
Chair of Energy Network Technology

Master's Thesis

Time-Series Forecasting of an Electric
Steel Mill's Power Demand

                 -                 
A Neural Network Approach

Sebastian Halbwirth, BSc
May 2022

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute
wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten
wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 08.05.2022

Unterschrift Verfasser/in
Sebastian Halbwirth

Abstract

ABSTRACT

When wanting to lower the atmospheric carbon dioxide concentration, it is of interest to look

at the iron and steel industry, as especially the blast furnace process with its large coal

consumption is a significant emittent. Electric steel mills, on the other hand, use electricity

and natural gas to melt scrap metal into steel. Demand side management can thereby help to

integrate renewable energy sources and increase energy efficiency. In this context, load

forecasting is an important tool to know the future energy demand of such an industrial

process.

The purpose of this work is to develop a machine learning model that can predict the power

demand of an electric steel mill’s primary aggregates as accurately as possible. Due to the high

power demand of the electric arc furnace, a focus is laid on this aggregate.

In the course of this thesis, literature research was conducted about machine learning

algorithms, their advantages and disadvantages, and their use cases. In particular, machine

learning methods used in energy system modelling were researched. A suitable method was

then chosen, and based on this method, multiple models were created to forecast the

aggregates’ power demand in a time-resolved manner.

The method chosen for predicting the power demand was a neural network. Two types of

neural networks were compared: long short-term memory networks and standard

feedforward networks. Altogether six models were created, of which five are based on long

short-term memory networks.

The results show that long short-term memory networks can be used to predict the power

demand of an electric arc furnace. By stochastically generating input parameters and

realigning the predicted and actual batches of the electric arc furnace process, the model can

be implemented in and used for demand side management applications.

Kurzfassung

KURZFASSUNG

Wenn die Kohlendioxidkonzentration in der Atmosphäre gesenkt werden soll, muss die Eisen-

und Stahlindustrie berücksichtigt werden, da diesbezüglich insbesondere der

Hochofenprozess mit seinem hohen Kohleverbrauch ein bedeutender Emittent ist.

Elektrolichtbogenöfen hingegen verwenden Strom und Erdgas um Metallschrott zu Stahl zu

schmelzen. Dabei kann Demand Side Management helfen, erneuerbare Energiequellen zu

integrieren und die Energieeffizienz zu erhöhen. In diesem Zusammenhang ist die

Lastprognose ein wichtiges Instrument zur Ermittlung des künftigen Energiebedarfs.

Ziel dieser Arbeit ist es, ein Machine-Learning-Modell zu entwickeln, das den Leistungsbedarf

der Primäraggregate eines Elektrostahlwerks so genau wie möglich prognostizieren kann.

Aufgrund des hohen Leistungsbedarfs des Elektrolichtbogenofens wird ein Schwerpunkt auf

dieses Aggregat gelegt.

Im Rahmen dieser Arbeit wurde eine Literaturrecherche über Algorithmen des maschinellen

Lernens, deren Vor- und Nachteile und deren Einsatz durchgeführt. Insbesondere wurden

Machine-Learning Verfahren recherchiert, die in der Energiesystemmodellierung eingesetzt

werden. Ein geeignetes Verfahren wurde ausgewählt, mit dem mehrere Modelle zur

zeitaufgelösten Vorhersage des Leistungsbedarfs der Aggregate erstellt wurden.

Als Prognosemethode wurde ein neuronales Netz ausgewählt. Es wurden dabei zwei Arten

von neuronalen Netzen verglichen: Long Short-Term Memory Netze und Feedforward-Netze.

Die Ergebnisse zeigen, dass Long Short-Term Memory Netze zur Vorhersage des

Leistungsbedarfs eines Lichtbogenofens verwendet werden können. Durch die stochastische

Generierung von Inputparametern und die zeitliche Synchronisation der vorhergesagten und

tatsächlichen Chargen des Lichtbogenofens kann das Modell als Basis für eine Optimierung in

Demand Side Management Anwendungen eingesetzt werden.

Contents

CONTENTS

Nomenclature .. I

List of Figures ... III

List of Tables .. VI

1 Introduction ... 7

1.1 Objective ... 8

1.2 Methodology ... 8

1.3 Steel and Rolling Mill Marienhütte ... 8

2 Theoretical Background – Modelling Methods for Forecasting 10

2.1 Machine Learning ... 10

2.1.1 Operating Principle ... 10

2.1.2 Regression Analysis .. 12

2.1.3 Decision Trees .. 16

2.1.4 Naïve Bayes .. 18

2.1.5 Support Vector Machines ... 19

2.1.6 Neural Networks .. 22

2.1.7 Clustering.. 27

2.1.8 Reinforcement Learning ... 30

2.2 Energy System Modelling ... 32

2.2.1 Overview of Forecasts in the Energy Industry ... 33

2.2.2 Electrical Energy Forecasts in Steel Mills ... 35

2.2.3 Electrical Energy Forecasts with a Focus on Neural Networks 37

3 Empirical Part .. 43

3.1 Hardware and Software .. 44

3.2 Grid Search .. 44

3.3 Perfect Forecast using an LSTM .. 45

3.3.1 Data Preparation and Model Construction .. 47

Contents

3.4 Perfect Forecast using an MLP.. 54

3.4.1 Data Preparation and Model Construction .. 55

3.5 Recursive Forecast using an LSTM .. 56

3.5.1 Data Preparation and Model Construction .. 57

3.6 Forecast with Delayed Input using an LSTM ... 58

3.6.1 Data Preparation Model Construction ... 59

3.7 Multistep Forecast using an LSTM .. 60

3.7.1 Data Preparation and Model Construction .. 61

3.8 Forecast with Phased Input using an LSTM .. 61

3.8.1 Data Preparation and Model Construction .. 62

4 Results ... 64

4.1 Perfect Forecast using an LSTM .. 66

4.1.1 Electric Arc Furnace .. 66

4.1.2 Ladle Furnace ... 67

4.1.3 Ladle Heaters .. 67

4.1.4 Dedusting ... 69

4.2 Perfect Forecast using an MLP.. 69

4.3 Recursive Forecast using an LSTM .. 70

4.4 Forecast with Delayed Input using an LSTM ... 72

4.5 Multistep Forecast using an LSTM .. 73

4.6 Forecast with Phased Input using an LSTM .. 74

5 Discussion .. 79

6 Summary and Future Outlook .. 82

7 Bibliography .. 84

8 Appendix ... 91

8.1 Grid Search: Perfect Forecast LSTM – EAF .. 91

8.2 Final Model: Perfect Forecast LSTM – EAF ... 94

Nomenclature

I

NOMENCLATURE

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

ASHA Asynchronous Successive Halving

CNN Convolutional Neural Network

CO2 Carbon Dioxide

D Dedusting

DBSCAN Density-Based Spatial Clustering of Applications with Noise

dCor Distance Correlation

DNN Deep Neural Network

DSM Demand Side Management

EAF Electric Arc Furnace

FI Feature Importance

GB Gigabyte

GJ Gigajoule

KS Kolmogorov-Smirnov

LF Ladle Furnace

LH Ladle Heater

LSTM Long Short-Term Memory

LTLF Long-Term Load Forecasting

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

min Minute

MLP Multilayer Perceptron

MSE Mean Squared Error

Nomenclature

II

MTLF Medium-Term Load Forecasting

MW Megawatt

MWh Megawatt Hour

PI Permutation Importance

PLS Partial Least Squares 𝑟 Correlation Coefficient 𝑅2 Coefficient of Determination

RAGS Random Approximated Greedy Search

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SHAP Shapley Additive Explanations

SSR Regression Sum of Squares

SSTO Total Sum of Squares

STLF Short-Term Load Forecasting

SVM Support Vector Machine

t Ton

List of Figures

III

LIST OF FIGURES

Figure 2-1: Comparison between underfitting and overfitting machine learning algorithms,

with the orange line showing the actual data and the the blue line showing the

predictions [14] .. 12

Figure 2-2: A simple decision tree (own illustration based on [21]) .. 16

Figure 2-3: A linear multivariate decision tree [18] ... 18

Figure 2-4: Construction of an SVM as a flat-affine 1-dimensional subspace [31] 20

Figure 2-5: Application of a kernel function to a set of 2-dimensional data [12] 22

Figure 2-6: A single-layer neural network [18]... 23

Figure 2-7: A feedforward neural network with two hidden, one input, and one output layer

[12] ... 24

Figure 2-8: Demonstration of the local minima and the learning rate via a gradient descent

algorithm applied to an error function [32] ... 25

Figure 2-9: An overview of different neural network architectures (own illustration based on

[35]) .. 26

Figure 2-10: A LSTM cell containing three gates and using cell and hidden states [38].......... 27

Figure 2-11: Evolution of k-Means over iterations: the black crosses indicate centre positions

(centroids); the data points are marked depending on the closest centre as a circle or

dot [18] ... 28

Figure 2-12: Plotting the inertia over the number of clusters in an exemplary dataset [14] .. 29

Figure 2-13: A graphical representation of finding one cluster via DBSCAN from a) to d): black

dots are identified core points, grey dots are border points and white dots are noise

points with the red circle demonstrating the 𝜺 of the points [21] 30

Figure 2-14: Interactions between the learning agent and the environment [18] 31

Figure 3-1: Schematic representation of how a Perfect Forecast LSTM operates (own

illustration based on [62]) .. 46

Figure 3-2: Scaled parameters used for modelling the EAF, time period: 1 day (own illustration)

 .. 48

Figure 3-3: MSE over training epochs for the Perfect Forecast LSTM of the EAF (own

illustration) ... 50

Figure 3-4: Scaled parameters used for modelling the LF (own illustration) 50

Figure 3-5: MSE over training epochs for the Perfect Forecast LSTM of the LF (own illustration)

 .. 51

Figure 3-6: Scaled parameters used for modelling the vertical LH (own illustration) 51

List of Figures

IV

Figure 3-7: MSE over training epochs for the Perfect Forecast LSTM of the vertical LH (own

illustration) ... 52

Figure 3-8: Scaled parameters used for modelling the booster fire (own illustration) 52

Figure 3-9: MSE over training epochs for the Perfect Forecast LSTM of the booster fire (own

illustration) ... 53

Figure 3-10: MSE over training epochs for the Perfect Forecast LSTM of D (own illustration)

 .. 53

Figure 3-11: Scaled parameters used for modelling D (own illustration) 54

Figure 3-12: Schematic representation of how a Perfect Forecast MLP operates (own

illustration based on [62]) .. 55

Figure 3-13: MSE over training epochs for the Perfect Forecast MLP (own illustration) 56

Figure 3-14: Schematic representation of how a Recursive Forecast operates (own illustration

based on [62]) .. 57

Figure 3-15: MSE over training epochs for the Recursive Forecast LSTM (own illustration) .. 58

Figure 3-16: Schematic representation of how a forecast with delayed input operates (own

illustration based on [62]) .. 58

Figure 3-17: MSE over training epochs for the Delayed Input Forecast (1 week) (own

illustration) ... 59

Figure 3-18: MSE over training epochs for the Delayed Input Forecast (1 batch) (own

illustration) ... 60

Figure 3-19: Schematic representation of how a Multistep Forecast operates (own illustration

based on [62]) .. 60

Figure 3-20: MSE over training epochs for the Multistep Forecast (own illustration) 61

Figure 3-21: Schematic representation of how a Phased Input Forecast operates (own

illustration based on [62]) .. 62

Figure 3-22: MSE over training epochs for the Phased Input Forecast (own illustration) 63

Figure 4-1: Predicted and true power demand of the EAF using a Perfect Forecast LSTM (own

illustration) ... 66

Figure 4-2: Predicted and true power demand of the LF using a Perfect Forecast LSTM (own

illustration) ... 67

Figure 4-3: Predicted and true power demand of the vertical LH using a Perfect Forecast LSTM

(own illustration) .. 68

Figure 4-4: Predicted and true power demand of the booster fire LH using a Perfect Forecast

LSTM (own illustration) .. 68

List of Figures

V

Figure 4-5: Predicted and true power demand of the D using a Perfect Forecast LSTM (own

illustration) ... 69

Figure 4-6: Predicted and true power demand of the EAF using a Perfect Forecast MLP (own

illustration) ... 70

Figure 4-7: Predicted and true power demand of the EAF using an LSTM without input

parameters (own illustration) .. 71

Figure 4-8: Predicted and true power demand of the EAF using a Recursive Forecast (own

illustration) ... 72

Figure 4-9: Predicted and true power demand of the EAF using a forecast with delayed input

(1 week) (own illustration) ... 72

Figure 4-10: Predicted and true power demand of the EAF using a forecast with delayed input

(1 batch) (own illustration) .. 73

Figure 4-11: Predicted and true power demand of the EAF using a Multistep Forecast (own

illustration) ... 74

Figure 4-12: Predicted and true power demand of the EAF using a Phased Input Forecast (own

illustration) ... 75

Figure 4-13: Predicted and true power demand of the EAF using a Phased Input Forecast with

mean values as input parameters (own illustration) ... 75

Figure 4-14: Predicted and true power demand of the EAF using a Phased Input Forecast with

stochastically generated input (own illustration) .. 76

Figure 4-15: Predicted and true power demand of the EAF using a Phased Input Forecast with

stochastically generated input, batches are aligned every 5 batches (own illustration)

 .. 77

Figure 4-16: Predicted and true power demand of the EAF using a Phased Input Forecast with

stochastically generated input, where the batches are aligned after every batch (own

illustration) ... 78

Figure 5-1: Time series of EAF’s power demand between the 5th and 8th of June 2021, with a
regular production downtime on Sunday the 6th of June (own illustration) 80

List of Tables

VI

LIST OF TABLES

Table 2-1: Notable papers about forecasting methods in the iron and steel and energy industry

 .. 32

Table 4-1: Overview of different error measures for the forecasting types 65

Introduction

PAGE | 7

1 INTRODUCTION

Since the Industrial Revolution, temperatures have been rising and the scientific community

agrees that human activities are primarily responsible for this trend. [1] In the past decade,

decarbonisation has therefore been a focus of climate researchers with the goal of lowering

the worldwide carbon dioxide (CO2) emissions. The path towards decarbonisation can be

achieved in different ways by, for example, using synthetic fuels or decarbonised electricity

and increasing energy efficiency in industrial settings. [2]

According to the Austrian Federal Environment Agency [3], the production of iron and steel

contributed to 12.9% of Austria’s total greenhouse gas emissions in 2019, which makes this

sector an essential lever for decreasing CO2 emissions and reducing the industrial impact on

climate. While the larger part of Austrian steel production is concentrated at two sites using

blast furnaces, about 10% [3] of the total steel production is accounted for by electric arc

furnaces (EAFs). The specific energy expenditure of EAFs (3.6 -5.9 GJ/t [4]) is lower than that

of other processes, with the majority of it being used to melt steel scrap using electricity. Due

to the limited use of coal, the CO2 emissions of EAFs are also lower compared to those of blast

furnaces. [3, 4] This presents EAFs as a crucial alternative to the blast furnace process with

regard to decarbonising the metallurgy sector. One limitation of the EAF process is the high

demand for electricity. [4]

Regarding this demand for electricity, load forecasts are an essential tool of industrial plants

in the metallurgy sector to better manage their energy allocation, optimise their energy

sources, and ensure their economic operation. A high-quality energy demand forecast can

directly impact the economics and reliability of and for companies. Additionally, demand side

management (DSM) can increase the operational flexibility of industrial production processes,

reinforce the integration of renewable energies, and improve energy efficiency. [5]

Historically, conventional methods like statistical analysis and regression-based approaches

have been used for forecasting purposes. Despite them still being relevant today, these

models often cannot capture complex dependencies in non-linear data. In more recent times,

Artificial Intelligence (AI) based methods have established themselves when dealing with

complex forecasting problems [6] and have outperformed conventional methods [7]. AI has

been utilised to forecast loads in the energy industry, including smart grids and buildings, next

day load demands and loads in distributed systems. [8]

The work of this thesis was done as part of the project DSM_OPT, carried out by the Chair of

Energy Technology at Montanuniversität Leoben. DSM_OPT focuses on the optimisation of

industrial energy systems through demand side management. In this project, the aim is to

Introduction

PAGE | 8

develop a decision support system toolbox to increase energy efficiency, incorporate time-

based tariffs, and integrate the fast-changing markets.

1.1 Objective

This Master’s thesis aimed to create machine learning models that are able to predict the

power demand of the primary aggregates in the electric steel mill Marienhütte, located in

Graz. The models created should be able to predict multiple time steps into the future. The

time steps should thereby cover at least the length of one batch, of which the median time is

41 min, and ideally one week.

The research question was thus to find out what kind of model, more precisely method, could

be used to accurately determine the future power usage of different steel mill aggregates.

Using parameters measured at Marienhütte, the task was to create a machine learning model

for the EAF that can predict the power usage as accurately as possible. The EAF was chosen

due to it being the largest energy consumer of the steel mill; however, the chosen methods

for the EAF were also applied to other aggregates including the ladle furnace, ladle heaters,

and dedusting to see whether power forecasts using AI are possible.

