Nanomaterials by severe plastic deformation: review of historical developments and recent advances
Publikationen: Beitrag in Fachzeitschrift › Übersichtsartikel › (peer-reviewed)
Autoren
Organisationseinheiten
Externe Organisationseinheiten
- Kyushu University
- Erich-Schmid-Institut für Materialwissenschaft der Österreichischen Akademie der Wissenschaften
- National Academy of Sciences of Ukraine, Kiev
- Technological Institute for Superhard and Novel Carbon Materials
- Federal University of São Carlos
- Technische Universität Krakau
- Karls-Universität
- Westfälische Wilhelms-Universität Münster
- Ufa State Aviation Technical University
- The University of Western Australia
- Monash University
- University of Tehran
- Bundesuniversität von Minas Gerais, Belo Horizonte
- Nagoya Institute of Technology, Tajimi
- Toyota Central R&D Laboratories Inc
- Eötvös Loránd University
- Kumamoto University, Japan
- Saga University
- Université du Québec à Trois-Rivières
- Oregon State University
- Czech Academy of Sciences, Brno
- Ibaraki University
- Universität Southampton
- University of Iowa, Iowa City
- Russian Academy of Sciences, Chernogolovka
- Karlsruher Institut für Technologie
- Doshisha University
- Kyushu Sangyo University
- Russian Academy of Sciences, Ekaterinburg
- Karadeniz Technical University
- Normandie University
- Technische Universität Dresden
- Indian Institute of Science, Bangalore
- University of Miskolc
- Kyoto University
- Universität Wien
- Kunming University of Science and Technology
- Université de Lorraine, Metz
- Departamento de Engenharia de Materiais
- Kyushu Institute of Technology
- University Nancy, CNRS, CREGU
- St. Petersburg State University
Abstract
Severe plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity. Abbreviations: ARB: Accumulative Roll-Bonding; BCC: Body-Centered Cubic; DAC: Diamond Anvil Cell; EBSD: Electron Backscatter Diffraction; ECAP: Equal-Channel Angular Pressing (Extrusion); FCC: Face-Centered Cubic; FEM: Finite Element Method; FSP: Friction Stir Processing; HCP: Hexagonal Close-Packed; HPT: High-Pressure Torsion; HPTT: High-Pressure Tube Twisting; MDF: Multi-Directional (-Axial) Forging; NanoSPD: Nanomaterials by Severe Plastic Deformation; SDAC: Shear (Rotational) Diamond Anvil Cell; SEM: Scanning Electron Microscopy; SMAT: Surface Mechanical Attrition Treatment; SPD: Severe Plastic Deformation; TE: Twist Extrusion; TEM: Transmission Electron Microscopy; UFG: Ultrafine Grained.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 163-256 |
Seitenumfang | 94 |
Fachzeitschrift | Materials Research Letters |
Jahrgang | 10.2022 |
Ausgabenummer | 4 |
DOIs | |
Status | Elektronische Veröffentlichung vor Drucklegung. - 17 Feb. 2022 |