Winding Trajectories for Dry Filament Wound Preforms
Publikationen: Konferenzbeitrag › Paper
Standard
2018. Beitrag in 18th European Conference of Composite Materials (ECCM18), Athen, Griechenland.
Publikationen: Konferenzbeitrag › Paper
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - CONF
T1 - Winding Trajectories for Dry Filament Wound Preforms
AU - Sofi, Tasdeeq Rahim
AU - Schledjewski, Ralf
PY - 2018/6/28
Y1 - 2018/6/28
N2 - The aim of this study is to investigate the influence of friction coefficient and to a lesser the influence of initial winding angle on the winding angle development along a conical surface. Then to obtain the feasible design space for wet and dry winding and generate different winding trajectories on the conical mandrel surface. The equations for winding angle and coordinates of the fiber trajectory have been developed for a truncated cone using differential geometry. The influence of initial winding angle and friction coefficient on the distribution of winding angles along the height of the cone has been investigated. The feasible design space has been obtained for two different friction coefficients corresponding to wet and dry winding. Winding trajectories namely geodesic, non-geodesic and constant winding angle has been generated on the truncated cone. The results show that friction coefficient has a huge effect on the winding angle development and can significantly enlarge the design flexibility. It can be used to manipulate the fiber trajectories without causing slippage. A combined path can be achieved from a non-geodesic and a constant winding angle path to achieve a specific fiber direction. The combined path meets the necessary requirements in filament winding process and can be used to enhance the structural performance of the truncated cone by placing the fibers along the principal stress directions.
AB - The aim of this study is to investigate the influence of friction coefficient and to a lesser the influence of initial winding angle on the winding angle development along a conical surface. Then to obtain the feasible design space for wet and dry winding and generate different winding trajectories on the conical mandrel surface. The equations for winding angle and coordinates of the fiber trajectory have been developed for a truncated cone using differential geometry. The influence of initial winding angle and friction coefficient on the distribution of winding angles along the height of the cone has been investigated. The feasible design space has been obtained for two different friction coefficients corresponding to wet and dry winding. Winding trajectories namely geodesic, non-geodesic and constant winding angle has been generated on the truncated cone. The results show that friction coefficient has a huge effect on the winding angle development and can significantly enlarge the design flexibility. It can be used to manipulate the fiber trajectories without causing slippage. A combined path can be achieved from a non-geodesic and a constant winding angle path to achieve a specific fiber direction. The combined path meets the necessary requirements in filament winding process and can be used to enhance the structural performance of the truncated cone by placing the fibers along the principal stress directions.
KW - Winding Angle
KW - Friction Coefficient
KW - Design Space
KW - Geodesic
KW - Non-geodesic
M3 - Paper
T2 - 18th European Conference of Composite Materials (ECCM18)
Y2 - 24 June 2018 through 28 June 2018
ER -