Abschätzung der Schaumeigenschaften durch Messung der rheologischen Materialeigenschaften und gezielte Beeinflussung der Schaummorphologie durch Anpassung der Materialformulierungen und Düsengeometrie in der Schaumextrusion
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Dissertation
Standard
2019.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Dissertation
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - BOOK
T1 - Abschätzung der Schaumeigenschaften durch Messung der rheologischen Materialeigenschaften und gezielte Beeinflussung der Schaummorphologie durch Anpassung der Materialformulierungen und Düsengeometrie in der Schaumextrusion
AU - Walluch, Matthias
N1 - gesperrt bis 14-01-2024
PY - 2019
Y1 - 2019
N2 - Bei der Herstellung von extrudierten Kunststoffschäumen mittlerer und hoher Dichte stehen grundsätzlich zwei unterschiedliche Möglichkeiten der Treibgaszufuhr zur Verfügung: Die physikalische und die chemische Schaumextrusion. Beim physikalischen Schäumen wird das Treibmittel in gasförmigen oder superkritischen Zustand in den Extruder gepumpt und beim chemischen Schäumen wird das benötigte Treibgas durch die Zersetzung eines chemischen Treibmittels (CBA) im Extruder bereitgestellt. Die erreichbare Schaumstruktur ist von vielen Faktoren wie unterschiedlichen Verarbeitungsparametern und der Zusammensetzung der geschäumten Materialformulierung abhängig. Im Rahmen dieser Arbeit wurden verschiedenen Materialformulierungen physikalisch und chemisch geschäumt um die unterschiedlichen Einflüsse der Matrixpolymere, der Art und Menge des eingesetzten Nukleierungsmittels und der Treibmittelmenge zu untersuchen. Des Weiteren wurden bei den Schäumversuchen unterschiedliche Runddüsen eingesetzt um den Einfluss der in die Schmelze eingebrachten Scher- und Dehndeformationsarbeit auf die Zellnukleierung zu untersuchen. Die als Matrix eingesetzten Polymere und Polymerblends wurden hinsichtlich ihres Scher- und Dehnverhaltens rheologisch charakterisiert. Dazu wurden Frequenztests und Kriech- Entspannungsversuche auf einem Kegel/Platte-Rheometer und Dehnviskositätsmessungen mittels eines SER-Moduls (Sentmanat Extensional Rheomter) durchgeführt. Zusätzlich zu diesen geläufigen Messungen kam in dieser Arbeit ein neuartiges Online Dehnrheometer zum Einsatz, mit dem es möglich ist die Kunststoffschmelze direkt während der Produktion am Extruder zu charakterisieren. Mit Hilfe dieses Rheometers wurden die Scher- und Dehnviskositäten der verarbeiteten Polymere unter Prozessbedingungen analysiert. Des Weiteren wurde der Einfluss des eingesetzten Treibgases und des chemischen Treibmittels auf die viskoelastischen Eigenschaften der Polymere untersucht. Eine Gegenüberstellung der unterschiedlichen rheologischen Daten mit den erzielten Schaumstrukturen soll dabei helfen die Zusammenhänge zwischen dem Materialverhalten des Matrixpolymers und der Schaumeigenschaften besser zu verstehen. Die Gegenüberstellung der mittels physikalischer und chemischer Schaumextrusion hergestellten Schaumstrukturen zeigt, dass sich Erkenntnisse von einem Schäumprozess nicht ohne weiteres auf den anderen übertragen lassen. Die physikalische Schaumherstellung ist zwar wesentlich komplexer, bietet dem Anwender jedoch weit mehr Freiheiten zur Regelung der Schaumeigenschaften. Das chemische Schäumen bietet hingegen einen wesentlich einfacheren Prozess, welcher gegenüber zahlreichen Einflüssen, sei es die Materialformulierung als auch die Prozessführung betreffend, weitaus unempfindlicher ist. Die Möglichkeiten zur gezielten Steuerung der Schaumeigenschaften sind dadurch wesentlich geringer als beim physikalischen Schäumen.
