Geochemical aspects on formation processes of vein-hosted pyrite in the Carboniferous-Permian rocks of the Karavanke/Karawanken tunnel, northwestern Slovenia
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Austrian journal of earth sciences, Jahrgang 117.2024, Nr. 1, 07.11.2024, S. 195-206.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Geochemical aspects on formation processes of vein-hosted pyrite in the Carboniferous-Permian rocks of the Karavanke/Karawanken tunnel, northwestern Slovenia
AU - Soster, Ales
AU - Bertrandsson Erlandsson, Viktor
AU - Ravnjak, Mihael
PY - 2024/11/7
Y1 - 2024/11/7
N2 - The Carboniferous-Permian organic-rich shale in the Karavanke/Karawanken tunnel exhibits extensive pyrite mineralization in the form of veins and impregnations. Significant thermal alteration, induced by the overlying Mesozoic rock sequences, led to the decomposition of organic matter into methane, which subsequently acted as a sulfate-reducing agent. The primary source of sulfate were the evaporitic layers hosted within the Paleozoic strata. Reduced sulfur species necessary for pyrite formation were produced through methane-mediated thermochemical sulfate reduction, catalyzed by specific cations (Ni2+, Fe2+) and clay minerals (montmorillonite). The mineralizing fluids originated from the expulsion of interstitial water and possibly from dehydration reactions related to the gypsum-to-anhydrite phase transition. The geochemical data indicate that the metals originated from the surrounding sedimentary rocks. These mineralizing fluids were characterized by low temperatures (< 300–350 °C), moderate reducing conditions, and low chlorinity. The low permeability of Carboniferous-Permian rocks, combined with the low trace element content of the investigated pyrite, mitigates the potential risk of environmental pollution.
AB - The Carboniferous-Permian organic-rich shale in the Karavanke/Karawanken tunnel exhibits extensive pyrite mineralization in the form of veins and impregnations. Significant thermal alteration, induced by the overlying Mesozoic rock sequences, led to the decomposition of organic matter into methane, which subsequently acted as a sulfate-reducing agent. The primary source of sulfate were the evaporitic layers hosted within the Paleozoic strata. Reduced sulfur species necessary for pyrite formation were produced through methane-mediated thermochemical sulfate reduction, catalyzed by specific cations (Ni2+, Fe2+) and clay minerals (montmorillonite). The mineralizing fluids originated from the expulsion of interstitial water and possibly from dehydration reactions related to the gypsum-to-anhydrite phase transition. The geochemical data indicate that the metals originated from the surrounding sedimentary rocks. These mineralizing fluids were characterized by low temperatures (< 300–350 °C), moderate reducing conditions, and low chlorinity. The low permeability of Carboniferous-Permian rocks, combined with the low trace element content of the investigated pyrite, mitigates the potential risk of environmental pollution.
U2 - 10.17738/ajes.2024.0012
DO - 10.17738/ajes.2024.0012
M3 - Article
VL - 117.2024
SP - 195
EP - 206
JO - Austrian journal of earth sciences
JF - Austrian journal of earth sciences
SN - 2072-7151
IS - 1
ER -