Distinguishing Cartesian Products of Countable Graphs

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Standard

Distinguishing Cartesian Products of Countable Graphs. / Estaji, Ehsan; Imrich, Wilfried; Kalinowski, Rafal et al.
in: Discussiones mathematicae / Graph theory, Jahrgang 37.2017, Nr. 1, 01.12.2017, S. 155-164.

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Harvard

Estaji, E, Imrich, W, Kalinowski, R, Pilsniak, M & Tucker, T 2017, 'Distinguishing Cartesian Products of Countable Graphs', Discussiones mathematicae / Graph theory, Jg. 37.2017, Nr. 1, S. 155-164. https://doi.org/10.7151/dmgt.1902

APA

Vancouver

Estaji E, Imrich W, Kalinowski R, Pilsniak M, Tucker T. Distinguishing Cartesian Products of Countable Graphs. Discussiones mathematicae / Graph theory. 2017 Dez 1;37.2017(1):155-164. doi: 10.7151/dmgt.1902

Author

Estaji, Ehsan ; Imrich, Wilfried ; Kalinowski, Rafal et al. / Distinguishing Cartesian Products of Countable Graphs. in: Discussiones mathematicae / Graph theory. 2017 ; Jahrgang 37.2017, Nr. 1. S. 155-164.

Bibtex - Download

@article{d121b41a8f6b4cd6bfe9c2f529353bf4,
title = "Distinguishing Cartesian Products of Countable Graphs",
abstract = "The distinguishing number D(G) of a graph G is the minimum numberof colors needed to color the vertices of G such that the coloring is preservedonly by the trivial automorphism. In this paper we improve results aboutthe distinguishing number of Cartesian products of finite and infinite graphsby removing restrictions to prime or relatively prime factors.Keywords: vertex coloring, distinguishing number, automorphisms, infinitegraphs, Cartesian and weak Cartesian product.",
author = "Ehsan Estaji and Wilfried Imrich and Rafal Kalinowski and Monika Pilsniak and Thomas Tucker",
year = "2017",
month = dec,
day = "1",
doi = "10.7151/dmgt.1902",
language = "English",
volume = "37.2017",
pages = "155--164",
journal = "Discussiones mathematicae / Graph theory",
issn = "1234-3099",
publisher = "University of Zielona Gora",
number = "1",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Distinguishing Cartesian Products of Countable Graphs

AU - Estaji, Ehsan

AU - Imrich, Wilfried

AU - Kalinowski, Rafal

AU - Pilsniak, Monika

AU - Tucker, Thomas

PY - 2017/12/1

Y1 - 2017/12/1

N2 - The distinguishing number D(G) of a graph G is the minimum numberof colors needed to color the vertices of G such that the coloring is preservedonly by the trivial automorphism. In this paper we improve results aboutthe distinguishing number of Cartesian products of finite and infinite graphsby removing restrictions to prime or relatively prime factors.Keywords: vertex coloring, distinguishing number, automorphisms, infinitegraphs, Cartesian and weak Cartesian product.

AB - The distinguishing number D(G) of a graph G is the minimum numberof colors needed to color the vertices of G such that the coloring is preservedonly by the trivial automorphism. In this paper we improve results aboutthe distinguishing number of Cartesian products of finite and infinite graphsby removing restrictions to prime or relatively prime factors.Keywords: vertex coloring, distinguishing number, automorphisms, infinitegraphs, Cartesian and weak Cartesian product.

U2 - 10.7151/dmgt.1902

DO - 10.7151/dmgt.1902

M3 - Article

VL - 37.2017

SP - 155

EP - 164

JO - Discussiones mathematicae / Graph theory

JF - Discussiones mathematicae / Graph theory

SN - 1234-3099

IS - 1

ER -