Investigating Photocurable Thiol-Yne Resins for Biomedical Materials
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Macromolecular materials and engineering, Jahrgang 302.2017, Nr. 5, 1600450, 2017.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Investigating Photocurable Thiol-Yne Resins for Biomedical Materials
AU - Oesterreicher, Andreas
AU - Moser, Andreas
AU - Edler, Matthias
AU - Griesser, Heidi
AU - Schlögl, Sandra
AU - Pichelmayer, Margit
AU - Grießer, Thomas
PY - 2017
Y1 - 2017
N2 - This study deals with the investigation of photocurable thiol-yne resins covering several important aspects for the production of medical devices by UV-based manufacturing processes. In this context, the performance of different low-toxic photoinitiators (PIs) and stabilizers are evaluated in thiol-yne formulations based on di(but-1-yn-4-yl) carbonate and various multifunctional thiol monomers. Photodifferential scanning calorimetry measurements reveal that the conversion of all resin formulations is mostly independent on the type and concentration of the applied photoinitiator; however, significant differences in their curing speed are observed. It turns out that the migration of an alkyne derivatized photoinitiator is significantly reduced while providing almost similar photoactivity as its nonfunctionalized reference. Moreover, it is found that lauryl gallate and butylated hydroxytoluene lead to significant stabilization without affecting the overall photoreactivity. Notably, the thermomechanical properties of the investigated photopolymers are only slightly affected by water absorption. Using ester free thiols, water absorption can be reduced and hydrolytically stable polymers are realized. These results highlight the versatility of the present thiol-yne system for the production of medical materials by photopolymerization.
AB - This study deals with the investigation of photocurable thiol-yne resins covering several important aspects for the production of medical devices by UV-based manufacturing processes. In this context, the performance of different low-toxic photoinitiators (PIs) and stabilizers are evaluated in thiol-yne formulations based on di(but-1-yn-4-yl) carbonate and various multifunctional thiol monomers. Photodifferential scanning calorimetry measurements reveal that the conversion of all resin formulations is mostly independent on the type and concentration of the applied photoinitiator; however, significant differences in their curing speed are observed. It turns out that the migration of an alkyne derivatized photoinitiator is significantly reduced while providing almost similar photoactivity as its nonfunctionalized reference. Moreover, it is found that lauryl gallate and butylated hydroxytoluene lead to significant stabilization without affecting the overall photoreactivity. Notably, the thermomechanical properties of the investigated photopolymers are only slightly affected by water absorption. Using ester free thiols, water absorption can be reduced and hydrolytically stable polymers are realized. These results highlight the versatility of the present thiol-yne system for the production of medical materials by photopolymerization.
KW - Thiol-in
KW - biomedizinische Materialien
KW - UV-Harze
U2 - 10.1002/mame.201600450
DO - 10.1002/mame.201600450
M3 - Article
VL - 302.2017
JO - Macromolecular materials and engineering
JF - Macromolecular materials and engineering
SN - 1438-7492
IS - 5
M1 - 1600450
ER -