1.2 Methodology

To answer the research question, it was essential to get an overview of the available methods

of modelling data and forecasting energy demand. For this, literature research has been

conducted, where different machine learning methods were described. Additionally, different

use cases of energy system models in the iron and steel and energy industry were examined

to get a more detailed overview of the industry’s state of the art.

Based on the findings of the literature research, adequate forecasting methods were adapted

and used to predict the power demand of the primary aggregates. Previously measured data

at Marienhütte was prepared, where, for example, missing values and outliers were detected

and removed, and data was labelled. This preparation depended on the aggregate modelled

and the forecasting method used.

The processed data was then used to forecast the power demand of the primary aggregates

by creating different models in the programming language Python. The approach of preparing

the data and creating these models was documented in this thesis.

1.3 Steel and Rolling Mill Marienhütte

Marienhütte is a company located in Graz and is the only producer of concrete steel both in

the form of billets and wire rods in Austria. The plant consists of a steel and a rolling mill. [9]

Introduction

PAGE | 9

The focus in this thesis lies on the steel mill and its main aggregates that are used during steel

production: the electric arc furnace (EAF), ladle furnace (LF), ladle heaters (LHs), and dedusting

(D). As the power demand of the continuous casting system (CC) was stable and relatively

small, this aggregate was not modelled. Relevant data of these aggregates is consistently

measured. For the purpose of this thesis, data has been extracted from past measurements

of over 200 parameters between May and July 2021. These parameters can be either of

continuous nature (e.g. melting temperature) or of logical nature (e.g. whether a valve is

closed or not). Chapter 3 contains further information on these parameters.

Theoretical Background – Modelling Methods for Forecasting

PAGE | 10

2 THEORETICAL BACKGROUND – MODELLING METHODS FOR

FORECASTING

Forecasting makes the fundamental assumption that the future shares a similar pattern or

distribution to historical data. AI has been used for energy forecasting for several decades;

however, due to its complexity and algorithm speed, it has seen a surge in recent years with

advancements in computing power. Load forecasting is a vital subset of energy forecasting,

and has been used for investigating the development of power demand for over a century

(long-term load forecasts), or to decide when, where and how much electricity demand will

grow (spatial load forecasting), or to pursue operational excellence (short-term load

forecasting). [10]

The following sections describe different basic methods used in machine learning and

statistical analysis to model future energy systems. Additionally, use cases in the iron and steel

and energy industry of these and more advanced methods will be summarised. This literature

research serves as a foundation for the subsequent practical part, in which models are created

to forecast the power demand of the steel mill Marienhütte using previously collected and

prepared data.

2.1 Machine Learning

With advances in computer technology, it is currently possible to store and process large

amounts of data. For a computer to carry out any task requires a set of specific instructions,

in other words, the implementation of an algorithm that defines rules which need to be

followed. Machine learning, an umbrella term for these algorithms that help describe or make

decisions or predictions about data, is a kind of AI. A prerequisite for intelligence is that a

system can learn, especially in a changing environment. The advantage of this is that the

system designer does not need to foresee the future and provide solutions for all possible

situations because the system is able to learn independently. Nowadays, this trend is helping

people worldwide in numerous ways, whether that is in vision, speech recognition, or robotics.

[11]

2.1.1 Operating Principle

Machine learning is a field of expertise that has grown enormously in the past decade and will

continue to do so in the foreseeable future. Therefore, it is crucial to get an overview of

existing types of machine learning methods, different kinds of models, how to validate one’s
models and problems that arise when working with machine learning algorithms.

Theoretical Background – Modelling Methods for Forecasting

PAGE | 11

Machine learning methods can be organised based on the outcome of the algorithm. The

three most well-known and acknowledged algorithm types are supervised learning,

unsupervised learning, and reinforcement learning. In supervised learning, the algorithm

creates a function that maps inputs to desired outputs by looking at several input-output

examples of the function. Algorithms that fall into this group are decision trees, regression

analysis, support vector machines (SVMs), Naïve Bayes classifiers and neural networks.

Unsupervised learning models a set of inputs by extracting structural information from the

data samples and finding patterns; however, labelled examples are not given. It includes

algorithms such as different kinds of clustering and dimensionality reduction. In reinforcement

learning, the algorithm learns a policy of how to act, and its environment provides feedback.

This machine learning method is expanded further in section 2.1.8. [11, 12]

To develop well-functioning machine learning models, proper evaluation is key. This

evaluation generally occurs by splitting the available data into training, validation, and test

sets. A common practice is using approximately 70% of the data points for training, 15% for

validation, and 15% for testing. While the training set can then be used for model training, the

validation set can be used for tuning the model’s parameters, and the test set can be used for

model evaluation. Because of this, it is crucial that the test set must not be exposed to the

model before the final testing. [13]

Machine learning, in general, aims to correctly approximate a function that associates input

elements with output elements; therefore, it is essential to consider the so-called bias-

variance trade-off. A training set used in supervised learning methods represents the global

distribution, but it is not exhaustive. Hence, it is vital to consider fitting the function to the

data while still being flexible to unknown inputs. With this comes the danger of underfitting

or overfitting the data. Underfitting means that the model cannot capture dynamics from the

training set; overfitting means that the model is fit (almost) perfectly to the training data.

However, in the latter case, with an unknown input, the prediction error can be high. Figure

2-1 shows a graphical comparison between the terms over- and underfitting, where the

orange line represents the test or validation data, and the blue line represents the fitted

model. [14] Overfitting relates to high variance in the model. To fight it, the variance has to be

reduced by increasing regularisation, obtaining larger data sets, decreasing the number of

features and more. On the other hand, underfitting relates to having a high bias, which can be

reduced by decreasing regularisation and using more features. [15]

Fighting overfitting does generally not help in fighting underfitting. A balance must be

reached; hence it is being called a trade-off. A generic rule of thumb is that a residual error,

meaning a difference between the actual and predicted data points, is always necessary for

avoiding overfitting, while a model that shows a validation accuracy of 99.99% is certainly

Theoretical Background – Modelling Methods for Forecasting

PAGE | 12

overfitted. Because of these reasons, it is crucial to analyse the model’s performance by

looking at the training error and cross-validation error simultaneously. The training error

signifies the amount of bias and is determined by whether the model fits the training data

itself. Cross-validation error can signify high variance and is usually determined by modelling

the validation dataset. [14, 15]

Figure 2-1: Comparison between underfitting and overfitting machine learning algorithms, with the orange

line showing the actual data and the blue line showing the predictions [14]

Different methods are often combined or used in parallel to improve the accuracy of machine

learning models. Two major approaches in this sense are hybrid and ensemble models. Hybrid

models integrate machine learning methods with other machine learning or soft

computing/optimisation methods, where the output of one model is essentially fed to the

next. The models are dependent on each other. In a similar sense, ensemble models also

combine weaker models through various grouping techniques such as bagging or boosting;

however, these models work independently and in parallel of one another and generally make

use of more than one machine learning algorithm. [16] The following sections outline different

algorithms used in the space of machine learning.

2.1.2 Regression Analysis

Usually, when comparing two variables in a dataset, questions arise about the relationships

between these variables. These questions can be answered using regression (analysing

whether there is a relationship) and correlation (how strong the relationship is). [17]

2.1.2.1 Simple Linear Regression

Linear models are the simplest parametric methods, and even nonlinear problems can be

solved using them, by recasting them through a process called linearisation. A parametric

approach assumes that the sample obeys a given model, defined by a small number of

parameters. [14, 18] The simplest linear model involves only one independent variable 𝑥 (2-1).

While the dependent variable 𝑦 is the variable to be described by data, variables which are

Underfitting Normal fitting Overfitting

Theoretical Background – Modelling Methods for Forecasting

PAGE | 13

thought to predict, explain and provide information on this dependent variable are called

independent. An example of a simple linear regression is: 𝑦̂(𝑥) = 𝛼0 + 𝛼 ∙ 𝑥 (2-1)

where 𝛼0 is the 𝑦 -intercept and 𝛼 is the coefficient for the regression line 𝑦̂(𝑥). To fit the

data to the model, the parameters are frequently found using the least squares approach,

where the function 𝐿 (2-2) is minimised:

𝐿 = ∑(𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1

(2-2)

with 𝑒𝑖 = (𝑦𝑖 − 𝑦̂𝑖) being the observed residual for the 𝑖𝑡ℎ observation. The least squares

estimation uses the criterion that the solution results in the smallest possible sum of squared

deviations of the observed 𝑦𝑖 from the estimates of their true means. [19]

An important metric used in regressions is the coefficient of determination, denoted as 𝑅2. It

is the proportion of the regression sum of squares (SSR) to the total sum of squares (SSTO):

𝑅2 = 𝑆𝑆𝑅𝑆𝑆𝑇𝑂 = 1 − 𝑆𝑆𝐸𝑆𝑆𝑇𝑂 = 1 − ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑚𝑖=1∑ (𝑦𝑖 − 𝑦𝑖̅)2𝑚𝑖=1
(2-3)

SSE is the error sum of squares, which defines how much the data points 𝑦𝑖 vary around the

estimated regression line 𝑦̂𝑖. 𝑦𝑖̅ is the sample mean. [14, 19] 𝑅2 measures the variation on the prediction, which is explained by the dataset, and always

ranges from 0 to 1. The higher the correlation of determination, the better; an 𝑅2 of 1 would

mean that the independent variables explain 100% of the dependent data. In the case of a

simple linear regression, 𝑅2 is also the square of the correlation coefficient 𝑟. [19]

2.1.2.2 Multiple Linear Regression

In a dataset of not just a single scalar value 𝑥 but a vector with multiple parameters 𝑥𝑖, each

vector is associated with a value 𝑦. The regression 𝑦̂ then takes this form:

𝑦̂ = 𝛼0 + ∑ 𝛼𝑖 ∙ 𝑥𝑖𝑚
𝑖=1

(2-4)

with 𝛼𝑖 being the coefficients of the resulting hyperplane. The least squares estimation is also

used in multiple linear regression, and while it is the most common loss function, there are

also others like the Ridge, Lasso and ElasticNet function. [14, 19] The reason for not always

using the least squares method is that it sometimes is not a perfectly robust (meaning

Theoretical Background – Modelling Methods for Forecasting

PAGE | 14

effective) solution. A common problem is collinearity, which describes the phenomenon in

which multiple independent variables are (almost) exactly correlated with each other.

Collinearity is a problem as it inflates the variance of regression parameters and can

potentially wrongly identify relevant predictors in a statistical model. [20]

2.1.2.3 Polynomial Regression

The least squares approach is not limited to linear models but can also be used on polynomials,

as long as the coefficients enter the model linearly. If there is certain know-how of a domain,

that a model is quadratic or periodic, this knowledge should be used. [21]

In a polynomial regression model with one variable (a quadratic model): 𝑦 = 𝛼0 + 𝛼1 ∙ 𝑥 + 𝛼2 ∙ 𝑥2 (2-5)

the coefficients 𝛼1and 𝛼2 are called linear effect parameter and quadratic effect parameter,

respectively. Polynomial models explain more complex nonlinear relationships and are Taylor

series expansions of unknown nonlinear functions. [22]

The regression techniques, linear and polynomial, that have been discussed so far, also go by

the name of curve fitting in common literature. Curve fitting describes techniques to fit curves

between discrete values to obtain (future) estimates. [23]

Polynomial models can be extended to the fitting of two or more variables. A second-order

polynomial is, for example, more often used in practice: 𝑦 = 𝛼0 + 𝛼1 ∙ 𝑥1 + 𝛼2 ∙ 𝑥2 + 𝛼11 ∙ 𝑥12 + 𝛼22 ∙ 𝑥22 + 𝛼12 ∙ 𝑥1𝑥2 (2-6)

where 𝛼1and 𝛼2 are called linear effect parameters, 𝛼11 and 𝛼22 are called quadratic effect

parameters, and 𝛼12 is the interaction parameter. This function is also called the response

surface. In practice, response surface methodology is used by researchers to design

experiments in order to obtain an optimal response. [22, 24]

Significant problems of multivariate polynomial regressions are collinearity and the fact that

higher degree terms in the equation do not contribute majorly to the regression equation.

[24] One should always maintain a sense of parsimony, meaning to use the simplest possible

model by, for example, transforming to keep the model first order. This will prevent issues of

overfitting the model. [25]

When building polynomial models, one can use two procedures, which do not always lead to

the same model: forward selection and backward elimination. In forward selection, models of

increasing order are successively fitted until the t-test for the highest order term is not

significant. The t-test checks the null hypothesis and concludes whether 𝛼𝑖 is significantly

Theoretical Background – Modelling Methods for Forecasting

PAGE | 15

different from 0 (hypothesis rejected) or not (hypothesis accepted). [26] Backward

elimination is about fitting the highest order model and then deleting terms, one at a time,

starting with the highest order. This is done until the highest order remaining term has a

significant t statistic. [25]

2.1.2.4 Nonparametric Regression

In nonparametric regression methods, there is no need to specify the form of the function, as

data is used directly to make predictions. The goal is thus to estimate the function itself. Kernel

regression and locally weighted regression (Loess) are discussed. [25]

Kernel regression extends the weights of an ordinary regression using the kernel function 𝐾

to predict 𝑦̂ at a specific location 𝑥0:

𝑦̂ = ∑ 𝑤𝑗 ∙ 𝑦𝑗𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑤𝑗 = 𝐾(𝑥𝑗 − 𝑥0)∑ 𝐾(𝑥𝑘 − 𝑥0)𝑘 𝑎𝑛𝑑 ∑ 𝑤𝑗𝑗 = 1
(2-7)

These kernel functions have properties of symmetric probability density functions:

• 𝐾(𝑡) ≥ 0 for all 𝑡

• ∫ 𝐾(𝑡)𝑑𝑡 = 1∞−∞

• 𝐾(−𝑡) = 𝐾(𝑡) for all 𝑡

Common kernel functions are the Gaussian kernel function, the triangular kernel function and

the uniform kernel function. [25]

In a locally weighted regression, data around the neighbourhood of the location 𝑥0 is used,

just as in kernel regressions. This neighbourhood is defined by the span, which is a fraction of

the total points. This neighbourhood’s points are used to generate a weighted least squares

estimate of 𝑦 at 𝑥0. Software packages usually use a tri-cube weighting function to assign

weights for each point in the neighbourhood of 𝑥0:

𝑤𝑗 = 𝑊 (|𝑥𝑗 − 𝑥0|∆(𝑥0)) 𝑤𝑖𝑡ℎ 𝑊(𝑡) = {(1 − 𝑡3)3, 0 ≤ 𝑡 ≤ 10, 𝑡 > 1
(2-8)

The advantage of this method is its flexibility to different locations in a scatter plot; however,

it is computationally intensive. [25]

With regressions being such a fundamental topic in statistical analysis and machine learning,

the methods it encompasses have various benefits and drawbacks. A simple linear regression

has the advantage that it is easily understandable, and it rarely overfits. It is, however,

seldomly recommended because it oversimplifies real world problems. Multiple linear

regression gives a deeper insight in that regard; however, its complexity and the required

Theoretical Background – Modelling Methods for Forecasting

PAGE | 16

knowledge are higher. Additionally, the sample size needs to be higher to get a higher

confidence level on the analysis outcome. [27] Polynomial functions are able to demonstrate

more complex relations, but they also often tend to overfit the data. [28] Nonparametric

algorithms minimise the risk of model misspecification, on the one hand. On the other hand,

they are sensitive to atypical and outlying observations in the data. [29]

2.1.3 Decision Trees

Decision trees are based on the – in computer science known and fundamental – data

structure of a tree. In its simplest form (figure 2-2), a decision tree has a root (R), where the

evaluation starts. At the end, there are leaves (L), which are nodes where no decision is made,

but a state is classified. A decision is made at every node (N), and the branches are followed

appropriately until a leaf is hit. [21]

Figure 2-2: A simple decision tree (own illustration based on [21])

A priori, no parametric form is assumed, and the tree structure is not fixed. Instead, the tree

grows during learning, in the sense that nodes and leaves are added. A decision tree breaks

down a complex function into a series of simple decisions. The advantages of decision trees

are their readability and interpretability. Due to the hierarchical placement of decisions, it is

easy to localise an output and follow the path it took from the input. The tree’s nodes can be

converted to "if-then" rules that make it easily understandable. Therefore, decision trees are

prevalent and often used instead of more accurate methods that are harder to interpret. [18]

2.1.3.1 Univariate Trees

Each node uses only one of the input dimensions in univariate trees and implements an n-way

split. That means a threshold 𝑤𝑚0 discretises a numeric input (𝑥𝑗): 𝑓𝑚(𝑥) = 𝑥𝑗 ∙ 𝑤𝑚0 (2-9)

Theoretical Background – Modelling Methods for Forecasting

PAGE | 17

The input would then be split into two spaces, a so-called binary split. The construction of a

tree with a given sample is called tree induction. There are many options a tree can be

constructed with no errors. Usually (and due to simplicity) the smallest among them is of

interest. Size is measured as the number of nodes and the complexity of the nodes. Finding

the smallest decision tree is a computational problem for which no efficient solution algorithm

has been found and where a heuristic approach is used. [18]

An impurity measure quantifies the goodness of a split in classification trees. Purity can best

be described by imagining a node 𝑚 that 𝑁𝑚 training instances have reached. 𝑁𝑚𝑖 belong to

the class 𝐶𝑖 (with ∑ 𝑁𝑚𝑖 = 𝑁𝑚𝑖). The estimated probability 𝑝𝑚𝑖 of class 𝐶𝑖 is:

𝑝𝑚𝑖 = 𝑁𝑚𝑖𝑁𝑚
(2-10)

Node 𝑚 is called pure if 𝑝𝑚𝑖 for all 𝑖 is 0 or 1. In the case of purity, no further splits need to be

conducted, and the leaf is labelled. Possible measures for impurity are entropy, the Gini index,

or the misclassification error, but research has shown that there is not a significant difference

between these measures. If node 𝑚 is not pure, the instances should split to decrease

impurity. The split that minimises impurity is important, as this returns the smallest tree. So,

the closer to pure, the fewer splits will be needed, at least from a local perspective. For

numeric attributes with 𝑁𝑚 data points, 𝑁𝑚 − 1 splits are possible; however, one does not

need to check for all points, as it is enough to test at halfway points. The tree construction

continues recursively and in parallel until all the branches are pure. [18]

As a tree grows until it is purest, it is possible to grow a huge tree. To alleviate this problem

tree construction ends, when it is pure enough. This means that 𝑝𝑚𝑖 is not precisely 0 or 1 but

close enough (according to a threshold). [18]

A regression tree is constructed almost identically to a classification tree; however, it works

with continuous values and the impurity measure used is a measure for regression, such as

the mean squared error (MSE). This impurity measure can be calculated using an estimated

value such as the mean or median of the required outputs of instances reaching a node. Data

reaching the node is split further if the error is not acceptable. As in classification, at each

node, the split threshold that minimises the error is computed, and the tree induction

continues recursively. [18]

2.1.3.2 Multivariate Trees

Contrary to a univariate tree, all input dimensions can be used at a decision node in

multivariate trees. The multivariate node takes a weighted sum, so discrete attributes should

be represented by 0/1 dummy variables. A simple equation can define a hyperplane, as seen

Theoretical Background – Modelling Methods for Forecasting

PAGE | 18

in figure 2-3. More nodes would define a polyhedral in the input space. The univariate tree

does the same thing in essence; however, the linear discriminant is orthogonal to the axis.

