Seismic insights into the structure of the Balmuccia Peridotite within the Ivrea Verbano Zone
Publikationen: Konferenzbeitrag › Poster › Forschung › (peer-reviewed)
Autoren
Organisationseinheiten
Abstract
In the Ivrea Verbano Zone (IVZ) Italy, which is characterized with lower-crustal rocks and fragments of upper mantle rocks, a high-resolution seismic survey is conducted across the Balmuccia Peridotite. This study is in preparation of a proposed deep scientific drilling project which focuses on targeting mantle rocks and understanding the region's complex geology. Specifically, we target characterizing structures within the peridotite body.
The seismic survey employs a fixed spread of 200 vertical geophones and 160 3C-sensors, spaced at ca. 10 m along three sub-parallel receiver lines spaced 40-80 m apart. Vibroseis source points are at 22 m stations along a 2.2 km line utilizing a 12-140 Hz 10 s linear sweep with 3 s listening time. The survey aims to explain the seismic characteristics of the peridotite body and its relation to the surrounding geological structures.
The P-wave traveltime tomography reveals a range of seismic velocities within the peridotite from 6 to 8 km/s, with a mean velocity of ca. 7 km/s. These variations reflect the heterogeneity of the peridotite, influenced by the presence of fractures and faults. Notably, the higher velocities observed are consistent with findings from laboratory studies on small-scale samples from the area. The reflection seismic analysis shows subvertical reflectors that coincide with the peridotite boundaries mapped at the surface. These reflectors come together at a depth of 0.175 km b.s.l., suggesting that the peridotite has a lens-like structure. In addition, several features within the peridotite suggest a highly fractured body. Nevertheless, limitations in the imaging process do not allow for a thorough interpretation of the area below the imaged lens-shaped body. A deep reflector is identified at approximately 1.3 km depth. This feature potentially marks the top of the Ivrea Geophysical Body (IGB), aligning with previous geophysical estimations.
The seismic survey employs a fixed spread of 200 vertical geophones and 160 3C-sensors, spaced at ca. 10 m along three sub-parallel receiver lines spaced 40-80 m apart. Vibroseis source points are at 22 m stations along a 2.2 km line utilizing a 12-140 Hz 10 s linear sweep with 3 s listening time. The survey aims to explain the seismic characteristics of the peridotite body and its relation to the surrounding geological structures.
The P-wave traveltime tomography reveals a range of seismic velocities within the peridotite from 6 to 8 km/s, with a mean velocity of ca. 7 km/s. These variations reflect the heterogeneity of the peridotite, influenced by the presence of fractures and faults. Notably, the higher velocities observed are consistent with findings from laboratory studies on small-scale samples from the area. The reflection seismic analysis shows subvertical reflectors that coincide with the peridotite boundaries mapped at the surface. These reflectors come together at a depth of 0.175 km b.s.l., suggesting that the peridotite has a lens-like structure. In addition, several features within the peridotite suggest a highly fractured body. Nevertheless, limitations in the imaging process do not allow for a thorough interpretation of the area below the imaged lens-shaped body. A deep reflector is identified at approximately 1.3 km depth. This feature potentially marks the top of the Ivrea Geophysical Body (IGB), aligning with previous geophysical estimations.
Details
Originalsprache | Englisch |
---|---|
DOIs | |
Status | Veröffentlicht - 2024 |
Veranstaltung | EGU General Assembly 2024 - Wien, Österreich Dauer: 14 Apr. 2024 → 19 Apr. 2024 https://www.egu24.eu/ |
Konferenz
Konferenz | EGU General Assembly 2024 |
---|---|
Land/Gebiet | Österreich |
Ort | Wien |
Zeitraum | 14/04/24 → 19/04/24 |
Internetadresse |