Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Standard

Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy. / LI, Jiehua; An, Zhiheng; Hage, Frederik S. et al.
in: Materials science and engineering: A, Structural materials: properties, microstructure and processing, Jahrgang 760.2019, Nr. 8 July, 2019, S. 366-376.

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Vancouver

LI J, An Z, Hage FS, Wang HY, Xie P, Jin S et al. Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy. Materials science and engineering: A, Structural materials: properties, microstructure and processing. 2019;760.2019(8 July):366-376. Epub 2019 Jun 8. doi: 10.1016/j.msea.2019.06.021, 10.1016/j.msea.2019.06.021

Bibtex - Download

@article{4d6e6b9cb0914a67a7f179ea0043e732,
title = "Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy",
abstract = "Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy has been investigated by atom probe tomography (APT) as well as high-angle annular dark-field (HAADF) imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Nine types of solute clusters (Cu, Ag, Mg–Cu, Mg–Ag, Mg–Cu–Si, Mg–Ag–Si, Mg–Ag–Cu, Cu–Ag–Si and MgAgCuSi) were observed by APT in both the as-quenched alloy and after ageing the alloy at 180 °C for 1 h. Three types of precipitates (Ω (AlCuMgAg), θ (Al 2Cu) and Mg 2Si) were observed by APT and HAADF-STEM after further ageing at 180 °C for 24 h and 100 h. We propose that MgAgCu and MgAgCuSi clusters are likely to be responsible for the formation of the Ω (AlCuMgAg) phase. Furthermore, we also suggest that the θ (Al 2Cu) phase forms from Cu clusters and the Mg 2Si phase forms from the decomposition of MgAgSi and MgAgCuSi clusters by losing Ag to Ω phase growth. Many early binary clusters (Mg–Cu, Mg–Ag) do not seem to undergo a significant further growth during ageing; these are more likely to be transformed into complex ternary and quaternary clusters and be subsequently consumed during the growth of large clusters/precipitates. Furthermore, it is proposed that the plate-like Ω (AlCuMgAg) precipitates evolve continuously from the MgAgCu and MgAgCuSi clusters, rather than via heterogeneous nucleation on their precursors (i.e. MgAgCu and MgAgCuSi clusters). More interestingly, even after ageing at 180 °C for 100 h, the Ω (AlCuMgAg) precipitates remain coherent with the α-Al matrix, indicating that these precipitates have a high thermal stability. This can mainly be attributed to the presence of a single Mg–Ag-rich monolayer observed at the interface between the Ω precipitate and the α-Al matrix, significantly improving the coarsening resistance of the Ω (AlCuMgAg) precipitates. Our results thus reveal links between a variety of solute clusters and the different types of precipitates in the Al–Cu–Mg–Ag–Si model alloy. Such information can in the future be used to control the precipitation by tailoring solute clustering. ",
author = "Jiehua LI and Zhiheng An and Hage, {Frederik S.} and Wang, {Huiyuan Y.} and Pan Xie and Shenbao Jin and Ramasse, {Quentin M.} and Gang Sha",
year = "2019",
doi = "10.1016/j.msea.2019.06.021",
language = "English",
volume = "760.2019",
pages = "366--376",
journal = "Materials science and engineering: A, Structural materials: properties, microstructure and processing",
issn = "0921-5093",
publisher = "Elsevier",
number = "8 July",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy

AU - LI, Jiehua

AU - An, Zhiheng

AU - Hage, Frederik S.

AU - Wang, Huiyuan Y.

AU - Xie, Pan

AU - Jin, Shenbao

AU - Ramasse, Quentin M.

