Enhancing mechanical properties of ultrafine-grained tungsten for fusion applications

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Externe Organisationseinheiten

  • Erich-Schmid-Institut für Materialwissenschaft der Österreichischen Akademie der Wissenschaften
  • University of California, Berkeley
  • Materials Center Leoben Forschungs GmbH

Abstract

Tungsten, while showing many favorable properties, faces challenges in high-performance applications due to its brittle nature. One strategy to improve strength and toughness in tungsten is to refine the grain size down to the ultra-fine grained (ufg) regime. However, as the grain size is reduced, the fraction of grain boundaries that provide easy paths for crack growth increases, thereby limiting the gain in ductility. Therefore, strengthening the grain boundaries is of great importance if one wants to tap the full potential of this material. Using ab-initio calculations, potential grain boundary cohesion enhancing doping elements were identified, and doped ultra-fine grained tungsten samples were fabricated from powders and characterized extensively using small-scale testing techniques. We found that additions of boron and hafnium improve the mechanical properties of tungsten remarkably. Furthermore, an additional low-temperature heat treatment of the boron-doped sample promotes grain boundary segregation, enhancing the properties even further. Thus, in this work we provide an effective pathway of improving mechanical properties in ultra-fine grained tungsten using grain boundary segregation engineering. This opens the door for many challenging applications of ufg W in harsh environments. To further underline the potential employment of ufg W in nuclear fusion reactors, a favorable swelling behavior and mechanical property response after irradiation with helium is presented within this work.

Details

OriginalspracheEnglisch
Aufsatznummer106125
Seitenumfang7
FachzeitschriftInternational journal of refractory metals & hard materials
Jahrgang111.2023
AusgabenummerFebruary
Frühes Online-Datum19 Jan. 2023
DOIs
StatusVeröffentlicht - Feb. 2023