With this knowledge, it is also possible to understand that an exhaustive search for possible

hyperplanes is no longer practical with multivariate nodes. However, multiple algorithms exist

for learning multivariate decision trees. [18]

Figure 2-3: A linear multivariate decision tree [18]

Decision trees are commonly used to classify data. They have the advantage that they are

suitable for regression as well as classification and they can be easy to interpret. Their

disadvantage lies in them possibly being unstable, the problem of overfitting, and the tree size

becoming too large. A special ensemble method called random forests can be used to prevent

overfitting and increase accuracy. [27, 30]

2.1.4 Naïve Bayes

Naïve Bayes classifiers are robust, easy to train, and determine the probability of an outcome

using Bayes’ theorem. The approach is relatively simple, and the algorithms are still very

efficient and not limited. While Naïve Bayes is used in many different situations, their

performance is especially good when probabilities of some causal factors determine the

probability of a class. The method is based on Bayes’ theorem. To derive Bayes' theorem, one

must consider two probabilistic events, 𝐴 and 𝐵, with probabilities 𝑃(𝐴) and 𝑃(𝐵). When the

product rule is applied:

{𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵)𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵|𝐴)𝑃(𝐴)
(2-11)

The two terms in (2-11) are equal, which leads to Bayes’ theorem:

Theoretical Background – Modelling Methods for Forecasting

PAGE | 19

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)𝑃(𝐵)
(2-12)

This formula is fundamental to statistical learning because it combines a kind of a priori

probability (meaning there are no other known values), often determined by mathematical

considerations or a frequency count, with a posteriori probability (meaning it is estimated

after knowing some additional elements). [14]

When there are multiple concurrent conditions, conditional independence is often assumed.

This means that the effects of every cause are independent of one another and allows the

expression (with a normalisation factor 𝛼) to be written as: 𝑃(𝐴|𝐶1 ∩ 𝐶2 ∩ … ∩ 𝐶𝑛) = 𝛼𝑃(𝐶1|𝐴)𝑃(𝐶2|𝐴) … 𝑃(𝐶𝑛|𝐴)𝑃(𝐴) (2-13)

The assumption of conditional independence is also the reason why the Naïve Bayes classifier

is called naïve. However, research has shown that it is not rare that different dependencies

cancel each other out. [14]

The merits of Naïve Bayes are its ease of implementation, its insensitivity to irrelevant

features, and its scalability. Demerits are that it is often too simple and the fact that

continuous variables have to be categorised into buckets. Examples of use cases are

recommendation systems and forecasts of cancer relapse after radiotherapy. [27]

2.1.5 Support Vector Machines

During the 90s Vladimir Vapnik presented the basics of today’s SVMs. A hyperplane is thereby

used to separate and classify two datasets. This can be illustrated using a function 𝑔(𝑥), where 𝑥 are the different parameters and 𝑤 the weights of the parameters: [21] 𝑔(𝑥) = 𝑏 + 𝑤1 ∙ 𝑥1 + 𝑤2 ∙ 𝑥2 + ⋯ + 𝑤𝑛 ∙ 𝑥𝑛 = 𝑏 + 𝑤 ∙ 𝑥 (2-14)

Creating machine learning models with SVMs is often about finding the optimal hyperplanes

for separation. This is the case when the distance between the hyperplanes and the elements

of the datasets is as big as possible. By rewriting and adapting equation (2-14) it is possible to

show that: 𝑦(𝑏 + 𝑤 ∙ 𝑥)‖𝑤‖ ≥ 1‖𝑤‖
(2-15)

where 𝑦 is a code that allows for both positive and negative signs. The right side of the

equation is defined as margin and signifies the distance to the hyperplane. Only those data

points closest to the hyperplane define its position and are known as support vectors, which

Theoretical Background – Modelling Methods for Forecasting

PAGE | 20

can be seen in figure 2-4. Instead of maximising
1‖𝑤‖, which can be time-consuming, algorithms

usually minimise ‖𝑤‖2 to calculate the largest possible margin. [21]

Figure 2-4: Construction of an SVM as a flat-affine 1-dimensional subspace [31]

Although this allows for hyperplanes to solve problems that can be linearly separated,

problems and data sets cannot always be analysed and classified in this manner. There are

two approaches to this, namely soft margins and kernel tricks. [21]

2.1.5.1 Soft Margin

In the case of the approach from above, there are two possible problems: firstly, data sets

that lie on the wrong side even at the best level and are thus incorrectly classified, and

secondly, data sets that lie on the right side but do not fulfil the condition (2-15) and are too

close to the decision boundary. Both problems are demonstrated in figure 2-4. In order to

solve the problem, slack variables ξ𝑖 are defined. This leads to the following condition: 𝑦𝑖(𝑏 + 𝑤 ∙ 𝑥𝑖) ≥ 1 − ξ𝑖 (2-16)

 0 < ξ𝑖 < 1 means that 𝑥𝑖 was classified correctly, while 1 < ξ𝑖 means that there was a

misclassification. In the best case, ξ𝑖 equals 0. The sum of ξ𝑖 is called the soft margin. While

this approach extends the application of SVMs, their true performance is generated by

applying more dimensions to data sets (instead of simplifying them). [21]

Theoretical Background – Modelling Methods for Forecasting

PAGE | 21

2.1.5.2 Kernel Tricks

It is often helpful to transform the original vectors into a higher dimension to separate them

linearly, even if that adds complexity. For this, a function Φ is defined that transforms the

variables that need to be analysed. An example explains this concept: Three variables need to

be transformed into a higher dimension, which can be done through the multiplication of the

variables with each other so that: Φ(𝑥) = (1, 𝑥1, 𝑥2, 𝑥3, 𝑥12, 𝑥22, 𝑥32, 𝑥1𝑥2, 𝑥1𝑥3, 𝑥2𝑥3) (2-17)

However, the introduction of this transformation increases the computational effort, as the

following term is used to further calculate in SVMs with multiple parameters: Φ(𝑥̅𝑖)𝑇Φ(𝑥̅𝑗) (2-18)

This term is unacceptable for larger problems, which is why there are particular functions 𝐾

with specific properties. These are called kernels or kernel functions: [21] 𝐾(𝑥̅𝑖 , 𝑥̅𝑗) = Φ(𝑥̅𝑖)𝑇Φ(𝑥̅𝑗) (2-19)

The idea is to replace the functions’ product with a kernel function. The kernel function is

directly applied in the original space instead of mapping two instances to another dimension

and calculating the dot product. [18] With this, the computational effort remains almost the

same. It is important to note that there are multiple kernels, such as the Radial Basis Function

kernel, Polynomial kernel, Sigmoid kernel, and more. [14] A graphical explanation of the

procedure can be seen in figure 2-5, whereby the dataset seen in a is transformed by adding

another dimension, as shown in b. A hyperplane then separates the data as demonstrated in

c, and the resulting separation of the data is shown in d.

Following are the advantages of an SVM: It can handle complexity if the appropriate kernel

function can be derived, and it can scale up with high dimensional data. Disadvantages are the

decreasing performance with increasing data due to higher training time, finding the proper

kernel function, and bad compatibility with noisy data sets. Though an SVM can handle both

classification and regression (also called support vector regression) problems, its main

applications include classification problems like cancer diagnosis, face detection, and credit

card fraud detection among others. [27]

Theoretical Background – Modelling Methods for Forecasting

PAGE | 22

Figure 2-5: Application of a kernel function to a set of 2-dimensional data [12]

2.1.6 Neural Networks

Often expert knowledge is required when applying machine learning to real-life data to reduce

the number of dimensions of to-be-analysed data. An example of this would be reducing raw

data of a picture (1,000 × 1,000 pixels = 106 dimensions). This picture would be compromised,

and for every pixel, features like colour, sharpness, and colour of neighbours are compiled to

bring the dimensions down to 1,000. Using this procedure, SVMs and decision trees deliver

good results, given that no information loss occurred. Neural networks, in contrast, directly

work with high-dimensional training data and do not need this reduction through expert

knowledge. Neural networks build flexible classes of functions to approximate continuous

functions of which the structure and the evaluation resemble that of a nerve cell (this is where

the name neural network comes from). While the goal is also to ultimately reduce the amount

of information, the reduction happens through training data itself and not through expert

knowledge. This reduced dataset then undergoes a regression. The reduction thereby

Theoretical Background – Modelling Methods for Forecasting

PAGE | 23

happens through steps of the same nature: in every step, the data vectors are modified with

a simple transformation, and the data dimensions are adjusted. [12]

The perceptron (also often referred to as a node) is the basic processing element of a neural

network and has inputs coming from the environment or other perceptrons. Each input 𝑥𝑗 has

a weight 𝑤𝑗 associated with it:

𝑦 = ∑ 𝑤𝑗 ∙ 𝑥𝑗 + 𝑤0𝑑
𝑗=1

(2-20)

where 𝑤0 is a bias value. The perceptron defined in this equation (2-20) defines a hyperplane,

and two classes can be separated by checking the output sign, for example. A simple single-

layer neural network with multiple outputs can be seen in figure 2-6. [18]

Figure 2-6: A single-layer neural network [18]

To implement a given task, it is necessary to compute the weights of the neural network

parameters such that correct outputs are generated given the inputs. [18]

Usually, neural networks have hidden layers between their input and output layers. These so-

called multilayer perceptrons (MLPs) are the most popular network architecture: the units

each perform a biased weighted sum of inputs and pass this into a transfer function to produce

output. [11] This function, also called the activation function filters the resulting sum from the

calculation and produces an output based on its input. In practice, rectified linear unit (ReLU)

functions are frequently used. When the number of hidden layers is not too large, the sigmoid

function is often used. [12, 14] Figure 2-7 shows a simple multilayer neural network with two

hidden layers. The hidden layers of the nodes 𝑥𝑖(1) and 𝑥𝑖(2) and the output layer 𝑔(𝑥) can

have activation functions.

Theoretical Background – Modelling Methods for Forecasting

PAGE | 24

The units are thus arranged in a feedforward topology, meaning information only flows from

the input to the output layer, and it therefore provides a simple interpretation with the

weights and thresholds as free parameters of the model. This leads to neural networks being

able to model functions of almost arbitrary complexity, with specifications being the number

of hidden layers and the number of nodes in these layers. While the problem usually

predefines the input and output units, the number of hidden layers is unclear. An appropriate

starting point for the number of layers is one, and for the number of nodes per layer is half

the input units. After selecting the number of layers and units, training algorithms minimise

the prediction errors made by the network using historical data. This historical data can also

be used to determine the error of a neural network by comparing the actual output to the

desired output. [11]

Figure 2-7: A feedforward neural network with two hidden, one input, and one output layer [12]

The best-known example of a neural network training algorithm is back propagation. In back

propagation, the gradient vector of the error surface is calculated. The error surface is any

possible configuration of weights and thresholds, with each of them being a dimension in

space. This vector points towards the steepest descent from the current point, often initialised

with 0 for thresholds and random decimal numbers for weights. Moving along this steep

descent will decrease the error; however, it is difficult to decide how large the steps should

be. In practice, the step size is proportional to the slope and learning rate (an input that

determines the magnitude of change to the step size), application-dependent, and typically

chosen by experiment. [11] The algorithm usually also includes a momentum term, a

mathematical term that gives the step size momentum (in analogy to physics) and sometimes

helps escape local minima and move over plateaus. [21] Figure 2-8 shows the difference

between a global and a local minima. The blue line, in this case, indicates the step size of the

algorithm. Since it bounces from one side of the valley to the other, it is set too large in this

example.

Theoretical Background – Modelling Methods for Forecasting

PAGE | 25

Figure 2-8: Demonstration of the local minima and the learning rate via a gradient descent algorithm applied

to an error function [32]

Machine learning algorithms learn and adjust their internal parameters, called model

parameters, depending on the input provided. However, there are also other types of

parameters that have to be preconfigured, so-called hyperparameters. Hyperparameters

cannot be estimated by the model from given data during training or validation. Some

examples are the number of layers, the number of nodes in a layer, or the aforementioned

learning rate. They play an important role as a change in hyperparameters leads to a change

in the model’s performance. Depending on which hyperparameter and by how much it was

adjusted, the change in performance can be significant. [33]

Overfitting has been described in section 2.1.1 and is a fundamental concept to understand

when modelling with neural networks. After all, an extensive network will almost always

achieve a lower error, but this may be more due to overfitting than good modelling. To

maintain the quality of the model, it can be checked against an independent data set that is

not used for training but for checking the progress of the algorithm (validation set). Often even

a third set - the test set – is used to ensure that the results are not artefacts of the validation

and training sets. On the other hand, if under-learning occurs through the algorithm and it

does not achieve the desired performance level, more nodes should be added to the hidden

layers. If this does not help, extra hidden layers can be added. [11]

It has to be noted that not all neural networks use a feedforward topology and the

backpropagation algorithm for learning; they are, however, the most prominent ones. In

general, artificial neural networks (ANNs) can be classified into various sub-categories. Well-

known ones are shown in figure 2-9, with three major ones being multilayer perceptrons

Theoretical Background – Modelling Methods for Forecasting

PAGE | 26

(MLPs), denoted as Deep Feed Forward, convolutional neural networks (CNNs), and recurrent

neural networks (RNNs). [34]

Figure 2-9: An overview of different neural network architectures (own illustration based on [35])

MLPs are one of the most popular of types neural networks, which Paul Werbos developed in

1974 and are also often called feedforward networks. CNNs consist of convolution layers,

pooling layers, and fully connected layers. They are primarily used in pattern recognition

within images and encode image-specific features into the architecture. The critical difference

to MLPs is, therefore, that the layers in CNNs are comprised of neurons organised into three

dimensions (height, width and depth). These neurons only connect to a small part of the

preceding layer. [36] An RNN is best suited for recognising patterns in data sequences and is

heavily used to classify, cluster and make predictions about data. Similar to MLPs, the

architectures consist of input, hidden, and output layers; however, the nodes of hidden layers

are interconnected and create so-called loops. This ensures that the output at a certain time

step depends on previous inputs. Long short-term memory networks (LSTMs) deal with

problems of RNN architectures, such as vanishing and exploding gradients causing the RNNs

to train slowly, and are therefore capable of learning long-term dependencies. [37] They do

so by adding gates to an RNN. These gates are composed of a sigmoid neural net layer and a

pointwise multiplication operation. An LSTM cell (figure 2-10) takes the cell (upper horizontal

line) and hidden (lower horizontal line) state of the previous time step as well as the input

variables as input and returns the hidden state as output, while both the hidden state and the

cell state are transferred to the LSTM cell of the next time step. [38]