AU - Sha, Gang

PY - 2019

Y1 - 2019

N2 - Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy has been investigated by atom probe tomography (APT) as well as high-angle annular dark-field (HAADF) imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Nine types of solute clusters (Cu, Ag, Mg–Cu, Mg–Ag, Mg–Cu–Si, Mg–Ag–Si, Mg–Ag–Cu, Cu–Ag–Si and MgAgCuSi) were observed by APT in both the as-quenched alloy and after ageing the alloy at 180 °C for 1 h. Three types of precipitates (Ω (AlCuMgAg), θ (Al 2Cu) and Mg 2Si) were observed by APT and HAADF-STEM after further ageing at 180 °C for 24 h and 100 h. We propose that MgAgCu and MgAgCuSi clusters are likely to be responsible for the formation of the Ω (AlCuMgAg) phase. Furthermore, we also suggest that the θ (Al 2Cu) phase forms from Cu clusters and the Mg 2Si phase forms from the decomposition of MgAgSi and MgAgCuSi clusters by losing Ag to Ω phase growth. Many early binary clusters (Mg–Cu, Mg–Ag) do not seem to undergo a significant further growth during ageing; these are more likely to be transformed into complex ternary and quaternary clusters and be subsequently consumed during the growth of large clusters/precipitates. Furthermore, it is proposed that the plate-like Ω (AlCuMgAg) precipitates evolve continuously from the MgAgCu and MgAgCuSi clusters, rather than via heterogeneous nucleation on their precursors (i.e. MgAgCu and MgAgCuSi clusters). More interestingly, even after ageing at 180 °C for 100 h, the Ω (AlCuMgAg) precipitates remain coherent with the α-Al matrix, indicating that these precipitates have a high thermal stability. This can mainly be attributed to the presence of a single Mg–Ag-rich monolayer observed at the interface between the Ω precipitate and the α-Al matrix, significantly improving the coarsening resistance of the Ω (AlCuMgAg) precipitates. Our results thus reveal links between a variety of solute clusters and the different types of precipitates in the Al–Cu–Mg–Ag–Si model alloy. Such information can in the future be used to control the precipitation by tailoring solute clustering.

AB - Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy has been investigated by atom probe tomography (APT) as well as high-angle annular dark-field (HAADF) imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Nine types of solute clusters (Cu, Ag, Mg–Cu, Mg–Ag, Mg–Cu–Si, Mg–Ag–Si, Mg–Ag–Cu, Cu–Ag–Si and MgAgCuSi) were observed by APT in both the as-quenched alloy and after ageing the alloy at 180 °C for 1 h. Three types of precipitates (Ω (AlCuMgAg), θ (Al 2Cu) and Mg 2Si) were observed by APT and HAADF-STEM after further ageing at 180 °C for 24 h and 100 h. We propose that MgAgCu and MgAgCuSi clusters are likely to be responsible for the formation of the Ω (AlCuMgAg) phase. Furthermore, we also suggest that the θ (Al 2Cu) phase forms from Cu clusters and the Mg 2Si phase forms from the decomposition of MgAgSi and MgAgCuSi clusters by losing Ag to Ω phase growth. Many early binary clusters (Mg–Cu, Mg–Ag) do not seem to undergo a significant further growth during ageing; these are more likely to be transformed into complex ternary and quaternary clusters and be subsequently consumed during the growth of large clusters/precipitates. Furthermore, it is proposed that the plate-like Ω (AlCuMgAg) precipitates evolve continuously from the MgAgCu and MgAgCuSi clusters, rather than via heterogeneous nucleation on their precursors (i.e. MgAgCu and MgAgCuSi clusters). More interestingly, even after ageing at 180 °C for 100 h, the Ω (AlCuMgAg) precipitates remain coherent with the α-Al matrix, indicating that these precipitates have a high thermal stability. This can mainly be attributed to the presence of a single Mg–Ag-rich monolayer observed at the interface between the Ω precipitate and the α-Al matrix, significantly improving the coarsening resistance of the Ω (AlCuMgAg) precipitates. Our results thus reveal links between a variety of solute clusters and the different types of precipitates in the Al–Cu–Mg–Ag–Si model alloy. Such information can in the future be used to control the precipitation by tailoring solute clustering.

UR - http://www.scopus.com/inward/record.url?scp=85067012792&partnerID=8YFLogxK

U2 - 10.1016/j.msea.2019.06.021

DO - 10.1016/j.msea.2019.06.021

M3 - Article

VL - 760.2019

SP - 366

EP - 376

JO - Materials science and engineering: A, Structural materials: properties, microstructure and processing

JF - Materials science and engineering: A, Structural materials: properties, microstructure and processing

SN - 0921-5093

IS - 8 July

ER -