Computational materials science, ‎0927-0256

Journal

ISSNs0927-0256

Research output

  1. 2024
  2. Published

    Descriptors based on the density of states for efficient machine learning of grain-boundary segregation energies

    Dösinger, C. A., Hammerschmidt, T., Peil, O. E., Scheiber, D. & Romaner, L., 13 Nov 2024, In: Computational materials science. 247.2025, 31 January 2025, 10 p., 113493.

    Research output: Contribution to journalArticleResearchpeer-review

  3. 2025
  4. Published

    Accurate prediction of structural and mechanical properties on amorphous materials enabled through machine-learning potentials: A case study of silicon nitride

    Nayak, G. K., Srinivasan, P., Todt, J., Daniel, R., Nicolini, P. & Holec, D., 6 Jan 2025, In: Computational materials science. 249.2025, 5 February, 11 p., 113629.

    Research output: Contribution to journalArticleResearchpeer-review

Previous 1 2 3 4 5 Next