Deformation Mechanisms in Metallic Glasses: An Atomistic Study
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Standard
2019.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Deformation Mechanisms in Metallic Glasses: An Atomistic Study
AU - Moitzi, Franco
N1 - no embargo
PY - 2019
Y1 - 2019
N2 - The influence of composition and temperature on the tensile deformation behavior of amorphous PdSi and CuZr alloys are investigated using large-scale molecular dynamics simulations, potential-energy-landscape saddle point searching and density functional theory simulations. Two distinctive failure mechanisms in tensile samples can be distinguished in the above-mentioned metallic glasses: Highly-localized deformation in one mature shear band parallel to the maximum shear stress and the cracking perpendicular to the loading direction. Only shear banding is commonly seen in simulations of CuZr. For this case, the shear band dynamics, such as deflection and branching, were found to be influenced by long range elastic interactions of the stress fields of shear bands and by local structural inhomogeneities. The structural changes during shear band propagation were visualized by an entropy-based order parameter. In contrast, a cracking-to-shear-banding transition can be achieved upon increasing the temperature or decreasing the amount of silicon for PdSi glass. The Crystal Orbital Hamilton Population analysis based on electronic structure calculation from density functional theory simulations has shown that the difference in chemical bonding is responsible for the observed different deformation behaviors. CuZr shows non-directional metallic-bonding, whereas PdSi has a high amount of directional covalent Si-Si bonds. Sampling of the saddle points on the potential energy surface has revealed that a high fraction of rigid covalent Si-Si bonds increases the energy barriers for atomic rearrangements. These thermally-activated atomic relaxation events change the stress and strain state in the elastic regime and are precursor of local plasticity. High activation energies impede both the stress and strain redistribution and cause cleavage-like cracking due to a delay of the onset of plasticity. On the other side, crack propagation due to void nucleation ahead of the crack tip was seen in a heterogeneous PdSi glass.
AB - The influence of composition and temperature on the tensile deformation behavior of amorphous PdSi and CuZr alloys are investigated using large-scale molecular dynamics simulations, potential-energy-landscape saddle point searching and density functional theory simulations. Two distinctive failure mechanisms in tensile samples can be distinguished in the above-mentioned metallic glasses: Highly-localized deformation in one mature shear band parallel to the maximum shear stress and the cracking perpendicular to the loading direction. Only shear banding is commonly seen in simulations of CuZr. For this case, the shear band dynamics, such as deflection and branching, were found to be influenced by long range elastic interactions of the stress fields of shear bands and by local structural inhomogeneities. The structural changes during shear band propagation were visualized by an entropy-based order parameter. In contrast, a cracking-to-shear-banding transition can be achieved upon increasing the temperature or decreasing the amount of silicon for PdSi glass. The Crystal Orbital Hamilton Population analysis based on electronic structure calculation from density functional theory simulations has shown that the difference in chemical bonding is responsible for the observed different deformation behaviors. CuZr shows non-directional metallic-bonding, whereas PdSi has a high amount of directional covalent Si-Si bonds. Sampling of the saddle points on the potential energy surface has revealed that a high fraction of rigid covalent Si-Si bonds increases the energy barriers for atomic rearrangements. These thermally-activated atomic relaxation events change the stress and strain state in the elastic regime and are precursor of local plasticity. High activation energies impede both the stress and strain redistribution and cause cleavage-like cracking due to a delay of the onset of plasticity. On the other side, crack propagation due to void nucleation ahead of the crack tip was seen in a heterogeneous PdSi glass.
KW - Metallische Glässer
KW - Dichtefunktionaltheorie
KW - Molekulardynamiksimulation
KW - Sattelpunktsuche im Phasenraum
KW - Deformatiosmechanismen
KW - CuZr
KW - PdSi
KW - Simulation
KW - Metallic Glasses
KW - Density Functional Theory
KW - Molecular Dynamics Simulation
KW - Saddle Point Searching
KW - Deformation Mechanisms
M3 - Master's Thesis
ER -