Umlaufbiege-Verhalten eines Maraging-Stahls
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Diplomarbeit
Standard
2017.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Diplomarbeit
Harvard
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Umlaufbiege-Verhalten eines Maraging-Stahls
AU - Höfferer, Patrick
N1 - gesperrt bis 22-05-2022
PY - 2017
Y1 - 2017
N2 - Diese Arbeit befasst sich mit der Untersuchung eines nichtrostenden martensitisch aushärtenden Cr-Ni-Cu-Stahls, X5CrNiCuNb16-4 (1.4542 nach ÖNORM EN 10088-3). Durch eine Wärmebehandlung, dem Auslagern, bilden sich im Werkstoff Ausscheidungen, die zu einer Festigkeits- und Härtesteigerung führen. Werkstoffe dieser Art werden für Bauteile in der Fahrzeug- und Flugzeugindustrie verwendet. Ziel war die Umlauf-Biegewechselfestigkeit des Werkstoffs im HCF Bereich zu analysieren. Es wurden Wöhlerversuche an gekerbten Proben mit zwei unterschiedlichen Durchmessern durchgeführt. Des weiteren wurde der Einfluss der Wärmebehandlung analysiert. Die Versuchsergebnisse von wärmebehandelten Proben wurden den Ergebnissen von Proben ohne Wärmebehandlung gegenübergestellt und diskutiert. Eine weitere Aufgabe war ein Simulationsmodell zu entwickeln, das die tatsächliche Beanspruchung einer Umlaufbiegeprobe simulationstechnisch darstellt. Es wurde darauf geachtet Probeneinspannung, Belastung und tatsächliche Abstände am Umlaufbiegeprüfstand zu berücksichtigen. Auf Basis dieses Simulationsmodells wurden Modellvereinfachungen und Änderungen in der Probengeometrie analysiert. Im Zuge dieser Diplomarbeit wurden die Umlaufbiegeprüfmaschinen sicherheitstechnisch optimiert und kalibriert. Es wurden Umlaufbiegeversuche mit dem Grundmaterial und drei Wärmebehandlungen durchgeführt. Die effektiven Auslagerungszeiten lagen zwischen 1 und 10,5 Stunden. Die Versuchsergebnisse der Proben mit Nennquerschnittsdurchmesser d=4,00mm zeigen, dass im Vergleich zu den Versuchsergebnissen des Grundmaterials bei steigender Dauer der Wärmebehandlung die Steigung k der Zeitfestigkeitsgeraden steigt, so weisen die Ergebnisse der Proben mit einer Auslagerungszeit von 10,5 Stunden eine Steigung von k=12,06 auf. Bezüglich des Dauerfestigkeitsniveaus lassen sich folgende Aussagen treffen. Mit der Durchführung einer Wärmebehandlung wird kein höheres Dauerfestigkeitsniveau erreicht. Bis zu einer Auslagerungszeit von 1,5 Stunden sinkt die Dauerfestigkeit im Vergleich zum Grundmaterial um rund 14%. Bei einer längeren Behandlungsdauer wird eine um 3% geringere Dauerfestigkeit erreicht. Die Versuchsergebnisse der Proben mit Nennquerschnittsdurchmesser d=7,50mm zeigen die gleichen Auswirkungen einer Wärmebehandlung auf die Zeitfestigkeitsgerade und auf das Dauerfestigkeitsniveau. Das Dauerfestigkeitsniveau des wärmebehandelten Materials liegt im Vergleich zum Grundmaterial um 14% niedriger. Die Steigung der Zeitfestigkeitsgeraden beträgt k=11,53. Die Erkenntnis der Parameterstudie bezüglich der Modellvereinfachungen ist, dass sich das Gesamtmodell auf ein Simulationsmodell des Kerbbereichs reduzieren lässt. Bei der Optimierung der Prüfmaschinen wurde eine Abweichung um 2,85% zwischen tatsächlichen Probenspannung und berechneten Probennennspannung ermittelt und in einem neuen Excel-Berechnungsfile für die Versuchsspannung berücksichtigt.
