Selective Diffusive Gradients in Thin Films (DGT) for the Simultaneous Assessment of Labile Sr and Pb Concentrations and Isotope Ratios in Soils

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Standard

Selective Diffusive Gradients in Thin Films (DGT) for the Simultaneous Assessment of Labile Sr and Pb Concentrations and Isotope Ratios in Soils. / Wagner, Stefan; Santner, Jakob; Irrgeher, Johanna et al.
in: Analytical chemistry, Jahrgang 94.2022, Nr. 16, 15.04.2022, S. 6338-6346.

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Bibtex - Download

@article{8c31a7c3d64e490484ba318e0b97f18b,
title = "Selective Diffusive Gradients in Thin Films (DGT) for the Simultaneous Assessment of Labile Sr and Pb Concentrations and Isotope Ratios in Soils",
abstract = "A method using diffusive gradients in thin films (DGT) for the accurate quantification of trace-level (μg L-1) Sr and Pb concentrations and isotope ratios [δSRM 987(87Sr/86Sr) and δSRM 981(207Pb/206Pb)] in labile, bioavailable element fractions in soils is reported. The method is based on a novel poly(tetrafluoroethylene) (PTFE) membrane binding layer with combined di(2-ethyl-hexyl)phosphoric acid (HDEHP) and 4,4′(5′)-bis-t-butylcyclohexano-18-crown-6 (crown-ether) functionality with high selectivity for Sr and Pb (TK100 membrane). Laboratory evaluation of the TK100 DGT showed linear uptake of Sr over time (2-24 h) up to very high Sr mass loadings on TK100 membranes (288 μg cm-2) and effective performance in the range of pH (3.9-8.2), ionic strength (0.001-0.1 mol L-1), and cation competition (50-160 mg L-1 Ca in a synthetic soil solution matrix) of environmental interest. Selective three-step elution of TK100 membranes using hydrochloric acid allowed us to obtain purified Sr and Pb fractions with adequate (≥75%) recovery and quantitative (≥96%) matrix reduction. Neither DGT-based sampling itself nor selective elution or mass loading effects caused significant isotopic fractionation. Application of TK100 DGT in natural soils and comparison with conventional approaches of bioavailability assessment demonstrated the method's unique capability to obtain information on Sr and Pb resupply dynamics and isotopic variations with low combined uncertainty within a single sampling step.",
author = "Stefan Wagner and Jakob Santner and Johanna Irrgeher and Markus Puschenreiter and Steffen Happel and Thomas Prohaska",
note = "Publisher Copyright: {\textcopyright} 2022 The Authors. Published by American Chemical Society.",
year = "2022",
month = apr,
day = "15",
doi = "10.1021/acs.analchem.2c00546",
language = "English",
volume = "94.2022",
pages = "6338--6346",
journal = "Analytical chemistry",
issn = "0003-2700",
publisher = "American Chemical Society",
number = "16",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Selective Diffusive Gradients in Thin Films (DGT) for the Simultaneous Assessment of Labile Sr and Pb Concentrations and Isotope Ratios in Soils

AU - Wagner, Stefan

AU - Santner, Jakob

AU - Irrgeher, Johanna

AU - Puschenreiter, Markus

AU - Happel, Steffen

AU - Prohaska, Thomas

N1 - Publisher Copyright: © 2022 The Authors. Published by American Chemical Society.

PY - 2022/4/15

Y1 - 2022/4/15

N2 - A method using diffusive gradients in thin films (DGT) for the accurate quantification of trace-level (μg L-1) Sr and Pb concentrations and isotope ratios [δSRM 987(87Sr/86Sr) and δSRM 981(207Pb/206Pb)] in labile, bioavailable element fractions in soils is reported. The method is based on a novel poly(tetrafluoroethylene) (PTFE) membrane binding layer with combined di(2-ethyl-hexyl)phosphoric acid (HDEHP) and 4,4′(5′)-bis-t-butylcyclohexano-18-crown-6 (crown-ether) functionality with high selectivity for Sr and Pb (TK100 membrane). Laboratory evaluation of the TK100 DGT showed linear uptake of Sr over time (2-24 h) up to very high Sr mass loadings on TK100 membranes (288 μg cm-2) and effective performance in the range of pH (3.9-8.2), ionic strength (0.001-0.1 mol L-1), and cation competition (50-160 mg L-1 Ca in a synthetic soil solution matrix) of environmental interest. Selective three-step elution of TK100 membranes using hydrochloric acid allowed us to obtain purified Sr and Pb fractions with adequate (≥75%) recovery and quantitative (≥96%) matrix reduction. Neither DGT-based sampling itself nor selective elution or mass loading effects caused significant isotopic fractionation. Application of TK100 DGT in natural soils and comparison with conventional approaches of bioavailability assessment demonstrated the method's unique capability to obtain information on Sr and Pb resupply dynamics and isotopic variations with low combined uncertainty within a single sampling step.

AB - A method using diffusive gradients in thin films (DGT) for the accurate quantification of trace-level (μg L-1) Sr and Pb concentrations and isotope ratios [δSRM 987(87Sr/86Sr) and δSRM 981(207Pb/206Pb)] in labile, bioavailable element fractions in soils is reported. The method is based on a novel poly(tetrafluoroethylene) (PTFE) membrane binding layer with combined di(2-ethyl-hexyl)phosphoric acid (HDEHP) and 4,4′(5′)-bis-t-butylcyclohexano-18-crown-6 (crown-ether) functionality with high selectivity for Sr and Pb (TK100 membrane). Laboratory evaluation of the TK100 DGT showed linear uptake of Sr over time (2-24 h) up to very high Sr mass loadings on TK100 membranes (288 μg cm-2) and effective performance in the range of pH (3.9-8.2), ionic strength (0.001-0.1 mol L-1), and cation competition (50-160 mg L-1 Ca in a synthetic soil solution matrix) of environmental interest. Selective three-step elution of TK100 membranes using hydrochloric acid allowed us to obtain purified Sr and Pb fractions with adequate (≥75%) recovery and quantitative (≥96%) matrix reduction. Neither DGT-based sampling itself nor selective elution or mass loading effects caused significant isotopic fractionation. Application of TK100 DGT in natural soils and comparison with conventional approaches of bioavailability assessment demonstrated the method's unique capability to obtain information on Sr and Pb resupply dynamics and isotopic variations with low combined uncertainty within a single sampling step.

UR - http://www.scopus.com/inward/record.url?scp=85128866460&partnerID=8YFLogxK

U2 - 10.1021/acs.analchem.2c00546

DO - 10.1021/acs.analchem.2c00546

M3 - Article

VL - 94.2022

SP - 6338

EP - 6346

JO - Analytical chemistry

JF - Analytical chemistry

SN - 0003-2700

IS - 16

ER -