since vg is the
only vertex of degree 1 in P, considered as a subgraph of H, it is fixed by a.
But then vy, as the only neighbor of vy in P, is also fixed. In general, each
vertex v; (¢ > 0) is the only white vertex of distance i to vg. Thus every v;
must be fixed.

The proof is completed analogously to the proof of Corollary 9.2.2. a

9.3 Products of relatively prime graphs

In this section I list some results of [21] about Cartesian products of relatively
prime graphs and adapt it for the cardinal product. The main results of this
section, Theorem 9.3.2 and Theorem 9.3.3, assert that the distinguishing
number of such products is small provided that the sizes of the factors do
not differ too much. The theorems depend essentially on the descriptions of
Aut(G) in Theorem 6.1.3 and Theorem 6.1.4.

Lemma 9.3.1 (Imrich, Jerebic and Klavzar [21]) Let k > 2, d > 2, G a
connected graph on k vertices, and H a connected graph on d* —k+1 vertices
that is relatively prime to G. Then D(GOH) < d.

Proof. Since G and H are relatively prime every automorphism maps G-
layers into G-layers and H-layers into H-layers (see 6.1.3).

Denote the set of vectors of length k& with integer entries between 1 and
d by Nfl, and let S be the set of the following k& — 1 vectors from Nfl:

(1,1,1,....,1,1,1,2)
(1,1,1,....,1,1,2,2)
(1,1,1,....,1,2,2,2)

(1,2,2,....,2,2,2,2)

Consider the d* — k + 1 vectors from N¥\S and label the G-layers with
them. Then the number of 1’s in the H-layers is d*~ ' —k +1, ..., d¥ 1 —
1, d*~'. Hence any label preserving automorphism ¢ of GOH preserves
these layers individually, so ¢ can only permute G-layers. But since they
are all different, it follows that ¢ is the identity. Hence, the described
labeling is d-distinguishing. a
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Theorem 9.3.2 (Imrich, Jerebic and Klavzar [21]) Let be k > 2, d > 2, G
and H connected, relatively prime graphs with k < |G| < |H| < d* — k + 1.
Then D(GOH) <d.

Since the automorphism group of directed cardinal products has under cer-
tain conditions (Theorem 6.1.4) the same structure as Aut(G) of a Cartesian
product graph GG we can formulate some analogous theorem:

Theorem 9.3.3 Let be k > 3, d > 2, G and H R™-thin, N*-connected,
relatively prime, directed graphs with k < |G| < |H| < d* —k + 1. Then
D(G x H) <d.

9.4 The distinguishing chromatic number

One interesting variation of the distinguishing number is the distinguishing
chromatic number xp(G) of a graph G, which was introduced just in 2006
by Collins and Trenk [7]. They determined xp(G) of paths and cycles,
but found also upper bounds of xp(G) depending on A(G) for trees and
connected graphs in general.

Definition 9.4.1 Let G = (V, E) be a graph. A chromatic distinguishing
coloring onn colors (n € N) is a distinguishing coloring of G using n colors,
s.t. no two adjacent vertices have equal colors.

Definition 9.4.2 The distinguishing chromatic number xp(G) of a graph
G = (V,E) is the minimum of all n € N, s.t. G has a chromatic distin-
guishing coloring on n colors.

Investigating products of complete graphs Choi, Hartke and Kaul proved
in [6] that xp(Qn) = 3 for 5 < n < Ny and xp(Q3) = 4. In this section
we show, completing the investigation of finite and countably infinite hy-
percubes with respect to the distinguishing chromatic number, xp(Q4) = 4
and xp(Qn) = 3 for 8 <n < N,.

Theorem 9.4.3 The distinguishing chromatic number of the hypercube of
dimension 4 is 4.

Proof. We label the vertices of the Q4 with the subsets of the set {1,2,3,4}
in such a way that adjacent vertices have labels that differ in exactly one
of the elements 1, 2, 3, 4. For example the vertices {1,2} and {1,2,3} are
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Figure 9.1: My Q4

adjacent, but not {1,2,3} and {1,2,4}, because they can be distinguished
by 3 and 4, see Figure 9.1.

