Precipitation in lean Mg–Zn–Ca alloys
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Acta Materialia, Jahrgang 239.2022, Nr. 15 October, 118223, 30.07.2022.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Precipitation in lean Mg–Zn–Ca alloys
AU - Schäublin, R. E.
AU - Becker, Maximilian
AU - Cihova, M.
AU - Gerstl, S. S.A.
AU - Deiana, D.
AU - Hébert, C.
AU - Pogatscher, Stefan
AU - Uggowitzer, Peter J.
AU - Löffler, Jörg F.
N1 - Publisher Copyright: © 2022
PY - 2022/7/30
Y1 - 2022/7/30
N2 - While lean Mg–Zn–Ca alloys are promising materials for temporary implants, questions remain on the impact of Zn and Ca on the microstructure. In this context, the precipitation of Zn and Ca in Mg-1.5Zn-0.25Ca (in wt.%), initially extruded at 330°C, towards Mg–Ca binary precipitates or Ca–Mg–Zn ternary precipitates was probed in a multiscale correlative approach using atom probe tomography (APT) and analytical transmission electron microscopy (TEM). Particular focus was set on the ternary precipitate phase whose structure is debated. In the as-extruded material, the binary precipitates are made of hexagonal C14 Mg2Ca containing up to about 3 at.% of Zn. The ternary ones are based on the hexagonal Ca2Mg5Zn5 prototype structure with a composition close to Ca3Mg11Zn4, as deduced from atomically resolved EDS mapping and scanning TEM imaging, supported by simulations. The precipitation sequence was scrutinized upon linear heating from room temperature to 375°C, starting from the solutionized material. Three exothermic differential scanning calorimetry (DSC) peaks were observed, at respectively 125, 250 and 320°C. Samples were taken after the peak decays, at respectively 205, 260 and 375°C for structural analysis. At 205°C, APT analysis revealed Ca-rich, Zn-rich and Zn‒Ca-rich clusters of about 3 nm in size and with a number density of 5.7 × 1023 m−3. At 260°C, APT and TEM showed mono-layered Zn‒Ca-rich Guinier‒Preston (GP) zones of about 8 nm in size and with a number density of 1.3 × 1023 m−3. At 375°C, larger and highly coherent elongated precipitates were found, with a size of about 50 nm. They occur as binary Mg–Ca precipitates or ternary Ca2Mg6Zn3 precipitates, as deduced from scanning TEM-based energy dispersive X-ray spectroscopy (EDS) and nanodiffraction in TEM. Here, the binary precipitates outnumber the ternary ones, while in the as-extruded material the ternary precipitates outnumber the binary ones, which corresponds well to the calculated phase diagram. We correlated the microstructure to hardness probed by Vickers testing. The largest hardening relates to the end of the 125°C DSC peak and thus to GP zones, which outperform the hardening induced by the nanometer-sized clusters and the larger intermetallic particles. The complexity of the precipitation sequence in lean Mg–Zn–Ca alloys is discussed.
AB - While lean Mg–Zn–Ca alloys are promising materials for temporary implants, questions remain on the impact of Zn and Ca on the microstructure. In this context, the precipitation of Zn and Ca in Mg-1.5Zn-0.25Ca (in wt.%), initially extruded at 330°C, towards Mg–Ca binary precipitates or Ca–Mg–Zn ternary precipitates was probed in a multiscale correlative approach using atom probe tomography (APT) and analytical transmission electron microscopy (TEM). Particular focus was set on the ternary precipitate phase whose structure is debated. In the as-extruded material, the binary precipitates are made of hexagonal C14 Mg2Ca containing up to about 3 at.% of Zn. The ternary ones are based on the hexagonal Ca2Mg5Zn5 prototype structure with a composition close to Ca3Mg11Zn4, as deduced from atomically resolved EDS mapping and scanning TEM imaging, supported by simulations. The precipitation sequence was scrutinized upon linear heating from room temperature to 375°C, starting from the solutionized material. Three exothermic differential scanning calorimetry (DSC) peaks were observed, at respectively 125, 250 and 320°C. Samples were taken after the peak decays, at respectively 205, 260 and 375°C for structural analysis. At 205°C, APT analysis revealed Ca-rich, Zn-rich and Zn‒Ca-rich clusters of about 3 nm in size and with a number density of 5.7 × 1023 m−3. At 260°C, APT and TEM showed mono-layered Zn‒Ca-rich Guinier‒Preston (GP) zones of about 8 nm in size and with a number density of 1.3 × 1023 m−3. At 375°C, larger and highly coherent elongated precipitates were found, with a size of about 50 nm. They occur as binary Mg–Ca precipitates or ternary Ca2Mg6Zn3 precipitates, as deduced from scanning TEM-based energy dispersive X-ray spectroscopy (EDS) and nanodiffraction in TEM. Here, the binary precipitates outnumber the ternary ones, while in the as-extruded material the ternary precipitates outnumber the binary ones, which corresponds well to the calculated phase diagram. We correlated the microstructure to hardness probed by Vickers testing. The largest hardening relates to the end of the 125°C DSC peak and thus to GP zones, which outperform the hardening induced by the nanometer-sized clusters and the larger intermetallic particles. The complexity of the precipitation sequence in lean Mg–Zn–Ca alloys is discussed.
KW - APT
KW - Bioabsorbable Mg alloys
KW - Ca–Mg–Zn precipitates
KW - Hardness
KW - Precipitation
KW - TEM
UR - http://www.scopus.com/inward/record.url?scp=85136519918&partnerID=8YFLogxK
U2 - 10.1016/j.actamat.2022.118223
DO - 10.1016/j.actamat.2022.118223
M3 - Article
AN - SCOPUS:85136519918
VL - 239.2022
JO - Acta Materialia
JF - Acta Materialia
SN - 1359-6454
IS - 15 October
M1 - 118223
ER -