Lebensdaueroptimierung eines Haspeldorns auf Basis von Prozesssimulation

Publikationen: Thesis / Studienabschlussarbeiten und HabilitationsschriftenDiplomarbeit

Standard

Lebensdaueroptimierung eines Haspeldorns auf Basis von Prozesssimulation. / Mairhofer, Michael.
2010.

Publikationen: Thesis / Studienabschlussarbeiten und HabilitationsschriftenDiplomarbeit

Bibtex - Download

@phdthesis{bf9d61837b9849bcaa7b71a37dba34f9,
title = "Lebensdaueroptimierung eines Haspeldorns auf Basis von Prozesssimulation",
abstract = "Zum Wickeln der fertiggewalzten B{\"a}nder befindet sich am Ende einer Warmwalzstra{\ss}e eine Haspel. Der Dorn, um welchen das Band gewickelt wird, ist angetrieben und muss in gewissen Grenzen seinen Durchmesser ver{\"a}ndern k{\"o}nnen. Das Ziel der vorliegenden Arbeit ist die Lebensdauerermittlung bzw. optimierung dieses Haspeldorns, wobei besonderes Augenmerk auf den verbauten Spreizmechanismus gelegt wird. Die hohen Anwickelbelastungen bei dicken B{\"a}ndern, die hohen Wickelgeschwindigkeiten bei d{\"u}nnen B{\"a}ndern und die thermischen Beanspruchungen bei l{\"a}ngeren Verweilzeiten des fertig gewickelten Bundes am Dorn, verursacht durch Stromausfall, u. anschlie{\ss}ender K{\"u}hlung mit Wasser stellen die Hauptbelastungen der Dornmechanik dar. Da die Belastungen auf den Dorn w{\"a}hrend des Anwickelns an der Anlage nicht gemessen werden k{\"o}nnen, m{\"u}ssen diese mit Hilfe einer dynamischen 2D-FEM-Simulation des Wickelprozesses in Abaqus bestimmt werden. In einer statischen FEM-Analyse wird der gesamte Haspeldorn als 3D-Modell nachgebildet, wobei die aus der Wickelsimulation ermittelten Lasten als Randbedingungen dienen. Anhand von zwei weiteren 3D-Modellen wird sowohl die Zentrifugalbelastung bei hohen Wickelgeschwindigkeiten als auch die thermische Beanspruchung nachgebildet. Aufgrund der Gr{\"o}{\ss}e der Modelle muss zur Ermittlung der auftretenden Spannungen in den einzelnen Bauteilen der Mechanik auf die in Abaqus implementierte Submodell-Technik zur{\"u}ckgegriffen werden. Die daraus gewonnenen Erkenntnisse {\"u}ber kritische Bauteile bzw. Lastf{\"a}lle stellen die Basis f{\"u}r die anschlie{\ss}ende Lebensdauerberechnung mit FEMFAT dar. Dabei wird f{\"u}r die am h{\"o}chsten beanspruchten Bauteile die Sicherheit gegen Dauerbruch bzw. die Bruchlastspielzahl ermittelt. Zur Optimierung der Lebensdauer des Haspeldorns wird der Bauteil mit der geringsten Bruchlastspielzahl herangezogen. Dabei wird die zum Versagen f{\"u}hrende Kerbe modifiziert und die auftretenden Kerbspannungen je Lastfall sowie die zu erwartende Lebensdauer neu berechnet. Die Ergebnisse der vorliegenden Arbeit zeigen, dass die thermische Beanspruchung zu stark unterschiedlichen Temperaturgradienten im Spreizmechanismus f{\"u}hrt. Die dadurch hervorgerufenen Verspannungen k{\"o}nnen jedoch als unkritisch eingestuft werden. Bei den beiden anderen Lastf{\"a}llen liegen zwei Bauteile des Spreizmechanismus im Zeitfestigkeitsbereich. Durch die durchgef{\"u}hrte Optimierung am Bauteil mit der geringsten Bruchlastspielzahl kann sowohl die Lebensdauer dieses Teils als auch der gesamten Dornmechanik verzehnfacht werden.",
keywords = "Finite-Elemente-Methode Lebensdauerberechnung Lebensdaueroptimierung, finite element analysis lifetime calculation lifetime optimization",
author = "Michael Mairhofer",
note = "gesperrt bis 18-02-2015",
year = "2010",
language = "Deutsch",
type = "Diploma Thesis",