Deep Feed
Forward DFF

 ecurrent eural
 etwor

 ated ecurrent
 eural etwor

 ong hort Term
 emory T

 on olu onal eural
 etwor

E treme earning
 achine E

 erceptron Feed Forward

Decon olu onal
 eural etwor D

 nput ell

 utput ell

 idden ell

 ecurrent ell

 ated emory ell

 emory ell

 ernel

 on olu on or ool

Theoretical Background – Modelling Methods for Forecasting

PAGE | 27

Figure 2-10: A LSTM cell containing three gates and using cell and hidden states [38]

The benefits of using neural networks are their easy adoption to new scenarios, fault

tolerance, and ability to handle noisy data. Disadvantages are that training times are very long,

they are non-transparent due to their black-box like behaviour, and the sample data sets need

to be large. Neural networks are used in different industry segments, especially when there

are no well-defined criteria or rules to find an answer to a problem. Applications are various

kinds of classifications or forecasts of market dynamics. [27]

2.1.7 Clustering

In machine learning, clustering is a method of unsupervised learning, which means that,

contrary to supervised methods, there is no validation or testing data and, therefore, no target

data. Cluster analysis aims to divide a set of objects into groups while maximising the

similarities inside the groups and maximising the differences between the groups. There are

multiple clustering mechanisms, the most popular ones being k-Means and Density-Based

Spatial Clustering of Applications with Noise (DBSCAN). [21]

2.1.7.1 k-Means

The k-Means algorithm is based on assigning each data point in a data set to one of 𝑘 clusters

defined by centroids: After a first initialisation of the centroids, the distance between each

data point and centroid is computed, and the data point is assigned to the closest cluster. This

process is iterative, as once the samples have been processed, the centroids are computed

again, and the distances are recomputed. [14] Mathematically this can be defined as

minimising the so-called inertia 𝐽 via the Euclidian distances of the data points:

𝐽 = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖2𝑥𝑗∈𝐶𝑖
𝑘

𝑖=1

(2-21)

Theoretical Background – Modelling Methods for Forecasting

PAGE | 28

where 𝑘 stands for the number of clusters, 𝑥𝑗 for a data point, 𝐶 for the cluster and 𝜇𝑖 for the

centroid. [21] The clustering process is stopped once the desired tolerance is reached and the

centroids become stable. This process is illustrated in figure 2-11. Methods have been

researched to improve the convergence speed; one of them is k-Means++ which selects the

initial centroids so they are statistically close to the final ones. [14]

Figure 2-11: Evolution of k-Means over iterations: the black crosses indicate centre positions (centroids); the

data points are marked depending on the closest centre as a circle or dot [18]

One of the difficulties of working with k-Means clustering is finding the correct number of

clusters. An assumption may be that the number of clusters must produce the smallest inertia;

however, the absolute minimum of inertia is reached when the number of clusters equals the

number of data points. Therefore, one can look at a trade-off between the number of clusters

and the inertia. Figure 2-12 shows such a diagram for an exemplary dataset. There is a

considerable reduction in inertia from two to three clusters. After the fifth one, any cluster

only leads to marginal inertia decrease and is likely to produce intracluster splits. A

recommendation is thus to work with four or five clusters in this case. This is one of the more

straightforward methods of defining the number of clusters. More complex ones are the

Silhouette score or the Calinski-Harabasz index. [14]

Initial After 1 iteration

After 2 iterations

After 3 iterations

Theoretical Background – Modelling Methods for Forecasting

PAGE | 29

Figure 2-12: Plotting the inertia over the number of clusters in an exemplary dataset [14]

2.1.7.2 DBSCAN

DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise and is an

algorithm that, as the name suggests, works based on the density of data points. DBSCAN

differentiates between three different types of points: core points, border points, and noise

points. A data point can be classified into one of these categories depending on two

parameters, 𝜀 and minPts. [21] 𝜀 is responsible for defining the maximum distance between

two neighbours, and minPts determines the number of surrounding points necessary to define

a core-point. [14]

The algorithm starts with an arbitrary point 𝑝 and looks for all reachable points with respect

to 𝜀. If 𝑝 is a core point with respect to the starting conditions (𝜀 and minPts), a cluster is

defined; if the conditions do not apply, the next point in the dataset is visited. The algorithm

may also merge clusters into one if they are close to each other. This can happen when the

distance between two sets of points 𝑆1 and 𝑆2 with core points 𝑝 and 𝑞 is smaller than or

equal to 𝜀: min{𝑑𝑖𝑠𝑡(𝑝, 𝑞)|𝑝 ∈ 𝑆1, 𝑞 ∈ 𝑆2} ≤ 𝜀 (2-22)

Consequently, a recursive call of DBSCAN is necessary, meaning the function must run multiple

times to find the correct number of clusters. [39] A schematic overview of finding one cluster

with DBSCAN can be seen in figure 2-13.

 n
er
 a

 umber of lusters
2 5 8 10

Theoretical Background – Modelling Methods for Forecasting

PAGE | 30

Figure 2-13: A graphical representation of finding one cluster via DBSCAN from a) to d): black dots are

identified core points, grey dots are border points and white dots are noise points with the red circle

demonstrating the 𝜺 of the points [21]

k-Means has the advantage of ease of implementation and interpretation. Furthermore, it is

computationally efficient. A disadvantage may be that the prediction of the number of clusters

k is difficult, and different initial starting positions impact the algorithm’s performance. Use

cases are found where data needs to be segmented or classified, such as document

classification or customer segmentation and call record details analysis. [27] In contrast to k-

Means, with DBSCAN it is unnecessary to define the number of clusters in the beginning, as

the algorithm automatically finds the appropriate amount. Additionally, noise/outliers in the

data set are detected, which is also its primary use. A disadvantage is the fact that DBSCAN is

not able to scale very well. [21]

2.1.8 Reinforcement Learning

Reinforcement learning is a machine learning technique based on feedback from the

environment. Thereby the learner is a decision-making agent that takes actions in the

environment and receives feedback. This feedback is usually called reward, which is critical to

understand whether an action performed in a state is positive or negative. A policy is the

sequence of actions to always make the best decision in terms of reward. This policy should

be learnt after a set of trial-and-error runs. The agent is thus modelled using a Markov decision

process, with the difference being that in Markov models, there is an external process that

generates a sequence of signals. In reinforcement learning, the agent creates this sequence

of signals. Figure 2-14 shows the interaction the learning agent has with the environment. This

a b

c d

Theoretical Background – Modelling Methods for Forecasting

PAGE | 31

technique is very efficient when the environment is dynamic, not wholly deterministic, and

when there is no precise error measure. [14, 18]

Figure 2-14: Interactions between the learning agent and the environment [18]

In contrast to other supervised learning methods, reinforcement learning is about learning

with a critic that does not tell one what to do but how one has been doing in the past. This

information comes late and is scarce (after solving or failing a problem, for example), leading

to the so-called credit assignment problem. To overcome this problem and to assess individual

past actions and find the moves that led to the reward, an internal value for intermediate

states or actions is computed. This internal value can then be maximised to take local actions.

[18]

In reinforcement learning, there is a difference between model-based and model-free

methods. Model-based means that the agent tries to understand the concept and create a

model to represent it, and during learning, it uses predictions of the environment’s response.

In a model-free method, on the other hand, the agent cannot make predictions about the next

state and reward before taking action. [21]

Supervised and unsupervised learning may appear to exhaustively classify machine learning

paradigms; however, this is not true. Compared to unsupervised algorithms, reinforcement

learning does not try to find a hidden structure. Compared to supervised algorithms, it has the

advantage of not needing training data of all the correct and representative states in which

the agent has to act, but the agent can learn by itself. On the other hand, problems are the

trade-off between exploration of the agent to find the best continuation in a certain situation

and exploitation of the rewards in a certain situation. [40] Applications of reinforcement

learning include finding winning tactics or strategies in games or letting an autonomous robot

learn independently. [12] However, reinforcement learning has also been utilised to build bots

that trade in and predict the stock market [41, 42] and has been used for predictions in the

energy industry. [43]

Theoretical Background – Modelling Methods for Forecasting

PAGE | 32

2.2 Energy System Modelling

This section serves as a review of papers that further explore the application of machine

learning for forecasting in industrial settings. The purpose is to combine the theoretical

knowledge about machine learning described in section 2.1 with the real-life implementation

of these methods in the iron and steel and energy industry. Best practices in energy demand

forecasting, which can later be used to create the models for the steel mill Marienhütte, are

discovered. The researched papers and the methods discussed are listed in table 2-1 in order

of their appearance in this thesis.

Table 2-1: Notable papers about forecasting methods in the iron and steel and energy industry

Category Reference Discussed Methods

R
e

g
re

ss
io

n

D
e

ci
si

o
n

T
re

e
s

S
V

M
s

N
e

u
ra

l

N
e

tw
o

rk
s

E
n

se
m

b
le

s

&
 H

y
b

ri
d

s

G
e

n
e

ti
c

P
ro

g
ra

m
s

M
a

rk
o

v

C
h

a
in

s

Overview

of

Forecasts

in the

Energy

Industry

[44] x x x x

[45] x x x x

[46] x x x x

Electrical

Energy

Forecasts

in Steel

Mills

[47] x x

[48] x x

[49] x

Electrical

Energy

Forecasts

with a

Focus on

Neural

Networks

[50] x

[51] x x x x

[52] x

[53] x

[8] x

[54] x

Section 2.2 lists two forecasting methods that have not been described in the previous

chapter: genetic programming and Markov chains. Genetic programming belongs to the

Theoretical Background – Modelling Methods for Forecasting

PAGE | 33

subclass of evolutionary algorithms. Genetic programs frequently have a tree-like structure

with the nodes being function genes such as additions, subtractions, multiplications, divisions,

or terminal genes (the parameters). Initially, random computer programs of various forms and

lengths are generated. In a next step, they are varied through genetic operations like crossover

and mutation over several iterations. After comparing the program with the experimental

data, this process is repeated until a termination criterion is reached. Based on the literature,

it is unclear, whether models created through genetic programming can be classified into

machine learning, as they fail to learn from experience. Nonetheless, they are often applied

to machine learning problems. [55] Markov chains, on the other hand, are types of stochastic

processes, as they sample from probability distributions and are not part of machine learning

subsets. [56] Despite these facts, the papers discussing these methods are presented, as they

provide valuable information about possible alternatives to a forecast using machine learning

and list relevant input parameters for EAFs.

2.2.1 Overview of Forecasts in the Energy Industry

Mosavi et al. [44] presented the state of the art of machine learning models used in energy

systems. Different machine learning models were classified according to the modelling

technique, energy type, and application area. The paper features a literature review (70

original papers) about these models and further assesses their performance. The authors

identified ten major machine learning models frequently used in energy systems: ANNs, MLPs,

extreme learning machines, SVMs, wavelet neural networks, adaptive neuro-fuzzy inference

systems, decision trees, deep learning ensembles, and advanced hybrid machine learning

models. [44]

By looking at the available literature with comparative performance parameters like the root

mean squared error (RMSE) and the correlation coefficient r, the authors concluded that while

there are some differences in the forecasting performance between certain models and none

between others, hybridising methodologies and algorithm ensembles are the most effective

ways to improve machine learning methods. The literary research suggested that hybridising

existing methodologies improves the accuracy of energy demand forecasting significantly.

Additionally, a hybrid model has a higher generalisation ability and lower forecasting

uncertainty. Hybrid machine learning models are effective ways to improve machine learning

models and will continue to deliver sophisticated energy models. [44]

In this context, it is vital to note that the applications of machine learning models reviewed in

this paper range from energy consumption prediction, solar radiation prediction, power

generation forecasting, storage planning, dynamic energy pricing, and more. While the

applications reviewed are diverse, there was no connection to the metallurgy industry. [44]

Theoretical Background – Modelling Methods for Forecasting

PAGE | 34

Hahn et al. [45] gave an overview of different models and methods used to predict future load

demands. The authors defined time periods under one week as short-term load forecasting

(STLF), time periods ranging from one week to one year as medium-term load forecasting

(MTLF) and from one year to up to 30 years as long-term load forecasting (LTLF). The paper

differentiated between regression-based models, time-series approaches, neural networks,

SVMs, and hybrid and other approaches. The methods were described, and studies on them

were discussed; however, none of the studies had a connection to the metallurgy sector. [45]

The authors determined that regression models are relatively easy to implement, and the

relationship between input and output is easy to understand. According to research, large

ANNs can be seen as competitive with other models, and SVMs won a competition organised

by the EUNITE (European Network on Intelligent Technologies for Smart Adaptive Systems) in

1999 to predict the load demand. Therefore, the authors concluded that support vector

regressions have emerged as a, back then (2007), relatively new and competitive method for

load forecasting and found that hybrid models were becoming increasingly popular. [45]

Statistical models for predicting the electricity consumption of EAFs were also reviewed and

discussed by Carlsson et al. [46]. They aimed to explain the challenges and considerations that

statistical models impose and they found that while nonlinear models outperform linear ones,

they lack transparency with regards to which input variables have an influence on prediction

of the electricity consumption. [46]

Multiple linear regression and partial least squares (PLS) as linear methods were reviewed.

PLS has the goal of predicting the dependent variable from a matrix of independent variables

and describing their common structure. It combines features from principle component

analysis and multiple regression. [57] The following nonlinear methods were examined: ANNs,

deep neural networks (DNNs), SVMs, and decision trees (including random forests). The total

amount of papers reviewed for these methods was 21. In total, 22 parameters were used to

create these models. They can be categorised into the following divisions: time, chemical,

temperature, ladle furnace, material, and other variables. [46]

A general rule of thumb when creating a model is that a model with few coefficients requires

fewer data points to converge than a model with more coefficients. Due to the limitation of

available data, it is thus advisable to use a shallow ANN over a DNN when committing to a

nonlinear model. Furthermore, the input variables should be selected in accordance to

experience and science and their number should be relatively low to avoid collinearity. [46]

Transparent models reveal to what extent each input variable affects the prediction, and while

multiple linear regressions are transparent (due to the coefficients and input variables in the

mathematical equation), neural networks are black-box models and not transparent. Carlsson

Theoretical Background – Modelling Methods for Forecasting

PAGE | 35

et al. argue that interpretable machine learning algorithms like feature importance (FI) and

Shapley Additive Explanations (SHAP) are helpful to better explain predictions. [46]

The authors summarised their research, where 14 out of 15 studies used linear models and

eight of 15 used nonlinear models. The most popular models in each category were multiple

linear regressions and ANNs, respectively. Regarding the input variables, they concluded that

additives such as lime, dolomite, and carbon and the scrap composition are rarely used in the

studies reviewed, even though these variables account for 20 – 50% of the total energy

requirement. Only one of the studies completely specified what their data treatment looks

like. Based on the literary research, it was recommended that the model performance should

be based on predictions on future data relative to training data and the models should be in

line with principles of physics and chemistry. [46]

2.2.2 Electrical Energy Forecasts in Steel Mills

Kovačič et al. [47] analysed the per batch electric energy consumption of an EAF during its

melting and refining stage. The two approaches they took were creating a linear regression

and a genetic programming model. [47]

The model was created using 3,248 consecutive batches and 278 batches were used to

validate the model. The furnace was typically charged with three baskets with the capacity of

22 – 30 t, 15 – 20 t, and 6 – 15 t, respectively. Each charging lasted about three minutes, and

each melting lasted about 20 min, 15 min, and 10 min for the three baskets. The dataset used

included 26 process parameters, including the electric energy consumption. [47]

The linear regression model showed that 𝑅2 = 0,63 and the model significantly predicted the

electric energy consumption. 8 out of the 25 independent variables did not pass the null

hypothesis significance test (𝑝 > 0.05). The most influential factors were E-type scrap, low-

alloyed steel (moderate chromium content), scrap packets, oxygen consumption during

melting, natural gas consumption, limestone, other technological delays, and coke injection

during refining. [47]

Genetic programming is a general evolutionary optimisation method. During the random

generation of the programs the previously generated linear regression was used. According to

this model, dolomite, E-Type scrap, low-alloyed steel (moderate chromium content), other

technological delays, and coke injection were the most influential factors. Coke, lime,

limestone, scrap-charging, reparation of the linings with dolomite or magnesite, electrode

settings, chemical analysis delay, oxygen and temperature analysis delay, and the delay during

tapping were not considered in the model. [47]

The results show that the average relative deviation between the experimental data and the

linear regression model was 3.65%, while that between the experimental data and the genetic

Theoretical Background – Modelling Methods for Forecasting

PAGE | 36

programming model was slightly lower at 3.49%. The authors consequently concluded that it

is possible to use the approaches for precise EAF energy consumption forecasting on a per

batch basis. [47]

A linear regression model, with the nonnegative least squares method applied, was used by

Zhou et al. [48] to forecast the daily electricity consumption of a large steel corporation.

Additionally, the relevant features were selected using the random approximated greedy

search (RAGS) and an ensemble model was built by bagging approach. [48]

The daily electricity consumption data with corresponding maintenance scheduling and daily

production planning was collected in a 9-month time period, totalling 258 samples.

Maintenance scheduling contained 87 features; daily production planning contained 88,

which leads to a total of 175 features. 80% of the samples were used as training set and 20%

as validation set. The electricity consumption was inversely proportional to maintenance

duration and directly proportional to production quantity; this information was included in

the linear regression model. [48]

Firstly, the linear regression models without nonnegative coefficient constraints were trained;

however, the regression coefficients obtained were neither stable nor reasonable.

