Eruption frequency and magnitude in a geothermally active continental rift: The Bora-Baricha-Tulla Moye volcanic complex, Main Ethiopian Rift
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Autoren
Organisationseinheiten
Externe Organisationseinheiten
- Université libre de Bruxelles
- Universität Oxford
- Addis Ababa University
- Universität Freiburg
- Trinity College Dublin
- Scottish Universities Environmental Research Center
- Universität Genf
- Freie Universität Brüssel
- Reykjavik Geothermal Ltd.
Abstract
Based on the review of a wide range of literature, this paper finds that: (1) the average specific surface energy of various single crystals is only 0.8 J/m2. (2) The average specific fracture energy of the rocks with a pre-crack under static cleavage tests is 4.6 J/m2. (3) The average specific fracture energy of the rocks with a pre-cut notch but with no pre-crack under static tensile fracture (mode I) tests is 4.6 J/m2. (4) The average specific fracture energies of regular rock specimens with neither pre-made crack nor pre-cut notch are 26.6, 13.9 and 25.7 J/m2 under uniaxial compression, tension and shear tests, respectively. (5) The average specific fracture energy of irregular single quartz particles under uniaxial compression is 13.8 J/m2. (6) The average specific fracture energy of particle beds under drop weight tests is 74.0 J/m2. (7) The average specific fracture energy of multi-particles in milling tests is 72.5 J/m2. (8) The average specific energy of rocks in percussive drilling is 399 J/m3, that in full-scale cutting is 131 J/m3, and that in rotary drilling is 157 J/m3. (9) The average energy efficiency of milling is only 1.10%. (10) The accurate measurements of specific fracture energy in blasting are too few to draw reliable conclusions. In the last part of the paper, the effects of inter-granular displacement, loading rate, confining pressure, surface area measurement, premade crack, attrition and thermal energy on the specific fracture energy of rock are discussed.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 629-667 |
Seitenumfang | 39 |
Fachzeitschrift | Journal of volcanology and geothermal research |
Jahrgang | 423.2022 |
Ausgabenummer | March |
DOIs | |
Status | Veröffentlicht - 15 Jan. 2022 |