AB - Diese Arbeit befasst sich mit der Untersuchung eines nichtrostenden martensitisch aushärtenden Cr-Ni-Cu-Stahls, X5CrNiCuNb16-4 (1.4542 nach ÖNORM EN 10088-3). Durch eine Wärmebehandlung, dem Auslagern, bilden sich im Werkstoff Ausscheidungen, die zu einer Festigkeits- und Härtesteigerung führen. Werkstoffe dieser Art werden für Bauteile in der Fahrzeug- und Flugzeugindustrie verwendet. Ziel war die Umlauf-Biegewechselfestigkeit des Werkstoffs im HCF Bereich zu analysieren. Es wurden Wöhlerversuche an gekerbten Proben mit zwei unterschiedlichen Durchmessern durchgeführt. Des weiteren wurde der Einfluss der Wärmebehandlung analysiert. Die Versuchsergebnisse von wärmebehandelten Proben wurden den Ergebnissen von Proben ohne Wärmebehandlung gegenübergestellt und diskutiert. Eine weitere Aufgabe war ein Simulationsmodell zu entwickeln, das die tatsächliche Beanspruchung einer Umlaufbiegeprobe simulationstechnisch darstellt. Es wurde darauf geachtet Probeneinspannung, Belastung und tatsächliche Abstände am Umlaufbiegeprüfstand zu berücksichtigen. Auf Basis dieses Simulationsmodells wurden Modellvereinfachungen und Änderungen in der Probengeometrie analysiert. Im Zuge dieser Diplomarbeit wurden die Umlaufbiegeprüfmaschinen sicherheitstechnisch optimiert und kalibriert. Es wurden Umlaufbiegeversuche mit dem Grundmaterial und drei Wärmebehandlungen durchgeführt. Die effektiven Auslagerungszeiten lagen zwischen 1 und 10,5 Stunden. Die Versuchsergebnisse der Proben mit Nennquerschnittsdurchmesser d=4,00mm zeigen, dass im Vergleich zu den Versuchsergebnissen des Grundmaterials bei steigender Dauer der Wärmebehandlung die Steigung k der Zeitfestigkeitsgeraden steigt, so weisen die Ergebnisse der Proben mit einer Auslagerungszeit von 10,5 Stunden eine Steigung von k=12,06 auf. Bezüglich des Dauerfestigkeitsniveaus lassen sich folgende Aussagen treffen. Mit der Durchführung einer Wärmebehandlung wird kein höheres Dauerfestigkeitsniveau erreicht. Bis zu einer Auslagerungszeit von 1,5 Stunden sinkt die Dauerfestigkeit im Vergleich zum Grundmaterial um rund 14%. Bei einer längeren Behandlungsdauer wird eine um 3% geringere Dauerfestigkeit erreicht. Die Versuchsergebnisse der Proben mit Nennquerschnittsdurchmesser d=7,50mm zeigen die gleichen Auswirkungen einer Wärmebehandlung auf die Zeitfestigkeitsgerade und auf das Dauerfestigkeitsniveau. Das Dauerfestigkeitsniveau des wärmebehandelten Materials liegt im Vergleich zum Grundmaterial um 14% niedriger. Die Steigung der Zeitfestigkeitsgeraden beträgt k=11,53. Die Erkenntnis der Parameterstudie bezüglich der Modellvereinfachungen ist, dass sich das Gesamtmodell auf ein Simulationsmodell des Kerbbereichs reduzieren lässt. Bei der Optimierung der Prüfmaschinen wurde eine Abweichung um 2,85% zwischen tatsächlichen Probenspannung und berechneten Probennennspannung ermittelt und in einem neuen Excel-Berechnungsfile für die Versuchsspannung berücksichtigt.
KW - Schwingfestigkeit
KW - Wöhlerversuche
KW - Umlaufbiegung
KW - Maraging-Stahl
KW - Simulation
KW - fatigue analysis
KW - S-N curve
KW - rotating bending
KW - maraging steel
KW - simulation
M3 - Diplomarbeit
ER -