The distance between two vertices in ()4 is the cardinality of the symmetric
difference of their labels. Thus {} and {1,2, 3,4} are antipodal vertices just
as {1,3} and {2,4}. The set of vertices of distance i (0 < i < 4) from {}
will be called level ¢ and denoted Lj;.

It is nice to see that the interchange of two digits, for example 2 and 3, in
each label defines an automorphism on Q4. Such automorphisms are denoted
by a5 (1 <i < j<4), where the digits i and j are interchanged. Similarly
a(ij) (k) denotes the product of a(;;) and ). All those automorphisms
preserve all L;.

It is useful to see that V; U V5, is the bipartition of ()4, where V; =
Uie{l,S} L; and V5 = Uie{0,274} L;. Further we sometimes need that the
neighborhood intersection of two vertices in V; consists of zero or two ver-
tices, which implies that the union of their neighborhoods covers at least six
vertices. Furthermore the union of the neighborhoods of three vertices in V
or Va, respectively, covers at least seven vertices in Vo or Vi, respectively,
by the following argument. We can assume by symmetry that {} is one of
these vertices. A second vertex of V5 covers at least two additional vertices
in L3 and no two vertices in Ly have the same neighbors in Ls.

We show that there is no chromatic distinguishing coloring on three colors.
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Suppose there is a chromatic distinguishing coloring on three colors, say
white, black and green.

At first we wish to show that there is no three-coloring of (04, where both
parts of the above bipartition consist of three colors: Assume the coloring
has this property. No part of the partition can include more than four
vertices of one color, because otherwise there would be no place for a vertex
of this color in the other part. Clearly there must be one color, say green,
with three or four vertices in V7, but this implies that V5 contains at most
one green vertex. Hence we can assume without loss of generality that there
are four white and three black vertices in V5. Thus there can be at most
one white and one black vertex in V7, contrary to the fact that V7 consists
of eight vertices.

Since it is not possible that one part consists of vertices of three colors
and all vertices in the other part have the same color, we always can assume
that one part has exactly two colors, say V5 is colored white and green. Now
we just have to check the cases, where (a) V] is two- or three-chromatic and
(b) V1 is monochromatic.

(a) Assume {} to be green. For symmetry reasons it is sufficient to con-
sider the cases 1 < g9 < 4, where g; denotes the number of green vertices in

Vi (i € {1,2}).

Subcase (i) g2 = 1.

If g1 = 0, all vertices in V; must be black, which will be considered in (b).

1 S g1 S 4:

The green vertices of Vi must be in L. If g1 < 3 we can interchange two
white vertices of Lg, otherwise two green vertices, where all colors and levels
are preserved.

In detail: If g1 = 1, we can assume that {1,2,3} is green and a9y is
color preserving. If g = 2, we can assume by using some level preserving
automorphisms that {1,2,3} and {1,2,4} are green, thus ;) is color pre-
serving again. If g; = 3, we can assume that {1,2,3}, {1,2,4} and {1, 3,4}
are green and «sy) is color preserving in this case. If all vertices in L3 are
green, any level preserving automorphism works.

Subcase (ii) g2 = 2.

Then 0 < g1 < 2. g1 = 0 is considered in (b). If g3 > 0, the second
green vertex of Vo must be in level 2 and we can assume that it is {1,2}.
The green vertices of Vi are in L3 and in any case we can find some color
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preserving automorphism analogously to subcase (i).

Subcase (iii) g2 = 3.

If {1,2,3,4} is green, g; = 0, which will be considered in (b). If there are
two green vertices in Lo, two things are possible: They can have distance
two as {1,2} and {1,3}. In this case {2,3,4} can be green, too, but then
Q(23) is color preserving.

They can be antipodal as {1,2} and {3,4}, but then g; = 0.

Subcase (iv) g2 = 4. If there is an antipodal pair of green vertices in V5,
there must be also a white antipodal pair in V3, but then all vertices in V
are black, which will be considered in (b). If there is no antipodal pair of
green vertices in V3, we can assume that {1,2}, {1,3} and {1,4} are green.
In this case {2,3,4} can be green and {1} can be white. All other vertices
of Ly are in any case black. Thus a34) works.

