Characterizing lithological, weathering, and hydrothermal alteration influences on volcanic rock properties via spectroscopy and laboratory testing: a case study of Mount Ruapehu volcano, New Zealand

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Standard

Characterizing lithological, weathering, and hydrothermal alteration influences on volcanic rock properties via spectroscopy and laboratory testing: a case study of Mount Ruapehu volcano, New Zealand. / Schaefer, Lauren N.; Kereszturi, Gabor; Kennedy, Ben et al.
in: Bulletin of volcanology, Jahrgang 85, Nr. 8, 43, 13.07.2023.

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Bibtex - Download

@article{5ea80ff86aa84bd99a34f059e6a810bf,
title = "Characterizing lithological, weathering, and hydrothermal alteration influences on volcanic rock properties via spectroscopy and laboratory testing: a case study of Mount Ruapehu volcano, New Zealand",
abstract = "The geomechanical characterization of volcanic material has important implications for geothermal and mineral exploration, engineering design, geophysical signals of volcano unrest, and models of instability and mass flows. Chemical weathering and hydrothermal systems can alter the host rock, leading to changes in mechanical behavior and failure mode. Here, we compare the physical and mechanical properties of lava, autoclastic breccia, and pyroclastic (scoria) rocks from Mount Ruapehu volcano (Ruapehu) in New Zealand to mineralogical composition determined via infrared spectroscopy and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). We use correlation matrices, principal component analysis, and parametric analysis to determine which parameters can be used to predict physical and mechanical properties and form the basis for transfer functions. Laboratory-based spectroscopy shows that the samples contain absorption features indicative of Al- and Mg-rich hydrous phyllosilicates (e.g., kaolinite, halloysite, montmorillonite), Fe- oxides (e.g., goethite), and sulfates attributed to surface weathering, supergene, and steam-heated alteration. We find that porosity and primary lithology are the predominant control on physical and mechanical properties, followed by the pervasiveness of weathering/alteration, and then mineralogical composition. Several properties, such as porosity, uniaxial compressive strength, P-wave seismic velocity, density, and Young{\textquoteright}s modulus, show strong correlations with other properties, indicating the potential for transfer functions between these properties. Hydrothermally altered rocks near the vent complex (up to ~ 400 m depth beneath the crater lake) with high-intensity hydrothermal alteration do not follow typical physical and mechanical property trends due to high clay content, low permeability, and low strength. The presence of these rocks within the edifice at Ruapehu implies local barriers to fluid flow and subsequent pore pressure variations. Additionally, they may have less than half the strength than would be dictated by typical porosity-strength trends for surface rocks, increasing the likelihood of structural failure. Trends in the pervasiveness of weathering with physical and mechanical properties, along with shifts in the position of spectral absorption peaks as hydrothermal/weathering alteration increases, suggest that it may be possible to extrapolate properties from imaging spectroscopy.",
author = "Schaefer, {Lauren N.} and Gabor Kereszturi and Ben Kennedy and Marlene Villeneuve",
note = "Publisher Copyright: {\textcopyright} 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.",
year = "2023",
month = jul,
day = "13",
doi = "10.1007/s00445-023-01657-w",
language = "English",
volume = "85",
journal = "Bulletin of volcanology",
issn = "0258-8900",
publisher = "Springer Berlin",
number = "8",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Characterizing lithological, weathering, and hydrothermal alteration influences on volcanic rock properties via spectroscopy and laboratory testing: a case study of Mount Ruapehu volcano, New Zealand

AU - Schaefer, Lauren N.