Nonnegative coefficient constraints led to stable regression coefficients within a reasonable

rangel. With a mean absolute percentage error (MAPE) of 2.37%, the forecast results proved

effective. [48]

By adding 20 independent random features to the model as probe indicators, it was analysed

whether the linear regression selects the correct features to build the model. This was not the

case, so to avoid unrelated features in the model and choose appropriate ones, a feature

selection, in this case the RAGS algorithm, which belongs to the mathematical field of ordinal

optimisation, was implemented. [48]

In a final step, the ensemble model is built by bagging approach, which is used to improve the

stability of forecast models. It uses the mean (or median) of the output of a group of forecast

models for the final forecast value. This usually leads to a decrease in variance while keeping

the bias of the original models. The ensemble model was composed of 20 linear regression

models using the 20 chosen feature subsets. The final result showed that the MAPE has

improved to 1.75%. While there was no discussion about what features were used for the

model, the paper contained a clear procedure on how to develop a regression model to

forecast the daily electrical energy consumption of a steel corporation. [48]

Dock et al. [49] presented an energy system model of an EAF steel mill using a modular design.

This allows the model to be adopted for other electric steel mills to a certain extent. The model

was developed holistically, focusing on being time and technologically resolved. [49]

Theoretical Background – Modelling Methods for Forecasting

PAGE | 37

During research for their paper, the authors noted, that while several energy consumption

models have been used to predict the future energy demand of individual steel mill

components, the models do not allow time-resolved calculation, which is why they were not

used in this study. Their work applied two approaches: stochastic modelling of process

parameters and load profile generation with Markov chains. The sub-models of the considered

system components were built using Python with its libraries Pandas, NumPy and Matplotlib.

[49]

The Pearson correlation coefficient between the energy consumption and the parameter

defined determines whether this parameter should be considered when modelling or not. For

the EAF, the scrap mass, and the tap-to-tap time were identified as vital input parameters.

Therefore, a linear regression was calculated to evaluate the amount of energy needed based

on a stochastic model of the scrap mass distribution. The energy input is then allocated to a

Markov chain, of which the length corresponds to the tap-to-time (also determined

stochastically). Markov chains predict future states of a system based on historical data with

the help of a so-called transition probability matrix. The simulation time steps of the model

have a length of 60 s and the data for them were obtained through measurements of 130

batches in the steel mill Breitenfeld Edelstahl AG in Austria. [49]

Models were created for the EAF, the LF, induced draft fans, LHs, vacuum treatments,

annealing furnaces and other consumers, composed of several smaller consumers and

considered baseload. The model results were compared to actual values of the year 2018 over

four production weeks. The MAPE for the overall energy system was 1.6%, with the highest

and second-highest MAPE being the other components (10.9%) and the LFs (8.0%),

respectively. [49]

2.2.3 Electrical Energy Forecasts with a Focus on Neural Networks

Gajic et al. [50] applied a neural network model to predict the batch-wise electrical energy

consumption based on the chemical composition of the charge material mix of an EAF. For the

experimental part, 46 melts were run with different chemical compositions, of which 32 were

assigned to the training set, seven to the testing set and seven to the validation set. Carbon,

chromium, nickel, silicon and iron were measured with other properties such as scrap type,

density, molten steel’s final temperature and injection of chemical energy being kept at

almost constant levels to minimise their effects. [50]

The neural network in the paper was trained by Statistica 8.0 (Stat Soft, Inc.), with the

Broyden-Fletcher-Goldfarb-Shanno algorithm being used to compute the weights most

efficiently. The activation functions were hyperbolic tangent and linear for the hidden, and

Theoretical Background – Modelling Methods for Forecasting

PAGE | 38

output layers. The optimal architecture for the neural network (5-5-1) was obtained after 89

cycles. [50]

The proposed model explained 92% of the variation in the specific electrical energy

consumption for the training, test and validation data (overall 𝑅2 = 0.92). The model

confirmed that the charge’s chemical composition plays a significant role in to electricity

consumption in the EAF. It was found that carbon content has a greater impact on the

consumption than iron content. The decreasing order of the impact on the electrical

consumption is: carbon content > chromium content > iron content > nickel content > silicon

content. [50]

A neural network approach was also used by Chen et al. [51] to establish a prediction model

for an EAF. As the dataset was large and multidimensional with 40 attributes and 10,990

instances, a deep learning method was used for its increasing performance due to its capability

to learn hidden patterns. Additionally, statistical models, like multiple regression, often have

problems with impurities in real-life data sets and become inefficient as the training data

grows. However, the deep learning model was compared to other methods regarding their

technical performance. [51]

As the model’s input parameters, scraps and additi es were added at once since their mass

directly affects the energy consumption. An attribute selection software called Weka selected

the rest of the features, which were PON time (min) and TTT level 2. However, no further

explanation of their meaning was given. Altogether, 16 attributes were thus selected. As the

data was recorded continuously, it was necessary to randomise the dataset to prevent the

model from learning hidden patterns in the time series. In a last data preparation step, the

dataset was normalised. [51]

The deep learning model was built using Keras, an advanced deep learning package of Python.

As an optimiser for the gradient descent problem, “Adam” was selected, the number of hidden

layers was set as four, and the number of nodes was set to 500. Linear regression, an SVM and

a decision tree were used to compare the accuracy of the neural network. These used the

same in- and output features as the deep learning model and were implemented with

 ython’s ci it-learn package. K-fold validation was used with K being set to 5. [51]

The deep learning model presented excellent performance. The correlation coefficient of the

linear regression (0.785), the SVM (0.762) and the decision tree (0.775) was lower than that

of the neural network (0.854). Additionally, only 10.6% of the instances had an absolute error

over 3 MWh (linear regression: 22.3%; SVM: 14.9%; decision tree: 19.9%). The paper,

therefore, concludes that the model is an effective tool for predicting the daily energy

consumption of an EAF. [51]

Theoretical Background – Modelling Methods for Forecasting

PAGE | 39

The process of developing an ANN to predict the electrical energy consumption of an EAF and

using statistical tools to investigate the most influencing input variables were documented by

Carlsson et al. [52]. A nonlinear model was used as the nonlinear elements of the EAF process

make linear statistical models a suboptimal prediction tool. An example of a nonlinear

parameter would be the tap-to-tap time because it can be broken down into smaller

components, charging, melting, refining, extended refining, tapping, and preparation, making

it nonlinear. The optimal combination of model parameters was found using a grid search,

also known as parameter search, where multiple models are trained for each combination of

parameters. Python was used to create the model, and the paper specifies what package was

used for each step in the modelling process. [52]

The grid search was performed using multiple input variable batches. The variables were

divided into specific variable batches, partly because the number of model types to create

using each of the 35 variables would have been very large (235 ≈ 3.44 × 109) compared to six

bundled together variants (26 = 64). When creating the model, the test data was selected in

chronological order with respect to the training data. This is realistic because a statistical

model will predict data that is produced after training the model. To compare models with a

different number of inputs the adjusted 𝑅2 was used:

𝑅2̅̅̅̅ = 1 − (1 − 𝑅2) 𝑛 − 1𝑛 − 𝑝 − 1
(2-23)

where n stands for the number of data points and p for the number of input variables. [52]

The authors differentiate between two categories for data treatment: domain-specific and

statistical outlier detection. In domain-specific outlier detection, data is assessed to its

physical possibilities, which in their model creation was to remove trial heats, remove heats

with electrical energy above 60 MWh, to define a range for a tap-to-tap time and to remove

heats with delays over three hours. Statistical data cleaning was not applied to the data set

for three reasons:

• The data set became too small after applying a robust outlier detection.

• Most conventional methods assume that the data is normally distributed.

• It makes sense to not apply outlier detection methods on some variables (e.g. weight

percent, as it can vary tremendously).

Only 10% of the original data was removed after all cleaning steps. A total of 36,864 parameter

combinations were available. Model-specific parameters were the activation function,

learning rate and the hidden node topology, and domain-specific parameters were the input

variables and whether the validation set was ordered chronologically or randomised. The

validation fraction, the gradient-descent algorithm and the setting “early stopping = True”

Theoretical Background – Modelling Methods for Forecasting

PAGE | 40

were kept constant for all models. Each combination of parameters equals one model type,

and in addition, each model type was instanced 10 times to assure stability of the parameter

selection. [52]

The study applied both an algorithmic and a domain-specific approach. While the domain-

specific approach used the different variable batches as described before, the algorithmic

approach calculated the pair-wise correlation between the input variables and the output

variable using dCor (Distance Correlation), a mathematical expression that can detect both

linear and nonlinear relationships. For each subsequent model, the input variable with the

lowest correlation value is removed, which leads to a total of 20,160 model types. Both models

were analysed using the methods: Kolmogorov-Smirnov (KS) test, dCor and FI. [52]

The grid search showed that validating on chronologically ordered data during training is often

not better than validating on randomised data, and 87% of the best models per batch are built

of one hidden layer. The authors discussed that the results show that an algorithmic approach

for selecting variables can be used; however, it is crucial that the initial selection of the input

variables are not random but domain-specific. In addition to that, the model should strive for

parsimony, as the different models showed that using all the input variables available resulted

in an almost equal performance to the model that used only one-sixth of the input variables.

To create state-of-the-art neural networks, it is thus not necessary to increase model

complexity through more layers and input nodes. [52]

In another paper, Carlsson et al. [53] created an ANN to predict the electrical energy demand

of future heats in an EAF. They also explored two machine learning algorithms to predict the

black-box behaviour of the neural network and reveal the influence of input variables. [53]

The neural network was computed using Python. The test set represented 3.24% of the data

points, and the training set was split 80/20 into training and validation data. A grid search over

one and two hidden layers determined the topology of the neural network, with the number

of nodes in each hidden layer being 1 to 24 (48 topologies). The input variables were the total

power on time for the heat, the total weight of ingoing scrap, the total volume of propane,

the total volume of oxygen through lance, and the total volume of oxygen through burners.

Three models were created, one using all variables, the second using all variables but the

power on time, and the third using only the power on time. [53]

To analyse the effect of the input variables, two interpretability algorithms were used:

Permutation Importance (PI) and Shapley Additive Explanations (SHAP). By comparing the

models and looking at the PI values, it was evident that the power on time significantly affects

the predictions. The authors noted that this was not surprising since the total power on time

is linearly related to the electrical energy consumption. As the power output is similar for most

heats, the authors argue that the power on time should not be part of the input variables.

Theoretical Background – Modelling Methods for Forecasting

PAGE | 41

SHAP was in agreement with the PI values with regards to power on time, and five selected

test heats were further analysed for the influence of the input variables on the energy

consumption prediction. [53]

When interpreted and compared from a metallurgical perspective, three of the five variables

were accounted for correctly by the model: power on time, the total weight of the scrap, and

the total volume of propane. A higher power on time leads to higher predicted electricity; a

higher weight of ingoing scrap leads to higher predicted electricity, and more propane leads

to increased energy added by exothermic reactions, which leads to less predicted electricity

being used. A model error likely caused the volume of the oxygen through the lance to be

wrong, and the volume of oxygen through the burners was superfluous in the model due to

high correlation with the volume of propane and should be removed. [53]

Butt et al. [8] performed a study on the usage of different forecasting techniques for STLF,

MTLF, and LTLF of electricity grids on an hourly basis. The forecasting methods used were

MLPs, LSTMs, and CNNs. The exact configurations for setting up the MLP, CNN and LSTM can

be found in Butt et al.’s paper. [8]

The quality of the models was examined using the RMSE, 𝑅2, the MSE and the mean absolute

error (MAE) for a forecast of 24 hours, 72 hours, one week and one month. Although the error

measures that were calculated showed that, in general, the MLP was the most accurate

model, the authors concluded that for STLF (< 1 week), the LSTM and MLP give a good

forecast, while for MTLF (< 1 month) the CNN and LSTM have slightly better error measures.

They further stated that “it indicates that as data demands are getting higher, the deep

learning models with a high number of neurons and optimised activation functions provide

better predictions.” [8]

To forecast the hourly electricity load of a large Polish steel factory, Klempka and Swiatek [54]

presented a neural network. The electrical energy consumption at a specific hour of the day

depends on the status of operation, the hour of the beginning and end shift,

weekday/weekend/holidays, the hour, the set identification number, and the indicator of

exterior illumination activation. [54]

The goal of the neural network was, therefore, to find a relation between the operation status

and the electricity consumption from a principal transformer station. The neural networks

(one for each of the seven transformer stations) were built the same way: they contained one

hidden layer with the number of neurons being the number of inputs, the sigmoidal function

was used for activation on all neurons, and the network is trained through the back

propagation algorithm. [54]

Theoretical Background – Modelling Methods for Forecasting

PAGE | 42

The results for a forecast on a month’s scale show that in 0% of the cases pro ided the
plant’s operation was stable , the forecast errors were less than 10%. These errors had two

basic reasons: the actual statuses of operation are entered manually and not automatically,

and planning errors for a month in advance are almost inevitable due to disturbances in

production. [54]

Empirical Part

PAGE | 43

3 EMPIRICAL PART

With the aim of the thesis being to research ways to forecast the power demand of different

aggregates of a steel mill, this chapter serves as the description of the approach developed to

fulfil this task. During the literature research, it has become apparent that neural networks

often found use for prediction scenarios. Due to the internal structure of their nodes, LSTMs

have proven to be effective when dealing with time-series forecasting. Therefore, it was

decided to put an emphasis on these network types when creating different methods of

forecasting.

The primary aggregates of the steel mill Marienhütte besides the EAF are the LF, CC, LHs, and

D. Steel scrap is inserted into the EAF to produce crude iron, which is then filled into ladles

and put into the LF to perform secondary metallurgical treatments whilst holding a specific

temperature. The iron is then transported to the CC where the steel cools down, solidifies and

gets cut into billets. The LHs, of which there are five (two vertical, two horizontal, and one so-

called “booster fire” , are responsible for transportation and eeping the ladles at a
predefined temperature. The emissions of the EAF, LF and LHs flow into the D before exiting

the steel mill. While the LF, CC and D use electricity as energy input, LHs only use natural gas,

and the EAF uses both. A focus has been laid on the forecast of the EAF’s power demand in
this thesis due its high share of power demand in the steel plant. f the steel mill’s power
demand, the EAF uses 82.8%, which is a much bigger share compared to the LF (2.6%), CC

(1.0%), LH (4.0%), and D (9.5%). Due to its small and stable power demand, the CC was not

modelled.

In total, the following methods were developed to forecast the power demand of the EAF of

the steel mill Marienhütte:

• Perfect Forecast using an LSTM

• Perfect Forecast using an MLP

• Recursive Forecast using an LSTM

• Forecast with Delayed Input using an LSTM

• Multistep Forecast using an LSTM

• Forecast with Phased Input using an LSTM

The Perfect Forecast using an LSTM was also employed on the LF, LH, and D. A description of

these methods, the hard- and software used to create them, and the grid search performed

for each of them can be found in the following sections. The data used as input for the models

were provided by Marienhütte and were cleaned for outliers before being used in the

empirical part of this work. Due to data privacy, all data in this thesis will be presented in its

scaled version between 0 and 1.

Empirical Part

PAGE | 44

3.1 Hardware and Software

The code for preparing the data, carrying out the grid searches, and creating the final models

were primarily run in Amazon Web Services’ agema er tudio ab and on a computer of the

Chair of Energy Network Technology at the University of Leoben. Sagemaker Studio Lab is a

cloud computing service with 15 GB of persistent storage and 16 GB of RAM with a runtime of

12 hours for T3.xlarge CPU instances or 4 hours for G4dn.xlarge GPU instances. The in-house

computer can make use of an AMD Ryzen 2400G CPU with 47 GB of RAM and an NVIDIA

GeForce RTX 3070 Ti graphics card. It should be noted that all the models trained faster when

the code was run on a GPU instead of a CPU.

The code was solely written in Python 3.9 using Jupyter notebooks and Spyder as an integrated

development environment. Libraries used were Pandas and NumPy for handling data and

MatPlotLib and Plotly for displaying results. Scikit-learn was used for the preparation of data

and calculating error measures. To further prepare the data and create the neural networks

TensorFlow, an end-to-end open-source platform for machine learning, together with Keras,

an open-source software library that acts as an interface for TensorFlow, was used. For

efficient hyperparameter tuning, applied in the form of a grid search described in section 3.2,

the Ray Tune library was imported. Modules from the standard Python library used are the

math module, the DateTime module, the time module, the os module and the sys module. An

example of the code for the grid search and the final model of the EAF’s Perfect Forecast LSTM

can be found in the appendix (chapter 8).

3.2 Grid Search

Hyperparameter tuning is a non-essential part of constructing machine learning algorithms;

however, it has the potential to improve the accuracy of the model significantly. It is the

process of determining the right combination of hyperparameters to optimise the model

performance. [58]

Multiple techniques can be applied to find these performance-maximising hyperparameters,

including a grid search, manual search, random search, or a Bayesian search among others.

