Computational materials science, ‎0927-0256

Journal

ISSNs0927-0256

Research output

  1. Published

    Accurate prediction of structural and mechanical properties on amorphous materials enabled through machine-learning potentials: A case study of silicon nitride

    Nayak, G. K., Srinivasan, P., Todt, J., Daniel, R., Nicolini, P. & Holec, D., 6 Jan 2025, In: Computational materials science. 249.2025, 5 February, 11 p., 113629.

    Research output: Contribution to journalArticleResearchpeer-review

  2. Published

    Coupled Modelling of the Solidification Process Predicting Temperatures, Stresses and Microstructures

    Ludwig, A. & Sahm, P., 1996, In: Computational materials science. p. 194-198

    Research output: Contribution to journalArticleResearchpeer-review

  3. Published

    Predicting an alloying strategy for improving fracture toughness of C15 NbCr2 Laves phase: A first-principles study

    Long, Q., Wang, J., Du, Y., Holec, D., Nie, X. & Jin, Z., 2016, In: Computational materials science. 123, p. 59-64 6 p.

    Research output: Contribution to journalArticleResearchpeer-review

  4. Published
  5. Published
  6. Published

    Solution of a time-dependent heat conduction problem by an integral-equation approach

    Leindl, M., Oberaigner, E. & Antretter, T., 2012, In: Computational materials science. p. 178-181

    Research output: Contribution to journalArticleResearchpeer-review

  7. Published

    Solution of a time-dependent heat conduction problem by an integral-equation approach

    Leindl, M., Oberaigner, E. & Antretter, T., 2011, In: Computational materials science. p. 178-181

    Research output: Contribution to journalArticleResearchpeer-review

  8. E-pub ahead of print

    Structure and surface energy of Au55 nanoparticles: An ab initio study

    Holec, D., Fischer, F.-D. & Vollath, D., 6 Apr 2017, (E-pub ahead of print) In: Computational materials science. 134.2017, 15 June, p. 137-144 8 p.

    Research output: Contribution to journalArticleResearchpeer-review

  9. Published

    Optimization of 3D RVE for anisotropy index reduction in modelling thermoelastic properties of two-phase composites using a periodic homogenisation method

    Grasset-Bourdel, R., Alzina, A., Tessier-Doyen, N., Huger, M., Chotard, T., Schmitt, N., Gruber, D. & Harmuth, H., 2011, In: Computational materials science. 50, p. 3136-3144

    Research output: Contribution to journalArticleResearchpeer-review

  10. Published

    Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten

    Goel, S., Cross, G., Stukowski, A., Gamsjäger, E., Beake, B. & Agrawal, A., 2018, In: Computational materials science. 152, p. 196-210 15 p.

    Research output: Contribution to journalArticleResearchpeer-review