High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

  • Andreas Krause
  • Susanne Dörfler
  • Markus Piwko
  • Florian M. Wisser
  • Tony Jaumann
  • Eike Ahrens
  • Lars Giebeler
  • Holger Althues
  • Stefan Schädlich
  • Julia Grothe
  • Andrea Jeffery
  • Matthias Grube
  • Jan Brückner
  • Jan Martin
  • Stefan Kaskel
  • Thomas Mikolajick
  • Walter M. Weber

Organisationseinheiten

Externe Organisationseinheiten

  • Technische Universität Dresden
  • Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
  • IFW Dresden
  • NaMLab gGmbH
  • Erich-Schmid-Institut für Materialwissenschaft der Österreichischen Akademie der Wissenschaften

Abstract

We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

Details

OriginalspracheEnglisch
Aufsatznummer27982
Seitenumfang12
FachzeitschriftScientific reports (London : Nature Publishing Group)
Jahrgang2016
Ausgabenummer6
DOIs
StatusVeröffentlicht - 20 Juni 2016