(b) All vertices in V; are black.
All subcases (g2 = 1,2,3,4) are analogue to the subcases of (a).

Subcase (i) g2 = 1. We can assume {} is the green vertex in Ly. Each
a(;;) works then.

Subcase (ii) g2 = 2. If the green vertices are not antipodal we can assume
that {} and {i,j} are green. o(;; works then. Otherwise we can assume
that {} and {1,2,3,4} are green. Each a(;;, works in this case.

Subcase (iii) g2 = 3. If no two of the three green vertices are antipodal,
we can assume {}, {1,2} and {1,3} are green. a(e3) works then.

If there is an antipodal green pair, we can assume {}, {1,2} and {1, 2, 3,4}
are green. /(i) works then.

Subcase (iv) g2 = 4. If no two of the four green vertices are antipodal, we
can assume {}, {1,2}, {1,3} and {1,4} are green. o(y3) works then.

If there is one antipodal green pair, we can assume {}, {1,2}, {1,3} and
{1,2,3,4} are green. a(y3) works then.

If there are two antipodal green pairs, we can assume {}, {1,2}, {3,4}
and {1,2,3,4} are green. a9 works then.
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Now we know xp(Q4) > 3. To show that xp(Q4) = 4 we draw a chromatic
distinguishing coloring on 4 colors, see Figure 9.2.

Figure 9.2: xp(Q4) <4

{} is the only % vertex with no & neighbor, {1,2,3} is the only % vertex
with exactly two & neighbors and {2, 3,4} is the only % vertex with three &
neighbors. Hence the ¥ vertices are fixed. Their antipodal vertices {4}, {1}
and {1, 2, 3,4} are fixed, too. {2} is the only e neighbor of {}, thus it is fixed
as {1, 3,4}, its antipode. {} fixed implies: Neighbors of {} must be mapped
on neighbors of {}. {1}, {2} and {4} fixed implies {3} and its antipode
{1,2,4} are fixed. Different vertices have different neighborhoods and the
neighborhoods of the vertices in level two consist of vertices in level one and
three, which are already fixed. From this we conclude that all vertices in
level two are fixed, too. O

Lemma 9.4.4 (Choi, Hartke and Kaul [6]) The distinguishing chromatic
number of the 3-cube Q 1is 4.

Proof. We label the vertices of the Q3 (= Q) with the subsets of the set
{1,2, 3} analogously to the proof of Lemma 9.4.3.

The distance between two vertices in (03 is the cardinality of the symmetric
difference of their labels. Thus {} and {1,2,3} are antipodal vertices just
as {1,3} and {2}. The set of vertices of distance i (0 < ¢ < 3) from {} will
be called level ¢ and denoted Lj;.
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{3} {1,3}

{2} {1,2

{2,3} {1,2,3}

Figure 9.3: My Q3

The automorphisms ;) (1 < i < j < 3) be defined as in the proof of
Theorem 9.4.3. Note that such automorphisms preserve all L;.

It is useful to see that V;UV5 is the bipartition of (), where V; = Uz’e{l,B} L;
and ‘/2 = UiG{O,Q} LZ

We show that there is no chromatic distinguishing coloring on three colors.

Suppose there is a chromatic distinguishing coloring on three colors, say
white, black and green. Let w, b and g be the numbers of white, black and
green vertices, respectively.

Since we have a chromatic coloring w, b and g are less or equal 4. In the
case where also w, b, g < 4 holds, we can assume without loss of generality
g=0b=3=w+ 1. One green vertex in V] leaves just one place for a green
vertex in V5. Thus all three vertices of one color must be either in V; or
in V5 and we can suppose {}, {1,2} and {1,3} are green. From b = 3 we
conclude {2,3} is white, hence {1} is also white and the other vertices are
black. «a3) is color preserving.

If g = 4, it is sufficient to consider the cases b = 1 and b = 2, but both
can be checked easily.

