Machine Learning and KPI Analysis applied to Time-Series Data in Physical Systems: Comparison and Combination
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Standard
2021.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Machine Learning and KPI Analysis applied to Time-Series Data in Physical Systems
T2 - Comparison and Combination
AU - Haider, Maria
N1 - embargoed until null
PY - 2021
Y1 - 2021
N2 - This thesis examines the combination of deep learning and statistical data analysis for the unsupervised detection of outliers in unlabelled real-time time-series data originating from sensors and actuators. It is investigated if and when the additional application of machine learning is preferable to classical methods, where its strengths and shortcomings lie. A hybrid approach is introduced to enable an exhaustive and precise identification of anomalies. Its components are based on previous work performed by the Chair of Automation at the University of Leoben, which includes the segmentation of different phases in the industrial process and the definition of key point indicators (KPIs) by accessing physical knowledge and experience. The hybrid model contains the calculation of the interquartile range to define outliers, as well as the training and testing of a hyperparameter-optimized deep learning algorithm. The approach was applied to datasets from machinery used in the construction of anchoring piles for the foundations of buildings.
AB - This thesis examines the combination of deep learning and statistical data analysis for the unsupervised detection of outliers in unlabelled real-time time-series data originating from sensors and actuators. It is investigated if and when the additional application of machine learning is preferable to classical methods, where its strengths and shortcomings lie. A hybrid approach is introduced to enable an exhaustive and precise identification of anomalies. Its components are based on previous work performed by the Chair of Automation at the University of Leoben, which includes the segmentation of different phases in the industrial process and the definition of key point indicators (KPIs) by accessing physical knowledge and experience. The hybrid model contains the calculation of the interquartile range to define outliers, as well as the training and testing of a hyperparameter-optimized deep learning algorithm. The approach was applied to datasets from machinery used in the construction of anchoring piles for the foundations of buildings.
KW - Maschinelles Lernen
KW - Ausreisser Detektion
KW - KPI
KW - Statistik
KW - Machine Learning
KW - Deep Learning
KW - Outlier Detection
KW - Statistical Analysis
KW - KPI
M3 - Master's Thesis
ER -