Grid searches are a traditional way to find the best hyperparameters, by going through a

manually given set of hyperparameters. [33, 58]

In this thesis, a grid search was performed for every developed method to find the best model

architecture. The search space was defined as the number of hidden layers and the number

of nodes per hidden layer, meaning the number of nodes in each hidden layer would stay the

same. The number of hidden layers was confined to a maximum of three. While using no

hidden layer would only make the model capable of representing linear separable functions,

Empirical Part

PAGE | 45

Jeff Heaton [59] e plains that “two or fewer layers will often suffice with simple data sets.

However, with complex datasets involving time series or computer vision, additional layers

can be helpful”. E perimental analysis showed that gi en the data, the models’ accuracy did

not increase when using more than three hidden layers. The number of nodes per hidden layer

that were searched were 3, 5, 7, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100. These numbers

of nodes were chosen to be able to cover the number of nodes both between 0 and the

number of input parameters (in most cases: ten), as well as the number of nodes far exceeding

the number of input parameters. If the maximum number of nodes (100) was reached as the

result of a grid search, it was restarted with the search space reduced to the numbers of

hidden layers found in the first grid search, but the number of nodes increased (100, 150, 200,

… . The nodes in different hidden layers were not varied. The reasons for not optimising all

the different hyperparameters that are available are the limitations in computational power

when training numerous models and only increasingly small improvements in the final model.

As described above, the Ray Tune package was used for performing the grid searches. Ray

Tune allows for integration with many machine learning frameworks, including Keras. It

supports distributed training of models, meaning it is possible to train multiple models

simultaneously and thus can make training more efficient. Additionally, the user can choose

among state-of-the-art algorithms for hyperparameter tuning. [60]

One of these algorithms and the one used for the grid searches in this thesis is the

Asynchronous HyperBand scheduler, a trial scheduler. Trial schedulers can terminate bad

trials early, pause and clone trials, and alter hyperparameters of a running trial. The

Asynchronous HyperBand scheduler, also called ASHA scheduler since it implements

Asynchronous Successive Halving, was used as it aggressively terminates low-performing trials

and can therefore lead to reasonably good efficiency when performing hyperparameter

tuning. [61]

All grid searches were performed with a maximum of 30 but a grace period of one epoch. This

means the worst-performing trials were stopped after using the training data set once to

adjust the model’s weights, while the best performing trials could calculate through the

training set up to 30 times. 30 epochs as the maximum were chosen as experimental

approaches showed that improvements in the loss function of the models became increasingly

small with more epochs.

3.3 Perfect Forecast using an LSTM

To differentiate between the various models created to forecast the power demand of the

EAF, a comprehensive nomenclature is introduced. When talking about a Perfect Forecast

LSTM, it is assumed that one has holistic knowledge over the input parameters at the present

Empirical Part

PAGE | 46

point of time (or the point of time that one wants to predict), as well as knowledge over a

certain number of points of time before that. This is called perfect because it does not reflect

reality, especially in the case of an electric steel mill. In reality, it is possible that the input

parameters are not measured and transferred into a data processing system in real-time, and

even if that were the case, this technique could only make a forecast for the current time step.

For this to be a useful forecasting technique, it is necessary to know the exact future course

of the input parameters, which is nearly impossible due to the stochastic operational

behaviour of the EAF.

The function of such a Perfect Forecasting LSTM model is shown in figure 3-1. Here the window

length is 11, meaning the output at t=10 will be based on the input parameters of t=10 and

the outputs of the previous ten points in time. As discussed in section 2.1.6, the LSTM is able

to communicate information between each LSTM cell, thereby can learn structural

dependencies in the time data and, in the end, predict a value for t=10. When training or using

test sets, this prediction can then be compared to the label, the “true” alue at t=10.

Figure 3-1: Schematic representation of how a Perfect Forecast LSTM operates (own illustration based on

[62])

This model was created to predict the power demand, to test the suitability of LSTMs for

predicting data of the steel mill, and to serve as a benchmark against other methods used for

the power demand forecast of the EAF; however, a Perfect Forecast LSTM was also used to

predict the power demand of the LF, LHs and D. The procedure of data preparation is very

similar to that of the EAF and will not be discussed in detail here. The parameters used when

modelling are presented and the results of the forecasts of these aggregates will be shown in

section 4.1.

t = 0 t = 1 t = t = 10

t = 10

t = 10

 nputs

 odel

 redic ons

 abels

Empirical Part

PAGE | 47

3.3.1 Data Preparation and Model Construction

During a period between the 30th of April 2021 and the 30th of June 2021, the power demand,

scrap amount, melting temperature, coal mass flow, and the oxygen volume flow of the EAF

at Marienhütte were measured. In addition, specific states of the EAF were logged (further

called phases): preparation, basket 1, basket 2, basket 3, fining, and tapping.

While the scrap amount, melting temperature, coal mass flow, and the oxygen volume flow

were provided as continuous floating-point values, the different phases of the EAF were

category variables. As the neural network only takes input in the form of integers or floating-

point numbers, the different phases were one-hot encoded. Thereby categorical data are

processed into numerical values, suitable for machine learning algorithms. This means that for

each phase, a new column was generated, that only contained the alue “1” at the specific

minutes where these phases happened, with the rest of the time being set to “0”. This is the

preferred way over simply encoding the phases using specific numbers for each phase, e.g.

“1” for preparation, “2” for basket 1, …, “ ” for tapping. The model could have trouble learning

with data like this, because the absolute difference between 6 and 1 is larger than between 2

and 1, but both of these cases define phases that follow each other.

The output of the model and, therefore, the parameter to be predicted was the power

demand, combining both the natural gas and the electrical power demand of the furnace.

These two forms of power demand were added because in a later stage of the project

DSM_OPT, the share of natural gas and electricity should be optimised, depending on the

different commodity prices. In figure 3-2 the used (and scaled) parameters are shown. These

parameters remained the same for all the different EAF models created in this thesis (with an

exception being the Recursive Forecast, covered in section 3.5) as it was found that using all

of the ten input parameters produced the best performing models.

After screening the data, points of time with missing values were deleted. The data was split

into a training (80%), validation (10%), and test set (10%) without being randomly shuffled

before. This was done to ensure that chopping the data into windows of consecutive samples

is still possible and that the validation and test results are more realistic, as they would be

evaluated on data collected after the model was trained. The data was then scaled to a value

range between 0 and 1 using Scikit-learn’s in a caler. n this step, it was essential to first

fit the scaler only to the training set and then transform the training, validation, and test set

data, as this ensures that no information of the alidation or the test set is “lea ed” to the
model during training.

Empirical Part

PAGE | 48

Figure 3-2: Scaled parameters used for modelling the EAF, time period: 1 day (own illustration)

 e t, the data was brought into a special format ia eras’ class of Time eries enerator to be
used as input for the model. The TimeSeriesGenerator class prepares data in a way that more

than one time step can be used as input. This is possibly through the use of the

hyperparameters “length” and “batch_size”. The length, also often referred to as the window

Empirical Part

PAGE | 49

length, defines how many time steps are used as input for the neural network, while the batch

size, which should not be confused with the physical batches of the EAF, defines after how

many calculations the model weights are updated during training. For the Perfect Forecast

LSTM, the window length was set as 1,440 time steps (equals one day), and the batch size was

set to 64. This batch size was found to work well experimentally, with the additional

characteristic of being a power of 2, which provides advantages in terms of memory

allocations in CPUs and GPUs [63].

The final model was trained with an architecture found through the grid search and consists

of one hidden layer with 70 nodes. LSTM nodes already contain multiple activation functions,

as discussed in section 2.1.6 and as can be seen in figure 2-10, so no further activation function

was introduced in the hidden layers. The output layer contained a linear activation function.

The model included three callback functions, which are objects that perform actions during

training. The first callback function was “ odel hec point”, which ensures that the best
model according to the loss metric of the validation data is saved after training each epoch.

The second callbac was the “Early topping” function with a patience set to 10. This means

that if the model’s accuracy does not improve for ten epochs, the training will be stopped

under the assumption that the model cannot improve anymore. The third and last callback

function reduces the learning rate from 10-3 to 10-4 if, for two epochs, the validation loss does

not decrease, to further improve the model’s performance. Via the gi en loss function, the

model will minimise the MSE in regards to its training (calculated throughout training) and

validation data (recalculated after every epoch). The MSE assigns high penalties to large errors

by squaring the prediction errors and is therefore helpful in preventing significant forecasting

errors [6]. An optimiser that implements the Adam algorithm was used for compiling and

training the model. It is a stochastic descent method, and according to Kingma & Ba [64] it is

“computationally efficient, has little memory requirement, is invariant to diagonal rescaling of

gradients, and is well suited for problems that are large in terms of data/parameters". The

maximum number of epochs for model training was set to 100.

By plotting the loss of the validation data at the end of each epoch over the number of epochs,

one can see that the loss function converges to a minimum pretty quickly after about 20

epochs and only small gains in terms of accuracy are made in the following 60 epochs (figure

3-3). Finally, it is observable that the model does not even train to 100 epochs but stops

training after about 80 epochs due to the EarlyStopping callback.

A Perfect Forecast LSTM model was also trained for the LF. The parameters used for the model

were measured in the same time frame as those of the EAF and are shown in figure 3-4.

Empirical Part

PAGE | 50

Figure 3-3: MSE over training epochs for the Perfect Forecast LSTM of the EAF (own illustration)

Figure 3-4: Scaled parameters used for modelling the LF (own illustration)

The training of the model took 32 epochs and the course of the MSE over those epochs can

be seen in figure 3-5.

Empirical Part

PAGE | 51

Figure 3-5: MSE over training epochs for the Perfect Forecast LSTM of the LF (own illustration)

The LH system of the Marienhütte consists of five ladle heaters altogether (two vertical, two

horizontal and one booster fire). Within the scope of this thesis, one vertical and the booster

fire heater were modelled to see if LSTMs can be used to forecast the power demand of these

units. The input parameter used for the vertical LH was the current temperature of the LF and

is displayed in figure 3-6. Note that for the vertical LH, the time frame has been lengthened

from one day to one week to display the course of the parameters better.

Figure 3-6: Scaled parameters used for modelling the vertical LH (own illustration)

The training over 60 epochs is displayed in figure 3-7.

Empirical Part

PAGE | 52

Figure 3-7: MSE over training epochs for the Perfect Forecast LSTM of the vertical LH (own illustration)

The LH (booster fire) took both the oxygen flow and the temperature as inputs, as can be seen

in figure 3-8.

Figure 3-8: Scaled parameters used for modelling the booster fire (own illustration)

The model was trained for 100 epochs, the training progress can be seen in figure 3-9.

Empirical Part

PAGE | 53

Figure 3-9: MSE over training epochs for the Perfect Forecast LSTM of the booster fire (own illustration)

For creating the model of D, nine different parameters, which are shown in figure 3-11, were

used: the power demand, actual pressure, furnace pressure of the EAF, exhaust gas

temperature, position of the flap, volume of the clean gas, temperature of the clean gas, dust

content of the clean gas, and the external (ambient) temperature. The course of the MSE over

the training epochs is shown in figure 3-10.

Figure 3-10: MSE over training epochs for the Perfect Forecast LSTM of D (own illustration)

Empirical Part

PAGE | 54

Figure 3-11: Scaled parameters used for modelling D (own illustration)

3.4 Perfect Forecast using an MLP

A Perfect Forecast was also tried using a standard feedforward neural network, subsequently

referred to as Perfect Forecast MLP. This was to see if using an LSTM would indeed bring better

Empirical Part

PAGE | 55

performance than an MLP when using the presented time-series data from an electric steel

mill.

Unlike the Perfect Forecast LSTM, the MLP does not take multiple time steps as input, but only

one. The basic function of a Perfect Forecast MLP can be seen in figure 3-12. For each output

step, only one point of time of the input parameters is taken as input.

Figure 3-12: Schematic representation of how a Perfect Forecast MLP operates (own illustration based on

[62])

3.4.1 Data Preparation and Model Construction

The data was prepared in the same way as for the Perfect Forecast LSTM; however, no

TimeSeriesGenerator needed to be applied. The data consisting only of pairs of x- and y-values

(input parameters and power demand) for each time step was then fed into the model with

the architecture that was found to be best by the grid search. This architecture consisted of

three hidden layers with 70 nodes in each hidden layer. The activation function chosen for the

hidden layers was the ReLU activation function. A linear activation function was chosen for

the output node.

The training progress in figure 3-13 shows that the MSE decreased consistently during a large

period of training, especially after about 5 epochs when the learning rate was reduced from

10-3 to 10-4. The model was trained for all 100 epochs.

t = 1

t = 1

t = 1

 nputs

 odel

 redic ons

 abels

t = 0

t = 0

t = 0

Empirical Part

PAGE | 56

Figure 3-13: MSE over training epochs for the Perfect Forecast MLP (own illustration)

3.5 Recursive Forecast using an LSTM

While these so-called Perfect Forecasts are acceptable for same-minute predictions and

explain the difference of basic functions between LSTMs and MLPs, they cannot predict the

future power demand in realistic scenarios for the project DSM_OPT, when the values for the

input parameters are not known because of process-inherent behaviour.

To solve this problem, multiple forecasting methods were developed; the first one is named

Recursive Forecast, which has its name due to the way it forecasts: after the model is trained,

it will predict output values and then take these outputs as input values for the prediction of

the next time step. A prerequisite for this is that the model can only take its outputs as inputs,

which is why the only parameter used in this model for both input and output is the power

demand. The principle of the recursive function can be seen in figure 3-14: the outputs of the

previous time steps are used as inputs for the time steps t=11 and t=12, while t=0 and t=1

would get dropped, respectively, as the window length stays the same.

Empirical Part

PAGE | 57

Figure 3-14: Schematic representation of how a Recursive Forecast operates (own illustration based on [62])

3.5.1 Data Preparation and Model Construction

The only parameter used for this type of forecast was the power demand, both as input and

as output. Additionally, the data was cleaned regarding the idle states of production. Longer

and sometimes unusual periods of time where the production was down (idle states and

Sundays) were removed to get continuous batches from which the model could learn. This is

more important for this type of neural network than for others, as more emphasis is placed

on the time series and less on individual input parameters.

The window length of the model was set to 90 and the batch size set to four. During training,

the model would take the previous 90 values and predict the following value for each data

point. It therefore learned to predict data points one at a time and not recursively. Based on

this model, the final forecast, of which the result is documented in section 4.3, was developed

through recursive application of the trained model. The final model had three layers with 90

nodes per layer.

Other settings not described in this section remained the same as for the Perfect Forecast

LSTM. The model was able to learn quickly, and it took less than 40 epochs for the training to

be stopped due to the loss measure not improving for more than ten epochs (figure 3-15).

t = 0 t = 1 t = t = 10

t = 10

t = 10

t = 11 t = 12

t = 11 t = 12

 nputs

 odel

 redic ons

 abels

Empirical Part

PAGE | 58

Figure 3-15: MSE over training epochs for the Recursive Forecast LSTM (own illustration)

3.6 Forecast with Delayed Input using an LSTM

Another idea was to predict the power demand based on input parameters further in the past.

This means that because the batches in the steel mill follow a similar characteristic, the input

parameters of past batches can be used for predicting future batches. The basic operating

principle of this type of forecast can be seen in figure 3-16, with a delay of ten time steps. This

type of forecast has the advantage that the data measured, e.g. during the previous week (t=0

to t=10) can be used as the model’s input at the beginning of the actual week that should be

forecasted (starting at t=20).

Figure 3-16: Schematic representation of how a forecast with delayed input operates (own illustration based

on [62])

t = 0 t = 1 t = t = 10

t = 20

t = 20

 nputs

 odel

 redic ons

 abels

Empirical Part

PAGE | 59

3.6.1 Data Preparation Model Construction

For this forecasting technique, two individual models have been created through separate grid

searches, one for a time delay of one week and the other for a time delay of the median time

of one batch: 41 min. The time delay of one week makes sense to be able to forecast one week

into the future; a more minor time shift (roughly one batch) was tried to see if a model would

better handle these smaller shifts.

The data used in the section for the Recursive Forecast, which had been cleaned of idle states

and Sundays, was further prepared by letting the first value be the start of the production

week on the night of the first Sunday to Monday. This ensured the start of a new batch and a

new week for the model. The ten input parameters were shifted either 8,971 min of one week

or 41 min for the delay of one batch. It has to be noted that the time shift of one week was

not 10,080 min but less because the idle states and most of Sunday were deleted. The

8,791 min corresponds to the minutes from the start of the first whole production week to

the second production week in the measurement data. The rest of the hyperparameters were

set the same way as in the Perfect Forecast LSTM (section 3.3).

The final model of the 1 Week Delayed Input Forecast had hidden layers with three nodes

each, while the final model of the 1 Batch Delayed Input Forecast had one hidden layer with

25 nodes. The history of their training is displayed in figure 3-17 and figure 3-18.

