Synthetic load profile generation for production chains in energy intensive industrial subsectors via a bottom-up approach
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Autoren
Organisationseinheiten
Externe Organisationseinheiten
- ILF Consulting Engineers Austria GmbH, Innsbruck
Abstract
Iron & Steel, Pulp & Paper, Non-Metallic Minerals and Chemical & Petrochemical are the most energy intensive subsectors, even though they utilise only a limited range of production processes compared to other sectors like Machinery or Food & Beverages. To support future efforts for decarbonising the European industry, this study aims to develop a methodology to correctly and dynamically depict all relevant production processes of the mentioned subsectors and to generate synthetic load profiles (LP)1 based upon their consumption and generation behaviour. In a first step, the energy intensive subsectors and their main production processes are identified. A standardised research approach is used to correctly depict their characteristics e.g. runtime, energy consumption and generation, unit sizes etc. Next, a methodology for modelling the timely behaviour of these production processes and for generating synthetic LPs is developed. This method is based upon the bottom-up approach of discrete-event simulation combined with stochastics. The developed methodology is then implemented into the simulation software Ganymed. Finally, the results of this methodology are validated via a case study, modelling the primary steel production route of an Austrian steel mill. In overall, the synthetic electricity LP shows good approximations to the measured one with a mean absolute percentage error of 6.08% for the simulated five days in total. However, a stronger deviation of the generated LP compared to the measured counterpart can be noted at the last two days. This deviation results from a reduction of the capacity during the real life production. This, however, can be taken into account in the synthetic generation given a more extensive data basis. Consequently, Ganymed can be deemed as a suitable software for generating energy consumption and generation behaviour of processes and production chains of energy intensive industries.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 130024 |
Seitenumfang | 14 |
Fachzeitschrift | Journal of Cleaner Production |
Jahrgang | 331.2022 |
Ausgabenummer | 10 January |
Frühes Online-Datum | 7 Dez. 2021 |
DOIs | |
Status | Veröffentlicht - 10 Jan. 2022 |