Comparative Study of Sulfides from Porphyry, Skarn, and Carbonate-Replacement Mineralization at the Recsk Porphyry-Mineralized Complex, Hungary

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Standard

Comparative Study of Sulfides from Porphyry, Skarn, and Carbonate-Replacement Mineralization at the Recsk Porphyry-Mineralized Complex, Hungary. / Biró, Mate; Raith, Johann G.; Feichter, Monika et al.
in: Minerals, Jahrgang 14.2024, Nr. 9, 956, 21.09.2024.

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Bibtex - Download

@article{1439206193a74c2db5577e2a3b983a58,
title = "Comparative Study of Sulfides from Porphyry, Skarn, and Carbonate-Replacement Mineralization at the Recsk Porphyry-Mineralized Complex, Hungary",
abstract = "Acalc–alkaline dioritic–andesitic–dacitic intrusive–volcanic complex of Early Oligocene (30 Ma) age and its Mesozoic sedimentary basement at Recsk host a well-preserved porphyry–skarn–polymetallic carbonate-replacement–epithermal mineral system. The unique occurrence offers an exceptional possibility to study these related mineralization types at a single locality. This study presents the textural–paragenetic, compositional characteristics, and systematics of sulfide mineral assemblages for the porphyry, skarn, and carbonate-replacement ore types, which are currently situated at a depth of 500–1200 m below the present surface. Detailed petrography combined with EPMA analyses of molybdenite, galena, sphalerite, tetrahedrite-group minerals and Bi-bearing sulfosalts allows for the establishment of characteristic mineral and chemical fingerprints for each mineralization type. Rhenium concentration in molybdenite, occurring as rare disseminations and quartz–carbonate veinlets in altered host rocks in all three mineralization types, shows a decreasing trend towards the more distal mineralization types. High Re contents ((Formula presented.) = 1.04 wt.%, max. up to 4.47 wt%) are typical for molybdenite from the porphyry mineralization, but Re is not homogeneously distributed, neither within individual molybdenite crystals nor on a mineralization scale. Copper and Se show opposite behavior in molybdenite, both becoming enriched in the more distal mineralization types. Silver, Bi, and Se concentrations increase in galena and tetrahedrite-group minerals, both towards the country rocks, making them the best candidates for vectoring within the whole hydrothermal system. For tetrahedrite-group minerals, Ag, Bi, Se, together with Sb and Zn, are the suitable elements for fingerprinting; all these are significantly enriched in the distal carbonate-replacement mineralization compared to the other, more proximal ore types. Additionally, further trends can be traced within the composition of sulfosalts. Lead-bearing Bi sulfosalts preferentially occur in the polymetallic carbonate-replacement veins, while being under-represented in the skarn and porphyry mineralization. Porphyry mineralization hosts Cu-bearing Bi sulfosalts dominantly, while skarn is characterized by Bi-dominated sulfosalts. Sphalerite, although present in all mineralization types, cannot be used for fingerprinting, vectoring, or thermobarometry based on EPMA measurements only. Trace element contents of sphalerite are low, often below the detection limits of the analyses. This is further complicated by the intense “chalcopyrite disease” occurring throughout the distal mineralization types. All the above-listed major, minor, and trace element ore mineral characteristics enable the characterization of the Recsk ores by mineral geochemical fingerprints, providing a possible vectoring tool in porphyry Cu–(Mo)–Au-mineralized systems.",
keywords = "carbonate replacement, EPMA, fingerprinting, porphyry, skarn, sulfide, vectoring",
author = "Mate Bir{\'o} and Raith, {Johann G.} and Monika Feichter and M{\'a}t{\'e} Hencz and Kiss, {Gabriella B.} and Attila Vir{\'a}g and Ferenc Moln{\`a}r",
note = "Publisher Copyright: {\textcopyright} 2024 by the authors.",
year = "2024",
month = sep,
day = "21",
doi = "10.3390/min14090956",
language = "English",
volume = "14.2024",
journal = "Minerals",
issn = "2075-163X",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "9",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Comparative Study of Sulfides from Porphyry, Skarn, and Carbonate-Replacement Mineralization at the Recsk Porphyry-Mineralized Complex, Hungary

AU - Biró, Mate

AU - Raith, Johann G.

AU - Feichter, Monika

AU - Hencz, Máté

AU - Kiss, Gabriella B.

AU - Virág, Attila

AU - Molnàr, Ferenc

N1 - Publisher Copyright: © 2024 by the authors.

