Production and characterization of particle-stabilized nanocrystalline Cu for high temperature applications
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Diplomarbeit
Standard
2014. 77 S.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Diplomarbeit
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Production and characterization of particle-stabilized nanocrystalline Cu for high temperature applications
AU - Krämer, Lisa
N1 - embargoed until null
PY - 2014
Y1 - 2014
N2 - The goal of this master thesis is to stabilize nanocrystalline Cu for high temperatures applications. This is tried by stabilizing the Cu-grains with different particles. Eight different materials were deformed with high pressure torsion (HPT), their microstructure was investigated with scanning electron microscopy and their mechanical properties with hardness measurement and tensile tests. Four materials were produced by using powder as initial material (Cu-W, Cu-Y2O3, Cu-Fe and pure Cu) and for the other four materials industrial produced bulk materials were used (three WCu samples with different composition and pure Cu). For powders, a two-step HPT-process was used and the bulk materials were deformed in a single HPT-step. The obtained microstructure was in the range of hundreds of nm for higher applied strain and the influence of additional deformation steps at higher temperatures was investigated. To compare the microstructural stability of different materials at higher temperatures, samples were annealed in a vacuum furnace and in air by inductive heating. Materials produced by powder compaction showed after heat treatment, additional to grain growth, a generation of porosity. Emerging of pores was especially strong for pure Cu, Cu-Y2O3 and Cu-W specimens on which little deformation were applied. If the applied strain was high enough, Cu-W samples showed a good stability at higher temperatures and up to 810 ◦C the microstructure did not change. Industrial produced W-Cu samples also got a good temperature stability after little applied strain. In tensile tests, additions of W and Y2O3 decreased the ductility and the particles agglomerate in the samples, which were produced with powders. This caused an early fracture. The surface of W-Cu tensile samples influenced the fracture behavior as a poor surface quality caused an early fracture. Fe was the only element which influenced positively the behavior in tensile testing and after the proper heat treatment fracture strains in the same range as for Cu-bulk samples could be obtained.
AB - The goal of this master thesis is to stabilize nanocrystalline Cu for high temperatures applications. This is tried by stabilizing the Cu-grains with different particles. Eight different materials were deformed with high pressure torsion (HPT), their microstructure was investigated with scanning electron microscopy and their mechanical properties with hardness measurement and tensile tests. Four materials were produced by using powder as initial material (Cu-W, Cu-Y2O3, Cu-Fe and pure Cu) and for the other four materials industrial produced bulk materials were used (three WCu samples with different composition and pure Cu). For powders, a two-step HPT-process was used and the bulk materials were deformed in a single HPT-step. The obtained microstructure was in the range of hundreds of nm for higher applied strain and the influence of additional deformation steps at higher temperatures was investigated. To compare the microstructural stability of different materials at higher temperatures, samples were annealed in a vacuum furnace and in air by inductive heating. Materials produced by powder compaction showed after heat treatment, additional to grain growth, a generation of porosity. Emerging of pores was especially strong for pure Cu, Cu-Y2O3 and Cu-W specimens on which little deformation were applied. If the applied strain was high enough, Cu-W samples showed a good stability at higher temperatures and up to 810 ◦C the microstructure did not change. Industrial produced W-Cu samples also got a good temperature stability after little applied strain. In tensile tests, additions of W and Y2O3 decreased the ductility and the particles agglomerate in the samples, which were produced with powders. This caused an early fracture. The surface of W-Cu tensile samples influenced the fracture behavior as a poor surface quality caused an early fracture. Fe was the only element which influenced positively the behavior in tensile testing and after the proper heat treatment fracture strains in the same range as for Cu-bulk samples could be obtained.
KW - high pressure torsion
KW - HPT
KW - severe plastic deformation
KW - SPD
KW - nanocrystalline
KW - particle-stabilized
KW - Cu
KW - copper
KW - W
KW - tungsten
KW - Fe
KW - iron
KW - yttria
KW - high temperature application
KW - mechanical properties
KW - High Pressure Torsion
KW - HPT
KW - Severe Plastic Deformation
KW - SPD
KW - nanokristallin
KW - teilchenstabilisiert
KW - Cu
KW - Kupfer
KW - W
KW - Wolfram
KW - Yttriumoxid
KW - Fe
KW - Eisen
KW - Hochtemperaturanwendungen
KW - mechanische Eigenschaften
M3 - Diploma Thesis
ER -