Mechanochemical route to the synthesis of nanostructured Aluminium nitride

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

  • Seyyed Amin Rounaghi
  • H. Eshghi
  • Sergio Scudino
  • A. Vyalikh
  • D. E P Vanpoucke
  • Wolfgang Gruner
  • Stefan Oswald
  • A. R. Kiani Rashid
  • Mohsen Samadi Khoshkhoo
  • U. Scheler

Organisationseinheiten

Externe Organisationseinheiten

  • Birjand University of Technology
  • Firdausi-Universität Maschhad
  • IFW Dresden
  • Hasselt University
  • Leibniz-Instituts für Polymerforschung, Dresden
  • Erich-Schmid-Institut für Materialwissenschaft der Österreichischen Akademie der Wissenschaften
  • Technische Universität Bergakademie Freiberg

Abstract

Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN.

Details

OriginalspracheEnglisch
Aufsatznummer33375
Seitenumfang11
FachzeitschriftScientific reports (London : Nature Publishing Group)
Jahrgang6.2016
DOIs
StatusVeröffentlicht - 21 Sept. 2016