Effects of tungsten alloying and fluorination on the oxidation behavior of intermetallic titanium aluminides for aerospace applications
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Intermetallics, Jahrgang 139.2021, Nr. December, 107270, 12.2021.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Effects of tungsten alloying and fluorination on the oxidation behavior of intermetallic titanium aluminides for aerospace applications
AU - Donchev, A
AU - Mengis, Lukas
AU - Couret, Alain
AU - Mayer, Svea
AU - Clemens, Helmut
AU - Galetz, M.
N1 - Publisher Copyright: © 2021 Elsevier Ltd
PY - 2021/12
Y1 - 2021/12
N2 - Current limitations to a wider use of intermetallic TiAl alloys in aircraft and automotive engines arise from an insufficient oxidation resistance at temperatures above approximately 800 °C. In this paper, the high temperature oxidation behavior of three engineering γ-TiAl-based alloys at 900 °C in air is reported. The performance of the TNM alloy (Ti-43.5Al–4Nb–1Mo-0.1B), the 4822 alloy (Ti–48Al–2Cr–2Nb), and the Nb-free IRIS alloy (Ti–48Al–2W-0.08B) is compared (all chemical compositions are given in at.%). During testing in air non-protective mixed oxide scales developed on all untreated samples, but with different compositions and thicknesses. These different oxide layers are characterized and their formation mechanisms are discussed. The presence of W in the IRIS alloy leads to a better oxidation behavior compared to untreated TNM and 4822. This behavior was changed in the direction of a protective alumina layer formation via the so-called “fluorine effect”. The above-mentioned alloys were treated with fluorine via a liquid phase process by evenly spraying a fluorine containing polymer on all faces of the specimens. The oxidation resistance of the fluorine treated samples was significantly improved compared to the untreated specimens. Due to the fluorination all treated test coupons exhibited slow oxidation kinetics. The results of isothermal as well as thermocyclic exposure tests are presented and discussed in the view of the chemical composition and processing conditioned microstructure of the three investigated γ-TiAl-based alloys.
AB - Current limitations to a wider use of intermetallic TiAl alloys in aircraft and automotive engines arise from an insufficient oxidation resistance at temperatures above approximately 800 °C. In this paper, the high temperature oxidation behavior of three engineering γ-TiAl-based alloys at 900 °C in air is reported. The performance of the TNM alloy (Ti-43.5Al–4Nb–1Mo-0.1B), the 4822 alloy (Ti–48Al–2Cr–2Nb), and the Nb-free IRIS alloy (Ti–48Al–2W-0.08B) is compared (all chemical compositions are given in at.%). During testing in air non-protective mixed oxide scales developed on all untreated samples, but with different compositions and thicknesses. These different oxide layers are characterized and their formation mechanisms are discussed. The presence of W in the IRIS alloy leads to a better oxidation behavior compared to untreated TNM and 4822. This behavior was changed in the direction of a protective alumina layer formation via the so-called “fluorine effect”. The above-mentioned alloys were treated with fluorine via a liquid phase process by evenly spraying a fluorine containing polymer on all faces of the specimens. The oxidation resistance of the fluorine treated samples was significantly improved compared to the untreated specimens. Due to the fluorination all treated test coupons exhibited slow oxidation kinetics. The results of isothermal as well as thermocyclic exposure tests are presented and discussed in the view of the chemical composition and processing conditioned microstructure of the three investigated γ-TiAl-based alloys.
UR - http://www.scopus.com/inward/record.url?scp=85114812804&partnerID=8YFLogxK
U2 - 10.1016/j.intermet.2021.107270
DO - 10.1016/j.intermet.2021.107270
M3 - Article
VL - 139.2021
JO - Intermetallics
JF - Intermetallics
SN - 0966-9795
IS - December
M1 - 107270
ER -