AU - Kereszturi, Gabor

AU - Kennedy, Ben

AU - Villeneuve, Marlene

N1 - Publisher Copyright: © 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

PY - 2023/7/13

Y1 - 2023/7/13

N2 - The geomechanical characterization of volcanic material has important implications for geothermal and mineral exploration, engineering design, geophysical signals of volcano unrest, and models of instability and mass flows. Chemical weathering and hydrothermal systems can alter the host rock, leading to changes in mechanical behavior and failure mode. Here, we compare the physical and mechanical properties of lava, autoclastic breccia, and pyroclastic (scoria) rocks from Mount Ruapehu volcano (Ruapehu) in New Zealand to mineralogical composition determined via infrared spectroscopy and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). We use correlation matrices, principal component analysis, and parametric analysis to determine which parameters can be used to predict physical and mechanical properties and form the basis for transfer functions. Laboratory-based spectroscopy shows that the samples contain absorption features indicative of Al- and Mg-rich hydrous phyllosilicates (e.g., kaolinite, halloysite, montmorillonite), Fe- oxides (e.g., goethite), and sulfates attributed to surface weathering, supergene, and steam-heated alteration. We find that porosity and primary lithology are the predominant control on physical and mechanical properties, followed by the pervasiveness of weathering/alteration, and then mineralogical composition. Several properties, such as porosity, uniaxial compressive strength, P-wave seismic velocity, density, and Young’s modulus, show strong correlations with other properties, indicating the potential for transfer functions between these properties. Hydrothermally altered rocks near the vent complex (up to ~ 400 m depth beneath the crater lake) with high-intensity hydrothermal alteration do not follow typical physical and mechanical property trends due to high clay content, low permeability, and low strength. The presence of these rocks within the edifice at Ruapehu implies local barriers to fluid flow and subsequent pore pressure variations. Additionally, they may have less than half the strength than would be dictated by typical porosity-strength trends for surface rocks, increasing the likelihood of structural failure. Trends in the pervasiveness of weathering with physical and mechanical properties, along with shifts in the position of spectral absorption peaks as hydrothermal/weathering alteration increases, suggest that it may be possible to extrapolate properties from imaging spectroscopy.

AB - The geomechanical characterization of volcanic material has important implications for geothermal and mineral exploration, engineering design, geophysical signals of volcano unrest, and models of instability and mass flows. Chemical weathering and hydrothermal systems can alter the host rock, leading to changes in mechanical behavior and failure mode. Here, we compare the physical and mechanical properties of lava, autoclastic breccia, and pyroclastic (scoria) rocks from Mount Ruapehu volcano (Ruapehu) in New Zealand to mineralogical composition determined via infrared spectroscopy and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). We use correlation matrices, principal component analysis, and parametric analysis to determine which parameters can be used to predict physical and mechanical properties and form the basis for transfer functions. Laboratory-based spectroscopy shows that the samples contain absorption features indicative of Al- and Mg-rich hydrous phyllosilicates (e.g., kaolinite, halloysite, montmorillonite), Fe- oxides (e.g., goethite), and sulfates attributed to surface weathering, supergene, and steam-heated alteration. We find that porosity and primary lithology are the predominant control on physical and mechanical properties, followed by the pervasiveness of weathering/alteration, and then mineralogical composition. Several properties, such as porosity, uniaxial compressive strength, P-wave seismic velocity, density, and Young’s modulus, show strong correlations with other properties, indicating the potential for transfer functions between these properties. Hydrothermally altered rocks near the vent complex (up to ~ 400 m depth beneath the crater lake) with high-intensity hydrothermal alteration do not follow typical physical and mechanical property trends due to high clay content, low permeability, and low strength. The presence of these rocks within the edifice at Ruapehu implies local barriers to fluid flow and subsequent pore pressure variations. Additionally, they may have less than half the strength than would be dictated by typical porosity-strength trends for surface rocks, increasing the likelihood of structural failure. Trends in the pervasiveness of weathering with physical and mechanical properties, along with shifts in the position of spectral absorption peaks as hydrothermal/weathering alteration increases, suggest that it may be possible to extrapolate properties from imaging spectroscopy.

UR - http://www.scopus.com/inward/record.url?scp=85165282157&partnerID=8YFLogxK

U2 - 10.1007/s00445-023-01657-w

DO - 10.1007/s00445-023-01657-w

M3 - Article

VL - 85

JO - Bulletin of volcanology

JF - Bulletin of volcanology

SN - 0258-8900

IS - 8

M1 - 43

ER -