Closed die forging of a Mg-Al-Ca-Mn-Zn lean alloy
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Materials science and engineering: A, Structural materials: properties, microstructure and processing, Jahrgang 2022, Nr. 857, 144079, 23.09.2022.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Closed die forging of a Mg-Al-Ca-Mn-Zn lean alloy
AU - Papenberg, Nikolaus P.
AU - Arnoldt, Aurel
AU - Trink, Bernhard
AU - Uggowitzer, Peter
AU - Pogatscher, Stefan
PY - 2022/9/23
Y1 - 2022/9/23
N2 - The intensifying search for light weighting possibilities in transportation have repeatedly brought attention on wrought Mg alloys. While various alloys have been investigated a trend in development towards heat treatable Mg alloys with low alloying content has been noticeable. Investigations on wrought alloys are done predominantly by extrusion or rolling, but not by forging. As forgings are an indispensable part in structural components used today, it is important to gain an in depth understanding of the interaction between material, forming process and heat treatments of forged parts.In this study, the forging process of a piston rod using an age-hardenable lean Mg alloy AXMZ1000 is investigated on a semi-industrial scale, comparing two different stock materials: cast and homogenized versus extruded forging material. The microstructural evolution and mechanical properties during the production process are analyzed and assessed. Comparable microstructures are obtained with both starting materials. The mechanical properties achieved are slightly better with extruded feedstock than with the cast counterpart, but are at a satisfactory level comparable to extruded or rolled components made of similar alloys.
AB - The intensifying search for light weighting possibilities in transportation have repeatedly brought attention on wrought Mg alloys. While various alloys have been investigated a trend in development towards heat treatable Mg alloys with low alloying content has been noticeable. Investigations on wrought alloys are done predominantly by extrusion or rolling, but not by forging. As forgings are an indispensable part in structural components used today, it is important to gain an in depth understanding of the interaction between material, forming process and heat treatments of forged parts.In this study, the forging process of a piston rod using an age-hardenable lean Mg alloy AXMZ1000 is investigated on a semi-industrial scale, comparing two different stock materials: cast and homogenized versus extruded forging material. The microstructural evolution and mechanical properties during the production process are analyzed and assessed. Comparable microstructures are obtained with both starting materials. The mechanical properties achieved are slightly better with extruded feedstock than with the cast counterpart, but are at a satisfactory level comparable to extruded or rolled components made of similar alloys.
U2 - 10.1016/j.msea.2022.144079
DO - 10.1016/j.msea.2022.144079
M3 - Article
VL - 2022
JO - Materials science and engineering: A, Structural materials: properties, microstructure and processing
JF - Materials science and engineering: A, Structural materials: properties, microstructure and processing
SN - 0921-5093
IS - 857
M1 - 144079
ER -