Klassifizierung von InSAR-generierten Zeitreihen unter Nutzung von maschinellem Lernen
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Autoren
Organisationseinheiten
Abstract
In dieser Arbeit werden die Möglichkeiten der Datensegmentierung (Clustering) von Zeitreihen mittels Algorithmen des unbeobachteten Lernens (maschinelles Lernen) untersucht. In der Kavernenspeicheranlage Etzel verursachen die Kavernen, die zur Speicherung fossiler Brennstoffe dienen, Bewegungen an der Oberfläche, die über einen bestimmten Zeitraum mithilfe von Radarinterferometrie (InSAR) von Satelliten gemessen werden. Das Ziel dieser Arbeit besteht darin, diese horizontalen und vertikalen Verschiebungen zu segmentieren. Hierbei werden spezifische Cluster-Algorithmen aus dem Bereich des maschinellen Lernens, sogenannte Cluster-Algorithmen in Pandas, verwendet, um die vorhandenen Datensätze anhand bestimmter Merkmale und Eigenschaften der Zeitreihen zu clustern (segmentieren). In dieser Arbeit wurde zunächst die K-Shape-Methode angewandt, eine angepasste Version des bekannten K-Means-Algorithmus. Darüber hinaus wurde die Gauss'sche Mischmodelle (GMM)-Methode eingesetzt. Die Anzahl der möglichen Cluster wurde mithilfe geeigneter Methoden geschätzt, und die Datensätze wurden mit unterschiedlichen Cluster-Anzahlen von n=2-6 segmentiert. Als dritte mögliche Methode wurde das Clustering mittels statistischer Kennzahlen wie dem Mittelwert angewandt. Sowohl K-Shape als auch GMM liefern ähnliche Ergebnisse in Bezug auf Trends, Ausreißer und Charakterisierung der Datensätze. Es gibt jedoch Unterschiede in Bezug auf die Qualität und numerischen Ergebnisse. So liefern die beiden Methoden eine unterschiedliche ¿optimale¿ Anzahl von Clustern. Während beide Methoden bei den horizontalen Daten zwei Cluster als optimal einstufen, tendieren die GMM bei den vertikalen Daten für drei bis vier Cluster, während K-Shape hier wiederum zwei als ausreichend bewertet. Dieser Unterschied basiert auf die schiefe Verteilung der vertikalen Datensätze. GMM finden bei Normalverteilungen Anwendung, was zu einem Unterschied zu den K-Shape Ergebnisse resultiert. Die Verteilung der Zeitreihen-Cluster ähnelt sich auch in den visuellen Ergebnissen, und saisonale Komponenten sind in den Plots beider Methoden erkennbar und ähnlich. Durch zusätzlichen Vergleich der Ergebnisse mit älteren Daten und eines Prognosemodells, lassen sich zudem diese beiden Clustermethoden adaptieren und auch verifizieren. Das Clustering mittels statistischer Kennzahlen ist für weniger komplexe Fälle hilfreich, da es einen ersten Blick verschafft, bietet jedoch begrenzte Möglichkeiten hinsichtlich der Evaluierung und Aussagekraft der Daten selbst. Das Clustering von Zeitreihen im Bereich der Bodenbewegungen erweist sich als vielversprechende Möglichkeit, den Datensätzen Charakteristiken zuzuschreiben. Jedoch sind diese Ergebnisse aufgrund der Black-Box-Problematik weiterhin mit Prognosemodellen und konventionellen Ergebnissen zu verifizieren.
Details
Titel in Übersetzung | Classification of InSAR-based Time Series using Machine Learning |
---|---|
Originalsprache | Deutsch |
Qualifikation | Dipl.-Ing. |
Gradverleihende Hochschule | |
Betreuer/-in / Berater/-in |
|
Datum der Bewilligung | 20 Okt. 2023 |
Status | Veröffentlicht - 2023 |