AB - Bei der Herstellung von extrudierten Kunststoffschäumen mittlerer und hoher Dichte stehen grundsätzlich zwei unterschiedliche Möglichkeiten der Treibgaszufuhr zur Verfügung: Die physikalische und die chemische Schaumextrusion. Beim physikalischen Schäumen wird das Treibmittel in gasförmigen oder superkritischen Zustand in den Extruder gepumpt und beim chemischen Schäumen wird das benötigte Treibgas durch die Zersetzung eines chemischen Treibmittels (CBA) im Extruder bereitgestellt. Die erreichbare Schaumstruktur ist von vielen Faktoren wie unterschiedlichen Verarbeitungsparametern und der Zusammensetzung der geschäumten Materialformulierung abhängig. Im Rahmen dieser Arbeit wurden verschiedenen Materialformulierungen physikalisch und chemisch geschäumt um die unterschiedlichen Einflüsse der Matrixpolymere, der Art und Menge des eingesetzten Nukleierungsmittels und der Treibmittelmenge zu untersuchen. Des Weiteren wurden bei den Schäumversuchen unterschiedliche Runddüsen eingesetzt um den Einfluss der in die Schmelze eingebrachten Scher- und Dehndeformationsarbeit auf die Zellnukleierung zu untersuchen. Die als Matrix eingesetzten Polymere und Polymerblends wurden hinsichtlich ihres Scher- und Dehnverhaltens rheologisch charakterisiert. Dazu wurden Frequenztests und Kriech- Entspannungsversuche auf einem Kegel/Platte-Rheometer und Dehnviskositätsmessungen mittels eines SER-Moduls (Sentmanat Extensional Rheomter) durchgeführt. Zusätzlich zu diesen geläufigen Messungen kam in dieser Arbeit ein neuartiges Online Dehnrheometer zum Einsatz, mit dem es möglich ist die Kunststoffschmelze direkt während der Produktion am Extruder zu charakterisieren. Mit Hilfe dieses Rheometers wurden die Scher- und Dehnviskositäten der verarbeiteten Polymere unter Prozessbedingungen analysiert. Des Weiteren wurde der Einfluss des eingesetzten Treibgases und des chemischen Treibmittels auf die viskoelastischen Eigenschaften der Polymere untersucht. Eine Gegenüberstellung der unterschiedlichen rheologischen Daten mit den erzielten Schaumstrukturen soll dabei helfen die Zusammenhänge zwischen dem Materialverhalten des Matrixpolymers und der Schaumeigenschaften besser zu verstehen. Die Gegenüberstellung der mittels physikalischer und chemischer Schaumextrusion hergestellten Schaumstrukturen zeigt, dass sich Erkenntnisse von einem Schäumprozess nicht ohne weiteres auf den anderen übertragen lassen. Die physikalische Schaumherstellung ist zwar wesentlich komplexer, bietet dem Anwender jedoch weit mehr Freiheiten zur Regelung der Schaumeigenschaften. Das chemische Schäumen bietet hingegen einen wesentlich einfacheren Prozess, welcher gegenüber zahlreichen Einflüssen, sei es die Materialformulierung als auch die Prozessführung betreffend, weitaus unempfindlicher ist. Die Möglichkeiten zur gezielten Steuerung der Schaumeigenschaften sind dadurch wesentlich geringer als beim physikalischen Schäumen.
KW - foam extrusion
KW - chemical foaming
KW - physical foaming
KW - cell nucleation
KW - rheology
KW - online-rheologie
KW - inline-Rheologie
KW - Schaumextrusion
KW - chemisches Schäumen
KW - physikalisches Schäumen
KW - Zellnukleierung
KW - Rheologie
KW - Online-Rheologie
KW - Inline-Rheologie
U2 - 10.34901/mul.pub.2024.039
DO - 10.34901/mul.pub.2024.039
M3 - Dissertation
ER -