}

RIS (suitable for import to EndNote) - Download

TY - THES

T1 - Lebensdaueroptimierung eines Haspeldorns auf Basis von Prozesssimulation

AU - Mairhofer, Michael

N1 - gesperrt bis 18-02-2015

PY - 2010

Y1 - 2010

N2 - Zum Wickeln der fertiggewalzten Bänder befindet sich am Ende einer Warmwalzstraße eine Haspel. Der Dorn, um welchen das Band gewickelt wird, ist angetrieben und muss in gewissen Grenzen seinen Durchmesser verändern können. Das Ziel der vorliegenden Arbeit ist die Lebensdauerermittlung bzw. optimierung dieses Haspeldorns, wobei besonderes Augenmerk auf den verbauten Spreizmechanismus gelegt wird. Die hohen Anwickelbelastungen bei dicken Bändern, die hohen Wickelgeschwindigkeiten bei dünnen Bändern und die thermischen Beanspruchungen bei längeren Verweilzeiten des fertig gewickelten Bundes am Dorn, verursacht durch Stromausfall, u. anschließender Kühlung mit Wasser stellen die Hauptbelastungen der Dornmechanik dar. Da die Belastungen auf den Dorn während des Anwickelns an der Anlage nicht gemessen werden können, müssen diese mit Hilfe einer dynamischen 2D-FEM-Simulation des Wickelprozesses in Abaqus bestimmt werden. In einer statischen FEM-Analyse wird der gesamte Haspeldorn als 3D-Modell nachgebildet, wobei die aus der Wickelsimulation ermittelten Lasten als Randbedingungen dienen. Anhand von zwei weiteren 3D-Modellen wird sowohl die Zentrifugalbelastung bei hohen Wickelgeschwindigkeiten als auch die thermische Beanspruchung nachgebildet. Aufgrund der Größe der Modelle muss zur Ermittlung der auftretenden Spannungen in den einzelnen Bauteilen der Mechanik auf die in Abaqus implementierte Submodell-Technik zurückgegriffen werden. Die daraus gewonnenen Erkenntnisse über kritische Bauteile bzw. Lastfälle stellen die Basis für die anschließende Lebensdauerberechnung mit FEMFAT dar. Dabei wird für die am höchsten beanspruchten Bauteile die Sicherheit gegen Dauerbruch bzw. die Bruchlastspielzahl ermittelt. Zur Optimierung der Lebensdauer des Haspeldorns wird der Bauteil mit der geringsten Bruchlastspielzahl herangezogen. Dabei wird die zum Versagen führende Kerbe modifiziert und die auftretenden Kerbspannungen je Lastfall sowie die zu erwartende Lebensdauer neu berechnet. Die Ergebnisse der vorliegenden Arbeit zeigen, dass die thermische Beanspruchung zu stark unterschiedlichen Temperaturgradienten im Spreizmechanismus führt. Die dadurch hervorgerufenen Verspannungen können jedoch als unkritisch eingestuft werden. Bei den beiden anderen Lastfällen liegen zwei Bauteile des Spreizmechanismus im Zeitfestigkeitsbereich. Durch die durchgeführte Optimierung am Bauteil mit der geringsten Bruchlastspielzahl kann sowohl die Lebensdauer dieses Teils als auch der gesamten Dornmechanik verzehnfacht werden.

AB - Zum Wickeln der fertiggewalzten Bänder befindet sich am Ende einer Warmwalzstraße eine Haspel. Der Dorn, um welchen das Band gewickelt wird, ist angetrieben und muss in gewissen Grenzen seinen Durchmesser verändern können. Das Ziel der vorliegenden Arbeit ist die Lebensdauerermittlung bzw. optimierung dieses Haspeldorns, wobei besonderes Augenmerk auf den verbauten Spreizmechanismus gelegt wird. Die hohen Anwickelbelastungen bei dicken Bändern, die hohen Wickelgeschwindigkeiten bei dünnen Bändern und die thermischen Beanspruchungen bei längeren Verweilzeiten des fertig gewickelten Bundes am Dorn, verursacht durch Stromausfall, u. anschließender Kühlung mit Wasser stellen die Hauptbelastungen der Dornmechanik dar. Da die Belastungen auf den Dorn während des Anwickelns an der Anlage nicht gemessen werden können, müssen diese mit Hilfe einer dynamischen 2D-FEM-Simulation des Wickelprozesses in Abaqus bestimmt werden. In einer statischen FEM-Analyse wird der gesamte Haspeldorn als 3D-Modell nachgebildet, wobei die aus der Wickelsimulation ermittelten Lasten als Randbedingungen dienen. Anhand von zwei weiteren 3D-Modellen wird sowohl die Zentrifugalbelastung bei hohen Wickelgeschwindigkeiten als auch die thermische Beanspruchung nachgebildet. Aufgrund der Größe der Modelle muss zur Ermittlung der auftretenden Spannungen in den einzelnen Bauteilen der Mechanik auf die in Abaqus implementierte Submodell-Technik zurückgegriffen werden. Die daraus gewonnenen Erkenntnisse über kritische Bauteile bzw. Lastfälle stellen die Basis für die anschließende Lebensdauerberechnung mit FEMFAT dar. Dabei wird für die am höchsten beanspruchten Bauteile die Sicherheit gegen Dauerbruch bzw. die Bruchlastspielzahl ermittelt. Zur Optimierung der Lebensdauer des Haspeldorns wird der Bauteil mit der geringsten Bruchlastspielzahl herangezogen. Dabei wird die zum Versagen führende Kerbe modifiziert und die auftretenden Kerbspannungen je Lastfall sowie die zu erwartende Lebensdauer neu berechnet. Die Ergebnisse der vorliegenden Arbeit zeigen, dass die thermische Beanspruchung zu stark unterschiedlichen Temperaturgradienten im Spreizmechanismus führt. Die dadurch hervorgerufenen Verspannungen können jedoch als unkritisch eingestuft werden. Bei den beiden anderen Lastfällen liegen zwei Bauteile des Spreizmechanismus im Zeitfestigkeitsbereich. Durch die durchgeführte Optimierung am Bauteil mit der geringsten Bruchlastspielzahl kann sowohl die Lebensdauer dieses Teils als auch der gesamten Dornmechanik verzehnfacht werden.

KW - Finite-Elemente-Methode Lebensdauerberechnung Lebensdaueroptimierung

KW - finite element analysis lifetime calculation lifetime optimization

M3 - Diplomarbeit

ER -