Influence of compounding technology on rheological, thermal and mechanical behavior of blast furnace slag filled polystyrene compounds
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: AIP Conference Proceedings, Jahrgang 1914.2017, Nr. 1, 150003, 2017.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Influence of compounding technology on rheological, thermal and mechanical behavior of blast furnace slag filled polystyrene compounds
AU - Mostafa, Abdelhamid
AU - Pacher, Gernot A.
AU - Lucyshyn, Thomas
AU - Holzer, Clemens
AU - Flachberger, Helmut
AU - Krischey, Elke
AU - Fritz, Bertram
AU - Laske, Stephan
PY - 2017
Y1 - 2017
N2 - The influence of melt-compounding technique on blast furnace slags (BFS) filled polystyrene (PS) compounds was investigated. BFS are byproducts of iron industry, and are formed during the production of iron via thermo-chemical reduction in blast furnaces. BFS are mineral-structured materials composed of severeal such as silicon oxide (SiO2), calcium oxide (CaO), magnesium oxide (MgO) and alumina (Al2O3) as well as other minor oxides and elements. Such combination of oxides might be of technical advantage if BFS is properly prepared and tailored for use as a functional filler for PS. In addition, BFS is outstandingly inexpensive and require minimal refining costs compared to common mineral fillers used in polymer industry such as calcium carbonate and talc, giving BFS an economic significance. In current study, compounds were produced via melt-compounding approach, where two different processing technologies were used: (1) Laboratory rotor-blade internal mixer (IM) and (2) co-rotating, twin-screw compounding extruder (TSC). It was found that compounding process did not yield a strong influence on the rheological properties, where comparable levels for shear viscosity, storage- and loss moduli were observed for all compounds except for ‘20G40 TSC’ compound. Such deviancy was clear in thermal properties of this particular compound, where slightly lower transition temperature (Tg) as well as higher specific heat capacity (Cp) were reported. For mechanical behavior, comparable stress-strain curves and young’s modulus values for both processes were witnessed. Deviant ‘20G40 TSC’ compound showed slightly lower young’s modulus compared to corresponding IM.
AB - The influence of melt-compounding technique on blast furnace slags (BFS) filled polystyrene (PS) compounds was investigated. BFS are byproducts of iron industry, and are formed during the production of iron via thermo-chemical reduction in blast furnaces. BFS are mineral-structured materials composed of severeal such as silicon oxide (SiO2), calcium oxide (CaO), magnesium oxide (MgO) and alumina (Al2O3) as well as other minor oxides and elements. Such combination of oxides might be of technical advantage if BFS is properly prepared and tailored for use as a functional filler for PS. In addition, BFS is outstandingly inexpensive and require minimal refining costs compared to common mineral fillers used in polymer industry such as calcium carbonate and talc, giving BFS an economic significance. In current study, compounds were produced via melt-compounding approach, where two different processing technologies were used: (1) Laboratory rotor-blade internal mixer (IM) and (2) co-rotating, twin-screw compounding extruder (TSC). It was found that compounding process did not yield a strong influence on the rheological properties, where comparable levels for shear viscosity, storage- and loss moduli were observed for all compounds except for ‘20G40 TSC’ compound. Such deviancy was clear in thermal properties of this particular compound, where slightly lower transition temperature (Tg) as well as higher specific heat capacity (Cp) were reported. For mechanical behavior, comparable stress-strain curves and young’s modulus values for both processes were witnessed. Deviant ‘20G40 TSC’ compound showed slightly lower young’s modulus compared to corresponding IM.
KW - Blast furnace slag
KW - process comparison
KW - melt compounding
KW - polystyrene
U2 - 10.1063/1.5016780
DO - 10.1063/1.5016780
M3 - Article
VL - 1914.2017
JO - AIP Conference Proceedings
JF - AIP Conference Proceedings
SN - 0094-243X
IS - 1
M1 - 150003
ER -