Computational materials science, 0927-0256
Journal
ISSNs | 0927-0256 |
---|
Research output
- Published
Accurate prediction of structural and mechanical properties on amorphous materials enabled through machine-learning potentials: A case study of silicon nitride
Nayak, G. K., Srinivasan, P., Todt, J., Daniel, R., Nicolini, P. & Holec, D., 6 Jan 2025, In: Computational materials science. 249.2025, 5 February, 11 p., 113629.Research output: Contribution to journal › Article › Research › peer-review
- Published
A micromechanical approach to constitutive equations for phase changing materials
Fischer, F. D., Oberaigner, E. & Tanaka, K., 1997, In: Computational materials science. 9, p. 56-63Research output: Contribution to journal › Article › Research › peer-review
- Published
An atomistic view on Oxygen, antisites and vacancies in the γ-TiAl phase
Razumovskiy, V. I., Ecker, W., Wimler, D., Fischer, F.-D., Appel, F., Mayer, S. & Clemens, H., Sept 2021, In: Computational materials science. 197.2021, September, 8 p., 110655.Research output: Contribution to journal › Article › Research › peer-review
- Published
A New Computational Treatment of Reactive Diffusion in Binary Systems
Svoboda, J. & Fischer, F. D., 2013, In: Computational materials science. 78, p. 39-46Research output: Contribution to journal › Article › Research › peer-review
- Published
Application of the cyclic phase transformation concept for determining the effective austenite/ferrite interface mobility
Gamsjäger, E., Chen, H. & van der Zwaag, S., 2014, In: Computational materials science. 83, p. 92-100Research output: Contribution to journal › Article › Research › peer-review
- Published
Austenite-to-Ferrite Phase Transformation in Low-Alloyed Steels
Gamsjäger, E., Svoboda, J. & Fischer, F. D., 2005, In: Computational materials science. 32, p. 360-369Research output: Contribution to journal › Article › Research › peer-review
- Published
Back to and beyond Weibull – The hazard rate approach
Stoyan, D., Funke, C. & Rasche, S., 2013, In: Computational materials science. 68, p. 181-188Research output: Contribution to journal › Article › Research › peer-review
- Published
Coupled Modelling of the Solidification Process Predicting Temperatures, Stresses and Microstructures
Ludwig, A. & Sahm, P., 1996, In: Computational materials science. p. 194-198Research output: Contribution to journal › Article › Research › peer-review
- Published
Data-mining of in-situ TEM experiments: Towards understanding nanoscale fracture
Steinberger, D., Issa, I., Strobl, R., Imrich, P. J., Kiener, D. & Sandfeld, S., 5 Jan 2023, In: Computational materials science. 216.2023, 5 January, 9 p., 111830.Research output: Contribution to journal › Article › Research › peer-review
- Published
Descriptors based on the density of states for efficient machine learning of grain-boundary segregation energies
Dösinger, C. A., Hammerschmidt, T., Peil, O. E., Scheiber, D. & Romaner, L., 13 Nov 2024, In: Computational materials science. 247.2025, 31 January 2025, 10 p., 113493.Research output: Contribution to journal › Article › Research › peer-review