Mechanochemical synthesis of nanostructured metal nitrides, carbonitrides and carbon nitride: a combined theoretical and experimental study

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

  • Seyyed Amin Rounaghi
  • Danny E. P. Vanpoucke
  • Hossein Eshghi
  • Sergio Scudino
  • Elaheh Esmaeili
  • Steffen Oswald

Organisationseinheiten

Externe Organisationseinheiten

  • Birjand University of Technology
  • UHasselt - IMO IMOMEC
  • Firdausi-Universität Maschhad
  • IFW Dresden
  • Erich-Schmid-Institut für Materialwissenschaft der Österreichischen Akademie der Wissenschaften

Abstract

Nowadays, the development of highly efficient routes for the low cost synthesis of nitrides is greatly growing. Mechanochemical synthesis is one of those promising techniques which is conventionally employed for the synthesis of nitrides by long term milling of metallic elements under a pressurized N2 or NH3 atmosphere (A. Calka and J. I. Nikolov, Nanostruct. Mater., 1995, 6, 409–412). In the present study, we describe a versatile, room-temperature and low-cost mechanochemical process for the synthesis of nanostructured metal nitrides (MNs), carbonitrides (MCNs) and carbon nitride (CNx). Based on this technique, melamine as a solid nitrogen-containing organic compound (SNCOC) is ball milled with four different metal powders (Al, Ti, Cr and V) to produce nanostructured AlN, TiCxN1−x, CrCxN1−x, and VCxN1−x (x ∼ 0.05). Both theoretical and experimental techniques are implemented to determine the reaction intermediates, products, by-products and finally, the mechanism underling this synthetic route. According to the results, melamine is polymerized in the presence of metallic elements at intermediate stages of the milling process, leading to the formation of a carbon nitride network. The CNx phase subsequently reacts with the metallic precursors to form MN, MCN or even MCN–CNx nano-composites depending on the defect formation energy and thermodynamic stability of the corresponding metal nitride, carbide and C/N co-doped structures.

Details

OriginalspracheEnglisch
Seiten (von - bis)12414-12424
Seitenumfang11
FachzeitschriftPhysical chemistry, chemical physics : PCCP
Jahrgang2017
Ausgabenummer19
DOIs
StatusVeröffentlicht - 19 Apr. 2017