Challenges in production and distribution of low-tonnage LNG
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Standard
2021.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Challenges in production and distribution of low-tonnage LNG
AU - Mikriukov, Pavel
N1 - embargoed until null
PY - 2021
Y1 - 2021
N2 - According to the global market analysis, there is an urgent need to switch to green energy, especially in the fuel and energy sector (utilities, production needs, special equipment, trucks, etc.). Therefore, LNG has been gaining popularity among companies in recent years. Small- scale LNG production can cope with most of these needs for example, it does not require much time for construction of the plant, high capital expenditures, large amount of space for construction, etc.). The basic scheme of LNG production is based on the throttle effect in the reduction unit realized by means of a throttle valve, but there are other ways of realizing this effect. The objective of this research work is to optimize and improve a low-tonnage liquefied natural gas plant based on the nitrogen cycle. This is done by selecting the optimum performance of the LNG plant operating modes, as well as analysing the efficiency of the reduction units and proposing possible options for improving the cooling process in it based on promising technologies (turbo expander and supersonic separator). The global market for low-tonnage liquefied natural gas production has revealed that the main factors for the choice of LNG technology are technological efficiency, reliability of design solutions, ease of plant maintenance, modularity and low investment costs. Moreover, the need to minimise operating costs should be considered. As a result of this analysis, a scheme based on an external isolated nitrogen cycle was chosen as the basic one for further study. Based on the analysis of performance indicators of LNG plant operating modes, based on the results of the calculation experiment, it was found that at flow rates above 5,500 Nm3/h, the gas cooling system cannot cope with the load, i.e., it does not work stably and with a large margin of error in the required values. The work assessed the technological efficiency of a number of possible modes of LNG plant control depending on the request of potential customers. It was found that the LNG plant, consisting of 6 lines of 5500 Nm3/h, has the greatest flexibility, which can provide both the minimum possible load of the plant, and the maximum, exceeding the required one by 30%. It has also been observed that turbo expander and supersonic separator have about the same potential. However, these values are within the margin of error. Considering the materials required for the 3S separator, special non-brittle and cold resistant materials will be required. It has also been observed that turbo expander and supersonic separator have about the same potential. However, these values are within the margin of error. Considering the materials required for the 3S separator, special non-brittle and cold resistant materials will be required.
AB - According to the global market analysis, there is an urgent need to switch to green energy, especially in the fuel and energy sector (utilities, production needs, special equipment, trucks, etc.). Therefore, LNG has been gaining popularity among companies in recent years. Small- scale LNG production can cope with most of these needs for example, it does not require much time for construction of the plant, high capital expenditures, large amount of space for construction, etc.). The basic scheme of LNG production is based on the throttle effect in the reduction unit realized by means of a throttle valve, but there are other ways of realizing this effect. The objective of this research work is to optimize and improve a low-tonnage liquefied natural gas plant based on the nitrogen cycle. This is done by selecting the optimum performance of the LNG plant operating modes, as well as analysing the efficiency of the reduction units and proposing possible options for improving the cooling process in it based on promising technologies (turbo expander and supersonic separator). The global market for low-tonnage liquefied natural gas production has revealed that the main factors for the choice of LNG technology are technological efficiency, reliability of design solutions, ease of plant maintenance, modularity and low investment costs. Moreover, the need to minimise operating costs should be considered. As a result of this analysis, a scheme based on an external isolated nitrogen cycle was chosen as the basic one for further study. Based on the analysis of performance indicators of LNG plant operating modes, based on the results of the calculation experiment, it was found that at flow rates above 5,500 Nm3/h, the gas cooling system cannot cope with the load, i.e., it does not work stably and with a large margin of error in the required values. The work assessed the technological efficiency of a number of possible modes of LNG plant control depending on the request of potential customers. It was found that the LNG plant, consisting of 6 lines of 5500 Nm3/h, has the greatest flexibility, which can provide both the minimum possible load of the plant, and the maximum, exceeding the required one by 30%. It has also been observed that turbo expander and supersonic separator have about the same potential. However, these values are within the margin of error. Considering the materials required for the 3S separator, special non-brittle and cold resistant materials will be required. It has also been observed that turbo expander and supersonic separator have about the same potential. However, these values are within the margin of error. Considering the materials required for the 3S separator, special non-brittle and cold resistant materials will be required.
KW - LNG
KW - Low-tonnage LNG
KW - Trunk gas pipeline
KW - Gas
KW - Supersonic Separator
KW - 3S-separator
KW - Throttle
KW - Expander
KW - turbo expander unit
KW - Gas liquefaction
KW - Technology comparison
KW - LNG
KW - Low-tonnage LNG
KW - Ferngasleitung
KW - Gas
KW - Überschallseparator
KW - 3S-Separator
KW - Drossel
KW - Expander
KW - Turboexpandereinheit
KW - Gasverflüssigung
KW - Technologievergleich
M3 - Master's Thesis
ER -