To show that xp(Q) = 4 we draw a chromatic distinguishing coloring on
4 colors.

{} is the only M vertex with two % neighbors, hence the B vertices and
their antipodal vertices {3} and {1, 2,3} are fixed. Thus all % and e vertices
are fixed, but then the & vertices are fixed, too. O
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{3} {1,3}

{1}

{1,2

{2,3}, {1,2,3}

Figure 9.4: xp(Q3) <4

The next theorem is for finite graphs an immediate consequence of a theo-
rem of Choi, Hartke and Kaul, but we give a simple independent proof that
works also for the countable infinite hypercube and uses in finite dimension
n only O(n/2) vertices of one color.

Theorem 9.4.5 The distinguishing chromatic number of the hypercube Q.
with 8 < n < g is three. There is one color we need only for O(n/2)
vertices.

Proof. (a) n is finite.

We label the vertices with the subsets of {1,2,...,n}. The vertices v;
(0 < i < n) are defined as {1,2,...,i} and v, vy, ..., v, be the path P. The
idea is to fix this path as in Lemma 9.2.1. When we have done this, we are
ready, because the rest is analogous to part (b) of the proof of Lemma 9.2.1.

V1 be the set of vertices in Q),, with odd distance to vg, Vo the set of those
with even distance to vy and L; the set of vertices with distance ¢ to vy,
clearly Vi U V3 is the bipartition of Q). The vertices v, (i € N) be defined
as {1,2,...,i — 1,0+ 1}.

We color all vertices of P that are in V5 green (O(n/2)), the remaining
vertices of V5 black. Next we color the vertices p and ¢ green, where p is
defined as {2,4,6} and q as {4, 6,8} if n < 10, for bigger n as {6, 8, 10, ..., 2%
[n/2]} if [n/2] is odd and as {8, 10, ...,2x [n/2]} if [n/2] is even. This ensures
that both, p and ¢, are in V3. The other vertices of V; be colored white.
Neither p nor ¢ has a green neighbor in V5, so we have a chromatic three-
coloring.

The vertex vy must be mapped on itself by any color preserving automor-
phism «, because vg and vay, /o] are the only green vertices in V5 that have
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distance two to exactly one green vertex and there is no green vertex x in
Vi with d(, va,[,/9)) = d(p,vo) = 3. But then it is not hard to see that all
green vertices of P are fixed by a. Since d(p,v2) < d(q,v2), p and ¢ are also
fixed .

For odd ¢ we know that v; and v} are the only common neighbors of v;_;
and v;11, hence a maps {v;,v,} on itself. The vertices v; and v} have differ-
ent distance to at least one of the fixed vertices p or ¢, thus they are fixed
by « and therefore the complete path P.

The vertex set of @y, be the set of all finite subsets of N. The vertices
Vi, U;- and the vertex sets Vi, V5 be defined as in (a), the one-sided infinite
path vgvivs... will be called P.

We color all vertices of P that are in Vs green, the other vertices of V5
black. In V4 we color the vertices {2,4,6}, {8,10,12, 14,16}, {18, 20,22, 24,
26, 28,30}, ... green, the remaining vertices white.

It is not hard to see that no two green vertices are adjacent. Since V3 U Vs
is the bipartition of Q)x,, this is a chromatic three-coloring. The vertex vg
is the only green vertex to which only one green vertex has distance two,
hence it is fixed by any color preserving automorphism « and therefore all
green vertices of P. The green vertices of V; have pairwise different distance
to vg, thus they are also fixed by «a.

The white vertices v; of P (those with odd index) are fixed, because v;
and v] have different distance to one green vertex in Vi and they are the
only common neighbors of v;—; and v;y1, the remaining vertices of G are
fixed by the same arguments as in the proof of Lemma 9.2.1. a

9.5 The local distinguishing number

An interesting generalization of the distinguishing number, introduced by
Cheng and Cowen [5], is the ith (i integer greater zero) local distinguishing
number of a graph G.

Definition 9.5.1 Given a graph G. N is the induced subgraph of G with
the vertex set V(NE) = {u € V(G) | 0 < d(u,v) < i}.