Figure 3-17: MSE over training epochs for the Delayed Input Forecast (1 week) (own illustration)

Empirical Part

PAGE | 60

Figure 3-18: MSE over training epochs for the Delayed Input Forecast (1 batch) (own illustration)

As seen in these two similarly looking figures (in both, figure 3-17 and figure 3-18, the MSE

drops sharply and rises again afterwards), the models are not trained for more than 20 epochs,

as they cannot improve their performance anymore.

3.7 Multistep Forecast using an LSTM

The forecasting models created thus far share one similarity in that they only forecast one

time step at a time, as even the Recursive Model is trained to only predict one time step after

the other. The aim of this Multistep Forecast is to predict multiple time steps from a given set

of inputs. This is also shown in figure 3-19, where the number of outputs is set to three.

Figure 3-19: Schematic representation of how a Multistep Forecast operates (own illustration based on [62])

t = 0 t = 1 t = t = 10

t = 10

t = 10

t = 11 t = 12

t = 11 t = 12

 nputs

 odel

 redic ons

 abels

Empirical Part

PAGE | 61

The thought behind this type of forecast was similar to that of the Recursive Forecast

presented in section 3.5 and the Delayed Input Forecast presented in section 3.6: To predict

future values without knowing the input parameters at the point of time that should be

predicted. In this case, the problem with predicting one week of output values is that a

forecast of 10,080 output values would be extensive given the training data of 60,496 min.

Additionally, it can be assumed that a model would not be able to learn this number of

outputs, even if the training data was larger.

3.7.1 Data Preparation and Model Construction

The dataset used as input for the model was again the set cleaned from idle states and

Sundays. The data was then structured in a way to have 720 input values (window length)

paired with the following 41 output values (output length, which corresponds to the median

of the batch lengths). The batch size of the model was chosen as two. The rest of the settings

for data preparation and setting up the model remained the same as in the Perfect Forecast

LSTM. The final model, found to perform best by the grid search, had two hidden layers and

150 nodes per layer. The model was trained in a short amount of time (under 40 out of 100

epochs), as shown in figure 3-20.

Figure 3-20: MSE over training epochs for the Multistep Forecast (own illustration)

3.8 Forecast with Phased Input using an LSTM

The question arised if it is possible to sample values for the input parameters out of past

measurements and create a time series of input parameters that can then predict the

continuous and time-resolved power demand. The problem with going about this technique

is however that the differences between the values of input parameters are significant

Empirical Part

PAGE | 62

between different phases (e.g. there is no coal flow in the preparation phase, but there is a

big coal flow in the fining phase) and even in a single phase, the parameters do not remain

constant.

However, it was tried to create a model with constant input parameters throughout one phase

of a batch. So, while each minute of a single batch’s phase used the same input parameters,

the LSTM could potentially still learn the time series of the power demand and return the

power demand as a continuous time-resolved variable. The main way how this forecasting

technique works is shown in figure 3-21. Here t=10 is predicted through the input parameters

of t=10 and the ten previous time steps. In contrast to the Perfect Forecast LSTM, presented

in section 3.3, the input parameters of the previous time steps are not unique. Rather, they

are grouped according to their phases, where the input parameters remain the same for each

phase (indicated by the same shade of blue for time steps of the same phase).

A standard feedforward network would not be able to return the power demand in a time-

resolved manner; instead as the input parameters only change with each phase, the power

demand would also remain the same in-between phase changes.

Figure 3-21: Schematic representation of how a Phased Input Forecast operates (own illustration based on

[62])

3.8.1 Data Preparation and Model Construction

In order to train this model, the recorded data had to be prepared in a special way: For each

phase in every batch, the mean of each input parameter was calculated so that in the end, all

ten input parameters stayed the same throughout a phase in one batch. The power demand

t = 10

t = 10

t = 10
 phase n

t =
 phase n

t = 1
 phase 1

t = 0
 phase 1

t =
 phase n

t = 8
 phase n nputs

 odel

 redic ons

 abels

Empirical Part

PAGE | 63

used to train the model stayed in a time resolution of minutes. This data was then used to

train the model.

The creation of a TimeSeriesGenerator class for the data and the model settings stayed the

same as section 3.3 except for the number of nodes in the hidden layer, which was set to 90.

The course of model training can be seen in figure 3-22.

Figure 3-22: MSE over training epochs for the Phased Input Forecast (own illustration)

While this course of action was essential to train the model, it does not help produce forecasts

without knowing the actual input parameters in advance. Instead, what is possible with this

method is to predict the future power demand via generated input values for each phase. The

inputs are generated for each phase and not each minute because the input values are very

dependent on the phase of operation, but in a minute resolution they are mostly random.

In a first step, generating the input parameter time series was done by creating a histogram

of each input parameter for each phase. These histograms were cleaned of outliers, and due

to the underlying physical process, some inputs were set to specified values; for example, the

coal flow in the preparation phase was set to 0 as any other value would not make sense

because of the process characteristics. In the next step, the duration of the different phases

for all the measured batches were calculated, and again histograms with these values were

created. Using the created histograms, values were sampled stochastically for the duration of

each phase. Each time step and phase was then filled with the other input parameters, also

stochastically sampled from the created histograms. This way, a whole time series was

generated from the distributions of past input parameters and the duration of phases. To

compare the results of the model using this stochastically sampled, generated timeline,

another time series was created using only the mean of the input parameters and the mean

of the duration of the phases.

Results

PAGE | 64

4 RESULTS

This chapter covers the results of the neural networks used to forecast the power demand of

the EAF. Additionally, the Perfect Forecast LSTM was trained and applied to data of the LF,

LHs, and D to predict their power demand. The chapter also discusses the specific models

covered, including their training and their performance.

The error measures chosen to compare the different forecasting methods were the RMSE, the

RMSE of resampled 15 min values “15min- E” , and the mean difference. The RMSE is one

of the standard ways to measure the error of a model in predicting quantitative data [65] and

is often used in time series forecasts in the energy industry [6, 66]. Additionally, it is an error

measurement of interest for the models created in this thesis, as the objective was to

minimise the MSE during training. The RMSE is defined as the square root of the MSE:

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √1𝑛 ∙ ∑(𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=0

(4-1)

with 𝑛 being the number of features in a subset and (𝑦𝑖 − 𝑥𝑖) being the difference between

the experimental result and the actual value. This returns the RMSE of the minute-resolved

outputs that the model produces. However, it is sometimes the case that the model predicts

a batch or a phase one minute earlier or later than in reality. Additionally, for the

implementation of forecasting techniques in the DSM_OPT project, it is crucial to be as

accurate as possible over a time window of 15 min (electricity is purchased in 15-minute-

blocks and the electricity price depends on the maximum power demand of 15 minutes

throughout the year); however, not necessarily on a minute basis. This is why for the 15min-

RMSE, both the test data and the predicted values were resampled to their mean of 15 min,

and the RMSE of these two data series was calculated. Furthermore, to compare the

correctness of the forecasts, the mean of both the test data and the predicted values were

determined and their difference calculated. This leads to the mean (signed) difference, a

measure of central tendency. An overview of these error measures for the forecasting

techniques is displayed in table 4-1.

Results

PAGE | 65

Table 4-1: Overview of different error measures for the forecasting types

Section Type of Forecast RMSE 15min-RMSE Mean Difference

4.1 Perfect Forecast LSTM EAF 0.14 0.07 -1 × 10-3

4.1 Perfect Forecast LSTM LF 0.25 0.08 -5 × 10-3

4.1 Perfect Forecast LSTM LH (vertical) 0.05 0.04 0.01

4.1
Perfect Forecast LSTM LH (booster

fire)
0.07 0.02 -4 × 10-3

4.1 Perfect Forecast LSTM D 0.05 0.03 -9 × 10-3

4.2 Perfect Forecast MLP 0.17 0.07 -0.01

4.3 No Input Forecast 0.15 0.05 -3 × 10-3

4.3 Recursive Forecast 0.49 0.32 -0.08

4.4 Delayed Input Forecast (1 week) 0.34 0.20 0.01

4.4 Delayed Input Forecast (1 batch) 0.31 0.17 -0.01

4.5 Multistep Forecast 0.28 0.14 -5 × 10-3

4.6 Phased Input Forecast 0.15 0.07 -0.01

4.6
Phased Input Forecast with Mean

Values as Input
0.52 0.36 0.11

4.6
Phased Input Forecast with

Stochastically Generated Input
0.45 0.29 -0.01

4.6

Phased Input Forecast with

Stochastically Generated Input and

aligned batches (5 batches)

0.42 0.24 -0.01

4.6

Phased Input Forecast with

Stochastically Generated Input and

aligned batches (1 batch)

0.24 0.06 -0.01

For forecasting and comparison purposes, the test data was used. This is best practice, as the

test data has not influenced the model in the choice of hyperparameters or during training

and is, therefore, “unseen” data by the model. This resembles a realistic scenario for the

implementation of these forecasting models.

Results

PAGE | 66

4.1 Perfect Forecast using an LSTM

4.1.1 Electric Arc Furnace

Predicting the power demand of the EAF using the Perfect Forecast LSTM led to an RMSE of

0.14, with the RMSE of the 15 min resampled values being 0.07. The mean difference of the

predictions to the actual values was -1 × 10-3. The predicted power demand of five batches is

compared to the true data in figure 4-1. Five batches were chosen for visualisation purposes

and make the diagrams more comprehensible than a plot of all the test data. The error

measures were applied to all of the test data nonetheless. This applies to all of the following

diagrams.

Figure 4-1: Predicted and true power demand of the EAF using a Perfect Forecast LSTM (own illustration)

Comparing the forecast and the test data (figure 4-1), it is observable that the predicted time

series is a lot smoother than the true future in that there are no oscillations in the range of

the maximum power demand (0.75-1.00). This phenomenon will also be observable when

looking at the results of the other forecasting techniques. It could mean that these oscillations

are mostly random, the model was not able to learn them and could further lead to the

conclusion that by trying not to overfit, the model is still able to generalise well, which results

in an RMSE of 0.14. Another option could be that the data that explains these oscillations is

not available in any of the measured parameters. The RMSE is higher than the 15min-RMSE

because indi idual time steps are compared: sometimes the “ alleys” and “pea s” are not
predicted as precisely as they are in reality, and sometimes these valleys and peaks are also

time-delayed by a few minutes between the predictions and the true values. This can be seen

in the last batch of figure 4-1, for example. These effects can lead to a large RMSE. The 15min-

RMSE, on the other hand, is lower, which is easily explained due to the nature of the mean

Results

PAGE | 67

being calculated over the span of 15 min and therefore not having to deal with problems of

slightly wrong forecasted “pea s” and “ alleys” in the time sequence.

4.1.2 Ladle Furnace

When applying the Perfect Forecast LSTM to the LF, the RMSE is 0.25, the 15min-RMSE is 0.08,

and the mean difference is -5 × 10-3. The time series of the predictions and true values are

shown in figure 4-2.

Figure 4-2: Predicted and true power demand of the LF using a Perfect Forecast LSTM (own illustration)

When looking at the different parameters of the LF, there is no apparent correlation between

any of the input parameters and the power demand (figure 3-4), instead the power demand

seems wholly independent and random from other measurements. This randomness is also

visible when looking at the results illustrated in figure 4-2, as the model could not learn any

correlations between the inputs and the output or find regularities in the time series. The

inability to learn any information about the output from the inputs is also reinforced by the

short training time seen in figure 3-5.

4.1.3 Ladle Heaters

The prediction of the power demand of the vertical LH using an LSTM leads to an RMSE of

0.05, a 15min-RMSE of 0.04 and a mean difference of 0.01. The course of the power demands

is displayed in figure 4-3.

The model of the vertical LH was only given one input parameter, the temperature (figure

3-6), and one can already see that there is a correlation between the temperature of the

heater and its power demand to some extent. The model learned these dependencies

successfully, as shown in figure 4-3 and by looking at the error measures. However, the true

Results

PAGE | 68

data shows considerable oscillations, which the model could not reproduce; instead, the

model generalised the outputs. This inability to learn the oscillations could also explain the

validation loss over the training periods, which did not decrease consistently (figure 3-7). The

model may have found the generalised outputs within a few epochs of training but may have

had trouble dealing with the oscillations.

Figure 4-3: Predicted and true power demand of the vertical LH using a Perfect Forecast LSTM (own

illustration)

The power demand of the booster fire LH was also predicted using a Perfect Forecast LSTM

and resulted in an RMSE of 0.07, a 15min-RMSE of 0.02, and a difference of means of

-3 × 10-3. The prediction, as well as the actual values, are shown in figure 4-4.

Figure 4-4: Predicted and true power demand of the booster fire LH using a Perfect Forecast LSTM (own

illustration)

Results

PAGE | 69

The booster fire could also be modelled through an LSTM, as can be seen by the results

produced in figure 4-4. Like the vertical LH, the temperature input of the booster fire shows a

good correlation with the power demand (figure 3-8) but without any oscillations. Therefore,

the model was able to consistently learn over 100 epochs and decrease its MSE (figure 3-9).

4.1.4 Dedusting

The course of the predicted and true future of the D are shown in figure 4-5. Quantitatively,

the model produced a forecast with an RMSE of 0.05, a 15min-RMSE of 0.03, and a mean

difference of -9 × 10-3.

Figure 4-5: Predicted and true power demand of the D using a Perfect Forecast LSTM (own illustration)

When modelling D, multiple input parameters were used (figure 3-11). While the error

measures showed promising results, one can see that the time series of the predictions do not

accurately align with the actual values (figure 4-5). Instead, both, predictions and actual

values, oscillate around almost the same mean with a relatively small amplitude, which leads

to the low error measures.

4.2 Perfect Forecast using an MLP

The Perfect Forecast MLP that used a feedforward neural network to predict the output

parameter resulted in an RMSE of 0.17, a 15min-RMSE of 0.07 and a mean difference of -0.01.

Figure 4-6 shows the time series of the true values and the predictions for the first five batches

of the test data.

Results

PAGE | 70

Figure 4-6: Predicted and true power demand of the EAF using a Perfect Forecast MLP (own illustration)

In contrast to the Perfect Forecast LSTM and other LSTM models, the MLPs trained in the grid

search and the final Perfect Forecast MLP took less time per epoch to train. However, they

need more epochs to finish training, as can be seen in figure 3-13, where the MLP trained for

all 100 epochs with the MSE continuously decreasing. Another interesting feature of the final

Perfect Forecast MLP was that it had three layers, despite literature stating that two hidden

layers are usually enough and the input of the other LSTM models being more complex, but

still having less hidden layers. The MLP was created to contrast LSTMs and to ensure that the

right subtype of neural network is chosen for predicting the power demand. Comparing figure

4-1 and figure 4-6, it is observable that the MLP often has problems predicting baskets 2 and

 as there are sometimes “steps” to the ma imum range, and the course of the predicted
power demand is not as “undisrupted” as in the test data or when using the T s. The
quantitative data also shows that the MLP underperforms in contrast to the LSTM: the 15min-

RMSE is the same (0.07); however, both the RMSE and the difference of means are higher for

the MLP.

4.3 Recursive Forecast using an LSTM

The model that was created during training for the Recursive Forecast LSTM took no input

other than the past 90 energy values and predicted the following value. Due to this, the

training model created was named No Input Forecast. Its RMSE is 0.15, the 15min-RMSE 0.05,

and the mean difference is -3 × 10-3. Figure 4-7 shows the true and predicted values for the

test set.

To talk about the Recursive Forecast, which could theoretically be implemented to predict

multiple time steps in advance, it is essential to first look at the trained model, the No Input

Results

PAGE | 71

Forecast. Despite this model only taking one input parameter, the model architecture was of

considerable size with three hidden layers and 90 nodes per hidden layer. The model can

predict the power demand of one time step ahead given the past 90 time steps, as can be seen

in figure 4-7 and through the quantitative data, even outperforming the Perfect Forecast LSTM

in two of the three error measures.

Figure 4-7: Predicted and true power demand of the EAF using an LSTM without input parameters (own

illustration)

The Recursive Forecast was produced using the same model. However, using the No Input

Forecast model to create a Recursive Forecast, where the model’s outputs are used as inputs
for the following time steps, does not yield as good results. Its RMSE was 0.49, the 15-min

RMSE 0.32 and the mean difference -0.08. The time series of the forecast and the test set are

displayed in figure 4-8.

After a short period at the beginning where the predictions are still in sync with the true

values, the forecast becomes asynchronous to the actual batches, and the predicted batches

start to look similar to each other. Most likely, the predicted values are quite general to avoid

overfitting; however, that means after only a few batches an equilibrium is reached, where

due to the past always staying the same, the future is always predicted in the same way. This

also results in a higher RMSE, 15min-RMSE, and mean difference for the Recursive Forecast.

As the machine learning model works on a statistical basis and does not introduce any random

elements, it will not change the output, given a fixed set of inputs. Furthermore, what is

assumed in this forecasting technique is that the output value at a certain point in time

depends on the last 90 time steps (about two batches). In reality, the batches are independent

of one another and depend on the process control in part of an automated computer system

and to another part of the human operating this computer system. While the underlying

Results

PAGE | 72

assumptions are thus incorrect, the model could learn hidden patterns in the data. However,

it was not able to reproduce them recursively.

