A new floating sensor array to detect electric near fields of beating heart preparations

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

  • Ernst Hofer
  • Franz Keplinger
  • T. Wiener
  • D. Sanchez-Quintana
  • V. Climent
  • Gernot Plank

Externe Organisationseinheiten

  • Technische Universität Graz
  • University of Extramadura
  • Medizinische Universität Graz
  • Technische Universität Wien

Abstract

A new flexible sensor for in vitro experiments was developed to measure the surface potential, Φ, and its gradient, E (electric near field), at given sites of the heart. During depolarisation, E describes a vector loop from which direction and magnitude of local conduction velocity θ can be computed. Four recording silver electrodes (14 μm × 14 μm) separated by 50 μm, conducting leads, and solderable pads were patterned on a 50 μm thick polyimide film. The conductive structures, except the electrodes, were isolated with polyimide, and electrodes were chlorided. Spacer pillars mounted on the tip fulfil two functions: they keep the electrodes 70 μm from the tissue allowing non-contact recording of Φ and prevent lateral slipping. The low mass (9.1 mg) and flexibility (6.33 N/m) of the sensor let it easily follow the movement of the beating heart without notable displacement. We examined the electrodes on criteria like rms-noise of Φ, signal-to-noise ratio of Φ and E, maximum peak-slope recording dΦ/dt, and deviation of local activation time (LAT) from a common signal and obtained values of 24-28 μV, 46 and 41 dB, 497-561 V/s and no differences, respectively. With appropriate data acquisition (sampling rate 100 kHz, 24-bit), we were able to record Φ and to monitor E and θ on-line from beat-to-beat even at heart rates of 600 beats/min. Moreover, this technique can discriminate between uncoupled cardiac activations (as occur in fibrotic tissue) separated by less than 1 mm and 1 ms.

Details

OriginalspracheEnglisch
Seiten (von - bis)2232-2239
Seitenumfang8
FachzeitschriftBiosensors and Bioelectronics
Jahrgang21
Ausgabenummer12
DOIs
StatusVeröffentlicht - 15 Juni 2006
Extern publiziertJa