Hence, N} is the closed neighborhood of the vertex v.
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Definition 9.5.2 Given a graph G = (V,E). A labeling of the vertex set
of G, ® : V(G) — {1,2,....,r} is said to be i-local distinguishing if Yu,v €
V(Q), u# v, N} is not isomorphic to Ni.

Definition 9.5.3 The ith local distinguishing number of a graph G, LD(G)
is the minimum r s. t. G has an i-local distinguishing labeling that uses r
colors.

Cheng and Cowen proved also the following theorem:

Theorem 9.5.4 Given C,, let k € R s.t. n = (k?>(k+1))/2. Letr = [k] >
2.
(i) Ifr is odd, LD*(C,) =
(ii) If r is even n < (r?(r + ))/2 —r, then LDY(C,) = r; otherwise
LDYCp)=71+1

Lemma 9.5.5 LD (C,0C,) =3

Proof. Note at first that C4,0C; = Q4. In C40C, every vertex v has
exactly four neighbors. Thus there are five pairwise nonisomorphic labelings
consisting of two colors of N}, where the color of v is fixed. (The number of
black neighbors of v is between zero and four.) Since two colors can be chosen
for v, the total number of pairwise nonisomorphic labelings consisting of two
colors of N! is ten. But C40C) has 16 vertices, hence LD (C4,0C}) > 3.

The proof is completed by showing that there exists a 1-local distinguish-
ing labeling that uses three colors.

e S
ininy
T

Figure 9.5: A 1-local distinguishing labeling of C?



Chapter 10

Strong graph products

10.1 A local PFD algorithm

We mention just for the sake of completeness that a graph is prime with
respect to the strong product, analogous to the other considered products, if
it cannot be written as a strong product of two nontrivial graphs. The first,
and up to now the only polynomial algorithm to decompose graphs with
respect to the strong graph product, is due to Feigenbaum and Schéffer,
compare also Theorem 4.2.9:

Theorem 10.1.1 (Feigenbaum, Schéffer [12]) The PFD (X ) of every fi-
nite, connected, undirected graph without loops is unique. Furthermore it
can be computed in polynomial time.

Its main idea is analogous to the idea in our Cartesian skeleton chapter. It
uses that G, the given graph, without non-Cartesian edges (Sk(G)) has the
same or in the worst case a finer PFD with respect to the Cartesian product
than G with respect to the strong product. Finer means here that every
product factor is the product of some Cartesian factors. More precisely:
Say Sk(G) = [I;o; Hi- Then there exists a partition I = -J}_, Jj, of I such
that G = H,?!;’f Ay, where Ay, = HEJk H;.

Since the decomposition of the skeleton can be computed in linear time
now [23], it is quiet clear that the most complex part of the algorithm is the
recognition of all non-Cartesian edges. Its effort is bounded by O(n?) in the
number of vertices n. This is a rough bound, because at least one loop in
the algorithm runs through all neighbors of some vertex, and in general the
number of neighbors cannot be better bounded than by n.
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The goal of our investigations is to speed up Feigenbaum’s algorithm by
some local application of itself, hence, the basic idea is simply to cover
the given graph by smaller subgraphs, decompose the subgraphs using the
algorithm of [12] into its prime factors and try to suggest from the factors
of the subgraphs to global factors. This is possible if the chosen subgraphs
are indeed subproducts, i.e. they are products of subgraphs of the factors.
Appropriate subgraphs are balls:

Given G = (V, E), v € V. The ball with radius n and center v, denoted
By, (v), is the subgraph of G induced by the vertices {x € V' | d(z,v) < n}.

X ° ®
(Y

1 Al

Figure 10.1: By(v) = A1 K Ay

Figure 10.1 shows that balls in strong products are the product of their
projections to the factors and therefore subproducts . The question is, how
can we use the factors of balls that are used to cover the given graph G, to
suggest to global factors. After investigating a lot of approaches, it seems
that working with edge classes is the best way of applying the information
about prime factors of balls for an algorithm.

