Ab initio study of chemical disorder as an effective stabilizing mechanism of bcc-based TiAl(+Mo)
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Physical review materials , Jahrgang 24.020, Nr. 10, 103604, 02.10.2020.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Ab initio study of chemical disorder as an effective stabilizing mechanism of bcc-based TiAl(+Mo)
AU - Abdoshahi, Neda
AU - Spörk-Erdely, Petra
AU - Friák, Martin
AU - Mayer, Svea
AU - Šob, Mojmír
AU - Holec, David
N1 - Publisher Copyright: © 2020 American Physical Society.
PY - 2020/10/2
Y1 - 2020/10/2
N2 - To shed a new light on the complex microstructural evolution in the Ti-Al-Mo system, we employ ab initio calculations to study bcc-fcc structural transformations of ordered βo-TiAl(+Mo) and disordered β-TiAl(+Mo) to ordered γ-TiAl(+Mo) and hypothetically assumed disordered γdis-TiAl(+Mo) alloys, respectively. In particular, tetragonal (Bain's path) and trigonal transformations are combined with the concept of special quasirandom structures (SQS) and examined. Our calculations of the ordered phases show that the βo→γ tetragonal transformation of TiAl is barrierless, i.e., proceeds spontaneously, reflecting the genuine structural instability of the βo phase. Upon alloying of ≈7.4at.% Mo, a small barrier between βo and γ-related local energy minima is formed. Yet a higher Mo content of ≈9at.% leads to an opposite-direction barrierless transformation γ→βo, i.e., fully stabilizing the βo phase. Considering the disordered phases, the β-Ti0.5Al0.5-xMox and γdis-Ti0.5Al0.5-xMox are energetically very close. Importantly, for all here-considered compositions up to 11at.% of Mo, a small energy barrier separates β-TiAl(+Mo) and γdis-TiAl(+Mo) energy minima. Finally, a trigonal path was studied as an alternative transformation connecting disordered β and γdis-TiAl phases, but it turns out that it exhibits an energy barrier over 60meV/at. which, in comparison to the Bain's path with 9meV/at. barrier, effectively disqualifies the trigonal transformation for the TiAl system.
AB - To shed a new light on the complex microstructural evolution in the Ti-Al-Mo system, we employ ab initio calculations to study bcc-fcc structural transformations of ordered βo-TiAl(+Mo) and disordered β-TiAl(+Mo) to ordered γ-TiAl(+Mo) and hypothetically assumed disordered γdis-TiAl(+Mo) alloys, respectively. In particular, tetragonal (Bain's path) and trigonal transformations are combined with the concept of special quasirandom structures (SQS) and examined. Our calculations of the ordered phases show that the βo→γ tetragonal transformation of TiAl is barrierless, i.e., proceeds spontaneously, reflecting the genuine structural instability of the βo phase. Upon alloying of ≈7.4at.% Mo, a small barrier between βo and γ-related local energy minima is formed. Yet a higher Mo content of ≈9at.% leads to an opposite-direction barrierless transformation γ→βo, i.e., fully stabilizing the βo phase. Considering the disordered phases, the β-Ti0.5Al0.5-xMox and γdis-Ti0.5Al0.5-xMox are energetically very close. Importantly, for all here-considered compositions up to 11at.% of Mo, a small energy barrier separates β-TiAl(+Mo) and γdis-TiAl(+Mo) energy minima. Finally, a trigonal path was studied as an alternative transformation connecting disordered β and γdis-TiAl phases, but it turns out that it exhibits an energy barrier over 60meV/at. which, in comparison to the Bain's path with 9meV/at. barrier, effectively disqualifies the trigonal transformation for the TiAl system.
UR - http://www.scopus.com/inward/record.url?scp=85094142110&partnerID=8YFLogxK
U2 - 10.1103/PhysRevMaterials.4.103604
DO - 10.1103/PhysRevMaterials.4.103604
M3 - Article
VL - 24.020
JO - Physical review materials
JF - Physical review materials
SN - 2475-9953
IS - 10
M1 - 103604
ER -