Characterization of Fine Fractions from Landfill Mining: A Review of Previous Investigations
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Detritus, Jahrgang 2, Nr. June 2018, 2018, S. 46 - 62.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Characterization of Fine Fractions from Landfill Mining: A Review of Previous Investigations
AU - Hernández Parrodi, Juan Carlos
AU - Höllen, Daniel
AU - Pomberger, Roland
PY - 2018
Y1 - 2018
N2 - Several landfill mining (LFM) studies have been carried out in recent years all around the world. From these studies qualitative and quantitative information regarding the composition and characteristics of the different fractions excavated from landfills has been obtained. This information comprises data from various landfill sites around the globe from which useful correlations for future LFM projects can be identified. Of particular interest to this paper is the information regarding the fine fractions, which represent to this day a crucial obstacle in the implementation of LFM and enhanced landfill mining (ELFM). The fine fractions make up a considerable portion of the total amount of waste disposed of in landfills. Depending on the particle size chosen as upper limit to define the fines fraction, the portion of this fraction can be as high as 40-80 wt.% of the total excavated waste. These fractions consist of decomposed organic substances, e.g. humic substances, partly weathered mineral waste, e.g. sand, brick fragments, concrete, but also of fine metal particles, especially non-ferrous metals, and still a significant amount of plastics, paper and other calorific fractions. However, although calorific fractions might be used for energy recovery and inorganic fractions for material (especially metal) recovery, current LFM studies are discarding the fine fraction due to lacking or too expensive processing routes. Therefore, it is of critical interest to LFM and ELFM projects to reduce the particle size down to which the excavated material can be processed. This paper, which was elaborated within the framework of the EU Training Network for Resource Recovery through Enhanced Landfill Mining – NEW-MINE, aims to review the obtained data from different LFM studies from municipal solid waste (MSW) landfills, concerning the fines fraction, in order to identify key aspects to be taken into consideration while designing the processing approach in future LFM and ELFM investigations.
AB - Several landfill mining (LFM) studies have been carried out in recent years all around the world. From these studies qualitative and quantitative information regarding the composition and characteristics of the different fractions excavated from landfills has been obtained. This information comprises data from various landfill sites around the globe from which useful correlations for future LFM projects can be identified. Of particular interest to this paper is the information regarding the fine fractions, which represent to this day a crucial obstacle in the implementation of LFM and enhanced landfill mining (ELFM). The fine fractions make up a considerable portion of the total amount of waste disposed of in landfills. Depending on the particle size chosen as upper limit to define the fines fraction, the portion of this fraction can be as high as 40-80 wt.% of the total excavated waste. These fractions consist of decomposed organic substances, e.g. humic substances, partly weathered mineral waste, e.g. sand, brick fragments, concrete, but also of fine metal particles, especially non-ferrous metals, and still a significant amount of plastics, paper and other calorific fractions. However, although calorific fractions might be used for energy recovery and inorganic fractions for material (especially metal) recovery, current LFM studies are discarding the fine fraction due to lacking or too expensive processing routes. Therefore, it is of critical interest to LFM and ELFM projects to reduce the particle size down to which the excavated material can be processed. This paper, which was elaborated within the framework of the EU Training Network for Resource Recovery through Enhanced Landfill Mining – NEW-MINE, aims to review the obtained data from different LFM studies from municipal solid waste (MSW) landfills, concerning the fines fraction, in order to identify key aspects to be taken into consideration while designing the processing approach in future LFM and ELFM investigations.
U2 - 10.31025/2611-4135/2018.13663
DO - 10.31025/2611-4135/2018.13663
M3 - Article
VL - 2
SP - 46
EP - 62
JO - Detritus
JF - Detritus
SN - 2611-4135
IS - June 2018
ER -