Suppose now that G = A1 ® A; K ... X A, is the PFD of G. The edge class
Al is then defined as follows: A} = {e € E(B1(v)) | e € copy of A1}, the
classes Aj, ..., A/, analogously. Computing A}, A5, ..., A!, from G in the al-
gorithm means computing the edge classes of G related to its prime factors.
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Furthermore we need some thinness condition: Two adjacent vertices x, y
are in relation S if they have the same neighborhood and a graph is S-thin
if no two different vertices are in relation S.

Algorithm 3
Choose v € V(G) with S-thin Bi(v), W =V (Bi(v))
Compute A, A}, ..., A}, from Bj(v) using the algorithm of [12].
While (W # V(G))
x €W with d(z, V(G)\ W) =1
If By(z) is S-thin
W =WUV(Bi(x))
Compute A7, A o, ..., A, from By (x)
Fork=1:m
Forj=1:n {
If ((A; N A;wrk) #0) A;' = A;‘ U A{n—l—k }
Al =0
If every single edge class A, (i = 1,2, ...n) induces connected subgraphs
that are pairwise isomorphic
If I is a maximal index set such that A} # A} for i # j.

G= HEI A?, where A is a component of A;.
else
G is prime.

Description of the algorithm: The algorithm starts with the choice of some
arbitrary vertex v and the computation of By (v). Thinness of the chosen ball
is important, because it ensures uniqueness of the coordinatization within
the ball. Then the vertex set of By(v) is stored on the set W that is the set of
the currently covered vertices. Using Feigenbaum’s and Schéffer’s algorithm
of [12] we compute the prime factors Aj, Ao, ..., A, of Bi(v) and related
edge classes A] = {e € E(B1(v)) | e € copy of A1}, AL, ..., A),, which are
by thinness unique up to the order, compare Figure 10.3. It is clear that
GG admits at most n prime factors, because if G is a product of n factors,
then every ball in G has to be also the product of at least n graphs. When
the algorithm finishes, which means that the whole graph can be covered by
thin balls of radius one, the A} will be the edge classes related to a global
factor of G.

The algorithm works while W # V (G), which means until all vertices are
covered. Next we choose some covered vertex x of distance 1 to V(G) \ W,
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compute its ball of radius one, decompose it using the algorithm of [12] and
determine the edge classes A;,_ 4, ..., A}, ,,, see Figure 10.4. Within the for
loops edge classes are compared: To have nonempty intersection means that
they are induced by the same global factor. Therefore we merge them in
this case and save the result on the class with the lower index as drawn in
Figure 10.5 and Figure 10.6. Before increasing the counter of the outer for
loop we set the class A/ 4 equal 0.

In the last part we check for every single Af, whether the components of

the graph that is induced by the edges in A} are pairwise isomorphic. If this

holds, then G = HEI A7, where A7 is a component of A; and I a maximal

index set such that Aj # A’ for i # j. Otherwise G’ must be prime. These
isomorphism tests are less expensive as it seems to be. Suppose A and B
are two components of the graph induced by edges in A;. Then we only
check the mapping that maps the vertex x € A to y € B that has the same
coordinates with respect to all edge classes A’ different from Aj.

Note that || is the number of prime factors of G, which can be of course
less than n. Therefore it is still possible that G is prime.

Remark: The algorithm can be adapted for the direct product if all balls
are products of balls in the factors, which means exactly that all balls are
subproducts. In this case we need R-thinness instead of S-thinness, but
then we can apply the algorithm of Imrich [19] locally.

4 o o o o o o o G
Figure 10.2: G = G1 R Go
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Figure 10.3: Only the edges of A} are drawn.
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Figure 10.4: The second ball and the edges of Aj.
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e o o o o o
e e—e—2 o o

? e o e
o o e

X ?

Figure 10.5: The edges of A} after the first union.

e o e o e e e
. e o e

? e o
e o

X ?

Figure 10.6: The edges of A} after the first run through the while loop.
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*
Al
Figure 10.7: When the while loop is finished, A’ contains the thick edges,
Al the thin ones. Connected components are factors of the given graph.
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