PY - 2024/9/21

Y1 - 2024/9/21

N2 - Acalc–alkaline dioritic–andesitic–dacitic intrusive–volcanic complex of Early Oligocene (30 Ma) age and its Mesozoic sedimentary basement at Recsk host a well-preserved porphyry–skarn–polymetallic carbonate-replacement–epithermal mineral system. The unique occurrence offers an exceptional possibility to study these related mineralization types at a single locality. This study presents the textural–paragenetic, compositional characteristics, and systematics of sulfide mineral assemblages for the porphyry, skarn, and carbonate-replacement ore types, which are currently situated at a depth of 500–1200 m below the present surface. Detailed petrography combined with EPMA analyses of molybdenite, galena, sphalerite, tetrahedrite-group minerals and Bi-bearing sulfosalts allows for the establishment of characteristic mineral and chemical fingerprints for each mineralization type. Rhenium concentration in molybdenite, occurring as rare disseminations and quartz–carbonate veinlets in altered host rocks in all three mineralization types, shows a decreasing trend towards the more distal mineralization types. High Re contents ((Formula presented.) = 1.04 wt.%, max. up to 4.47 wt%) are typical for molybdenite from the porphyry mineralization, but Re is not homogeneously distributed, neither within individual molybdenite crystals nor on a mineralization scale. Copper and Se show opposite behavior in molybdenite, both becoming enriched in the more distal mineralization types. Silver, Bi, and Se concentrations increase in galena and tetrahedrite-group minerals, both towards the country rocks, making them the best candidates for vectoring within the whole hydrothermal system. For tetrahedrite-group minerals, Ag, Bi, Se, together with Sb and Zn, are the suitable elements for fingerprinting; all these are significantly enriched in the distal carbonate-replacement mineralization compared to the other, more proximal ore types. Additionally, further trends can be traced within the composition of sulfosalts. Lead-bearing Bi sulfosalts preferentially occur in the polymetallic carbonate-replacement veins, while being under-represented in the skarn and porphyry mineralization. Porphyry mineralization hosts Cu-bearing Bi sulfosalts dominantly, while skarn is characterized by Bi-dominated sulfosalts. Sphalerite, although present in all mineralization types, cannot be used for fingerprinting, vectoring, or thermobarometry based on EPMA measurements only. Trace element contents of sphalerite are low, often below the detection limits of the analyses. This is further complicated by the intense “chalcopyrite disease” occurring throughout the distal mineralization types. All the above-listed major, minor, and trace element ore mineral characteristics enable the characterization of the Recsk ores by mineral geochemical fingerprints, providing a possible vectoring tool in porphyry Cu–(Mo)–Au-mineralized systems.

AB - Acalc–alkaline dioritic–andesitic–dacitic intrusive–volcanic complex of Early Oligocene (30 Ma) age and its Mesozoic sedimentary basement at Recsk host a well-preserved porphyry–skarn–polymetallic carbonate-replacement–epithermal mineral system. The unique occurrence offers an exceptional possibility to study these related mineralization types at a single locality. This study presents the textural–paragenetic, compositional characteristics, and systematics of sulfide mineral assemblages for the porphyry, skarn, and carbonate-replacement ore types, which are currently situated at a depth of 500–1200 m below the present surface. Detailed petrography combined with EPMA analyses of molybdenite, galena, sphalerite, tetrahedrite-group minerals and Bi-bearing sulfosalts allows for the establishment of characteristic mineral and chemical fingerprints for each mineralization type. Rhenium concentration in molybdenite, occurring as rare disseminations and quartz–carbonate veinlets in altered host rocks in all three mineralization types, shows a decreasing trend towards the more distal mineralization types. High Re contents ((Formula presented.) = 1.04 wt.%, max. up to 4.47 wt%) are typical for molybdenite from the porphyry mineralization, but Re is not homogeneously distributed, neither within individual molybdenite crystals nor on a mineralization scale. Copper and Se show opposite behavior in molybdenite, both becoming enriched in the more distal mineralization types. Silver, Bi, and Se concentrations increase in galena and tetrahedrite-group minerals, both towards the country rocks, making them the best candidates for vectoring within the whole hydrothermal system. For tetrahedrite-group minerals, Ag, Bi, Se, together with Sb and Zn, are the suitable elements for fingerprinting; all these are significantly enriched in the distal carbonate-replacement mineralization compared to the other, more proximal ore types. Additionally, further trends can be traced within the composition of sulfosalts. Lead-bearing Bi sulfosalts preferentially occur in the polymetallic carbonate-replacement veins, while being under-represented in the skarn and porphyry mineralization. Porphyry mineralization hosts Cu-bearing Bi sulfosalts dominantly, while skarn is characterized by Bi-dominated sulfosalts. Sphalerite, although present in all mineralization types, cannot be used for fingerprinting, vectoring, or thermobarometry based on EPMA measurements only. Trace element contents of sphalerite are low, often below the detection limits of the analyses. This is further complicated by the intense “chalcopyrite disease” occurring throughout the distal mineralization types. All the above-listed major, minor, and trace element ore mineral characteristics enable the characterization of the Recsk ores by mineral geochemical fingerprints, providing a possible vectoring tool in porphyry Cu–(Mo)–Au-mineralized systems.

KW - carbonate replacement

KW - EPMA

KW - fingerprinting

KW - porphyry

KW - skarn

KW - sulfide

KW - vectoring

UR - https://www.mdpi.com/2075-163X/14/9/956

UR - http://www.scopus.com/inward/record.url?scp=85205095658&partnerID=8YFLogxK

U2 - 10.3390/min14090956

DO - 10.3390/min14090956

M3 - Article

VL - 14.2024

JO - Minerals

JF - Minerals

SN - 2075-163X

IS - 9

M1 - 956

ER -