Figure 4-8: Predicted and true power demand of the EAF using a Recursive Forecast (own illustration)

4.4 Forecast with Delayed Input using an LSTM

The Delayed Input Forecast with a 1-week difference between inputs and outputs features an

RMSE of 0.34, a 15min-RMSE of 0.20 and a difference of means of 0.01. Figure 4-9 shows the

course of its prediction against the values of the test set.

Figure 4-9: Predicted and true power demand of the EAF using a forecast with delayed input (1 week) (own

illustration)

The same is shown in figure 4-10 for the delayed input of 41 min or 1 batch. Its RMSE is 0.31,

its 15min-RMSE is 0.17, and the difference of means is -0.01.

Results

PAGE | 73

Figure 4-10: Predicted and true power demand of the EAF using a forecast with delayed input (1 batch) (own

illustration)

The Delayed Input Forecast aimed to use past inputs to predict future power outputs. When

looking at both figure 4-9 and figure 4-10, one cannot recognise a resemblance between the

predicted values and the true values; instead, the predicted values seem to be completely

independent of the real values. When looking at the training loss over the epochs for both

forecasting models (figure 3-17 and figure 3-18), one can see that the training does not take

long (less than 20 epochs) and that the MSE at the end remains high in comparison to that of

other models. This concludes that the model cannot learn the correlations between the inputs

and the outputs. Given that the inputs have been time-shifted 1 week or 41 min in relation to

the outputs, the input parameters do not align anymore with the outputs in a timely manner,

and therefore, the model cannot learn. Even when only shifting the parameters by 1 batch

(41 min), they are technically only shifted by the median duration of the batches, which means

that the phases of the inputs and the outputs are never precisely aligned. For example, the

preparation phase of the input parameters might be shifted and aligned to an output of the

first basket, which is very different in terms of power demand. The inability of the models to

learn is also reflected in their error measures, which are significantly worse than those of the

Perfect Forecast LSTM.

4.5 Multistep Forecast using an LSTM

The Multistep Forecast produced predictions with the following error results: an RMSE of 0.28,

a 15min-RMSE of 0.14 and a mean difference of -5 × 10-3. The time series of the predictions,

as well as the test data, is presented in figure 4-11.

Results

PAGE | 74

Figure 4-11: Predicted and true power demand of the EAF using a Multistep Forecast (own illustration)

The sequence of the predicted input of the Multistep Forecast (figure 4-11) shows similarities

to that of the Delayed Input Forecast in that the model apparently cannot predict the

individual phases of the batch. Despite this, the length of the batch is often predicted

correctly, as can be seen in the sharp declines in power demand. The course of training,

depicted in figure 3-20, shows that the model learns for less than 40 epochs in an MSE range

significantly higher than that of other models. Thus, the model could not learn the correlation

between the 41 output values and the inputs. A reason for this could be that the 41 min are

very irregular (always a different combination of phases) and do not provide a solid basis of

data for the model to learn dependencies to the previous time steps of the input. While these

error measures are not as high as those of the other models that did not learn, like the Delayed

Input Forecast or the Recursive Forecast, they are still significantly higher than those of the

Perfect Forecast LSTM.

4.6 Forecast with Phased Input using an LSTM

Using phased input instead of time-resolved input returns predictions with an RMSE of 0.15,

a 15min-RMSE of 0.07, and a mean difference of -0.01. Figure 4-12 shows the forecast.

Looking at the model that was trained using the phased input, one can see (figure 4-12) that

the predictions match the actual values, meaning that even though the model takes the same

inputs for each time step in a phase, the LSTM nodes can learn the sequences in the data and

vary the outputs according to the course of the batches. Quantitatively, the results of the

Phased Input Forecast are in the same range as those of the Perfect Forecast LSTM. They show

that only varying the inputs for each phase, and not minute-wise, is also a viable option for

creating minute-resolved power demand forecasts. The only problem with the

Results

PAGE | 75

implementation of this method is, again, that the input parameters are not known in advance

for the following week or the future in general, even if it is the nearest future.

Figure 4-12: Predicted and true power demand of the EAF using a Phased Input Forecast (own illustration)

When using the mean values of the input parameters of each batch as input for the model the

RMSE increases to 0.52, the 15min-RMSE to 0.36 and the mean difference to 0.11. Figure 4-13

shows the predicted and actual time series.

Figure 4-13: Predicted and true power demand of the EAF using a Phased Input Forecast with mean values as

input parameters (own illustration)

Since the power demand can be predicted using phased input, the model used the inputs of

the mean of all past phases, as well as their mean durations, for generating a forecast. The

time series of the forecasts using this generated input shown in figure 4-13 has two apparent

Results

PAGE | 76

aberrations: the predictions are repetitive for each forecasted batch, and they are out of sync

with the true values. The first phenomenon can easily be explained by the fact that the model

inputs for a batch always remain the same for the whole time series. The second

phenomenon, the predicted and true batches being out of sync, happens because the

durations of the batches in real time do not always stay the same as they do for the input

parameters. The durations of the forecasted and true phases are thus misaligned. The reason

for the higher mean difference can only be explained by the fact that while the means of the

phases were taken as input for the model, they do not generate the mean of outputs but are

skewed towards producing output values that are in general higher than the true values.

In a next step, probability distributions were created for each input parameter of each phase.

The parameters for each phase were then sampled from these distributions, creating an

artificial time series of input parameters. The forecast created using these input parameters

can be seen in figure 4-14, with a similar characteristic as the previously described forecast

using mean values: the batches of the forecasts and the test data asynchronous. While the

stochastically generated input forecast resulted in better error measures (RMSE: 0.45, 15min-

RMSE: 0.29, mean difference: -0.01), it was still far off the benchmark model (Perfect Forecast

LSTM).

Figure 4-14: Predicted and true power demand of the EAF using a Phased Input Forecast with stochastically

generated input (own illustration)

The problem was not the quality of the individual input parameters, as given a set of input

parameters, the model could calculate a realistic prediction. However, the difference in

duration of the batches led to the forecasts and test data being out of sync. To counter this

problem, an algorithm was developed that realigns the batches at the start of the first basket

Results

PAGE | 77

and cuts them when the tapping phase of the last batch starts. Two lengths of batch sets were

chosen: 5 and 1.

Aligning the starts of the batches every fifth batch, for example, leads to an RMSE of 0.42, a

15min-RMSE of 0.24 and a mean difference of -0.01. The course of five batches that were

aligned at the start of the first basket of the first of five batches is shown in figure 4-15.

Figure 4-15: Predicted and true power demand of the EAF using a Phased Input Forecast with stochastically

generated input, batches are aligned every 5 batches (own illustration)

The set of 5 was chosen to compare qualitatively and quantitatively to the other Phased Input

Forecasts, where five batches are displayed (figure 4-12, figure 4-13 and figure 4-14). As

shown in figure 4-15 the first batches of the predicted and true values are almost entirely in

sync; however, the higher the number of the batch, the less aligned the values are.

Nonetheless, the realignment leads to a lower RMSE and a lower 15min-RMSE compared to

the non-aligned method. The mean difference remained the same, as the forecast of the

stochastically generated input parameters did not change but was realigned.

When aligning the start of every batch, the RMSE is 0.24, the 15min-RMSE is 0.06, and the

mean difference is -0.01. The time series of the predicted and true values of one aligned batch

is displayed in figure 4-16.

Results

PAGE | 78

Figure 4-16: Predicted and true power demand of the EAF using a Phased Input Forecast with stochastically

generated input, where the batches are aligned after every batch (own illustration)

The set of 1 was chosen to see how good a forecast can be achieved by realigning every batch.

In figure 4-16 the same phenomenon as in the set of 5 (figure 4-15) can be seen, although on

a smaller scale: While the phases of the first and second basket are well aligned, there is a

discrepancy in basket 3 and the fining phase due to the difference in their expected (or

stochastically determined) versus their actual duratio. The mean difference stayed the same

again with -0.01, as the forecasts did not change but were realigned. While the RMSE is still

higher than that of the Perfect Forecast LSTM, it is significantly better than the other

forecasting techniques that could realistically be implemented. The 15min-RMSE is even

better than that of the Perfect Forecast LSTM; however, it has to be noted that the calculation

of this error measure is skewed: to calculate the 15min-RMSE a mean over 15 min is created

and their values are compared using the formula in (4-1). If the longer batch is 47 min long,

only three means are calculated: from minute 0 to minute 15, 15 to 30 and 30 to 45. The last

2 min values are dropped. Similarly, if the longer batch is 42 min long, only the means from

minute 0 to 15 and 15 to 30 are calculated. In this case, the last 12 min would be dropped.

This calculation method is not a problem for the other forecasting techniques as the time

windows are much larger (five batches or the length of all the test set data). Despite this, the

calculated error measure gives an indication over the performance of the forecast.

Discussion

PAGE | 79

5 DISCUSSION

Due to the nature of LSTMs, the Perfect Forecast LSTM takes input variables of the same point

in time as the output it will predict for. While this way of forecasting is not suitable for a

realistic implementation in the scope of the DSM_OPT project, it can serve as a discussion

point on whether LSTMs are the right tool for time-series prediction of the available data and

as a benchmark for other forecasting techniques.

Using the Perfect Forecast LSTM to predict the future power demand of the aggregates (EAF,

LF, two LHs, and D), it is observable that the technique is a viable option for some but not for

all aggregates. LSTMs were able to model the EAF, the vertical LH, and the booster fire LH.

However, they could not model the LF and the D. This may be because relevant parameters

that provide information about the power demand were not in the input parameters or that

the process of these aggregates is random and cannot be learned through statistical methods.

Regarding the topic of a realistic forecasting scenario, one of the difficulties that arise when

forecasting the power demand of the EAF is that not only the future power demand is

unknown but also the values of the input parameters that are used to forecast the power

demand. Technically, one would first need to predict the input parameters and use those to

forecast the future power demand. However, there is no way to confidently predict the inputs

thousands of time steps into the future. This is the reason why other forecasting techniques

have been developed, including the Recursive Forecast, Delayed Input Forecast, Multistep

Forecast, and Phased Input Forecast.

By looking at the various forecasting techniques, it can be said that another difficulty for

forecasting models, that can also be implemented later on in the DSM_OPT project, arises

mainly because of varying durations of the phases and batches. This makes it impossible for

the Delayed Input Forecast or the Multistep Forecast to learn from the training data and

produce realistic forecasts. In addition to that, the duration of future batches has to be

sampled from a distribution of past values for making forecasts with phased inputs. Thus,

while the course of the batches and input parameters may seem quite regular and predictable

(figure 3-2), they are not; instead, the individual phases and batches are always slightly

different in length by a few minutes.

The independencies between every batch are another problem for forecasting. Due to each

batch being unique, no dependencies can be derived from previous batches, and the time

series of the parameters of each batch is to a certain extent random. The physical process of

the EAF is controlled by an internal program of Marienhütte of which humans can only change

some settings during each batch. Therefore, machine learning can have difficulty finding

patterns over multiple batches.

Discussion

PAGE | 80

A general point that applies to all forecasting techniques is that the model sometimes predicts

slightly negative values instead of 0 for the power demand. This can best be seen in the Perfect

Forecast LSTM (figure 4-1), where after the third displayed batch, the power demand is slightly

lower than 0 instead of 0. While the results of the forecasts were not enhanced by editing

them, this can later in the implementation phase of the forecasts be done by setting all the

negative values of the output array to 0 (by using NumPy’s .clip function, for example).

The grid search, conducted for each forecasting technique, had the aim of finding the best

neural network architecture. While it is not possible to exactly quantify the performance

improvement after a grid search, in general the error measures were able to improve by about

15%. The model can further be perfected by performing a grid search over more

hyperparameters. Due to the time requirement of such a wide-ranging grid search for multiple

different models, it was not performed as part of this thesis.

Another area of improvement could be the measurement of the data used for training the

model. During the measurement of the parameters, the way of operating the EAF changed for

testing purposes, and more natural gas was used as energy input in the process. This led to a

slight increase in the power demand over the weekend between the 5th and 6th of June 2021,

as shown in figure 5-1. This increase lasted until the end of June.

Figure 5-1: Time series of EAF’s power demand between the 5th and 8th of June 2021, with a regular

production downtime on Sunday the 6th of June (own illustration)

For a perfect model, the training data should always be realistic based on an operation mode

used in the future. Therefore, a recommendation is to only train the final model (that is going

to be implemented) on the first month of training data or remeasure the parameters of the

EAF in its operating condition. In this thesis, all of the data available was used to have more

Discussion

PAGE | 81

data for training, validating, and testing and because the increase in total power demand was

minor (about 5%). Additionally, the training partition of the data was quite large (80%) so that

the models trained got parameters of both operating modes as inputs.

Based on this thesis, it is advised to use a Phased Input Forecast when implementing a

forecasting technique for the power demand of the EAF in the project DSM_OPT. The

conclusion is that the Recursive Forecast, the Delayed Input Forecast, and the Multistep

Forecast were not able to learn the complex time dependencies in batches and could not

handle the random relations between batches. Therefore, it is sensible to sample phased

inputs from a distribution based on recorded data and produce a weekly forecast. While this

data will not accurately predict on minute-resolved power demand for all of the next week,

there are two advantages: the first is that it will create a general load profile of what the power

demand could look like throughout the following week. The second advantage comes with the

realignment of the start of the batches (or better, the first baskets of batches) during

operation. This will ensure that the power demand of every 15 min is predicted as accurately

as possible for the next batch.

A similar approach can be taken when forecasting the power use of the LHs, as the prediction

of their power demands showed great potential when using an LSTM. However, it is advised

to perform individual grid searches for the final models of these aggregates. The LF shows a

random and unpredictable course of power demand that the LSTM could not learn. Therefore,

a stochastic approach is recommended for modelling the power demand of the LF. The input

parameters of D were not able to explain the time course of the power demand. Therefore, a

stochastic or more classical, regressive time-series approach should also be used in this case.

Summary and Future Outlook

PAGE | 82

6 SUMMARY AND FUTURE OUTLOOK

Machine learning is a group of state-of-the-art technologies used for data preparation,

analysis, and modelling. As part of the literary research in this work, seven main machine

learning methods were identified and described: regression analysis, decision trees, Naïve

Bayes, support vector machines, neural networks, clustering, and reinforcement learning.

Additionally, 12 papers in the field of energy system modelling were assessed with respect to

the different models used. The empirical part of this thesis consists of creating different neural

networks to forecast the minute-resolved power demand of aggregates in the steel mill

Marienhütte.

This aster’s thesis was created as part of the project DSM_OPT, which aims to develop a

demand side management tool box for companies to increase energy efficiency and optimise

the integration of renewable energy sources. For this, accurate ways of forecasting the power

demand are ital. This thesis’ goal was to find an appropriate way to forecast the power

demand of four aggregates of Marienhütte: electric arc furnace (EAF), ladle furnace (LF), ladle

heaters (LHs), and dedusting (D). Due to its large power demand, a particular focus was put

on the EAF. The forecasting horizon was chosen to be a minimum of one batch and ideally of

one week.

According to the papers reviewed, neural networks are outstanding and frequently used when

predicting the energy demand of steel mills. Long short-term memory networks (LSTMs) are

special kinds of neural networks that, due to their internal architecture, are very suitable for

predicting time-series data. The empirical part features six main methods of forecasting based

on neural networks, for which an own nomenclature was introduced: Perfect Forecast LSTM,

Perfect Forecast MLP, Recursive Forecast, Delayed Input Forecast, Multistep Forecast, and

Phased Input Forecast.

The Perfect Forecast LSTM was used to see if and how accurate LSTM networks could in

general predict the available time-series data of the Marienhütte and was trained for data of

the EAF, LF, the vertical and booster fire LH, and D. The model’s predictions accuracy for the
EAF and the two LHs were satisfactory; however, the model cannot be used for the LF or D, as

the models could not detect a correlation between the input parameters and their outputs.

The other forecasting techniques developed have the advantage of theoretically forecasting

multiple time steps ahead and could therefore be implemented in an energy forecasting

scenario for Marienhütte. Nonetheless, the prediction accuracy of the Recursive Forecast,

Delayed Input Forecast, and Multistep Forecast were insufficient. Using a Phased Input

Forecast and stochastically generating input from past measurements led to acceptable

results when the batches of the predicted and true data was aligned regularly.

Summary and Future Outlook

PAGE | 83

If a machine learning model is thus used to model the power demand of the different

aggregates of the Marienhütte, it is recommended to utilise LSTMs for the EAF and LHs, while

a stochastical approach should likely be employed for the LF and the D. As for the EAF, the

recommendation is to employ a forecast with phased inputs and generate these inputs

stochastically from past measurements. The forecasts should then be realigned after every

batch to produce the most accurate predictions during operation.

A problem during the creation of the models was that the batches are independent of one

another and the power demand of one batch does not necessarily depend on the power

demand of the previous batch, as each batch is largely controlled automatically via the process

software of Marienhütte. Additionally, even though the batches show regular patterns, their

durations are always different. A problem that can arise during implementation of prediction

models is that there are sometimes downtimes in production, which can neither be planned

nor predicted. These problems cannot be solved without researching and fully understanding

the process software that is used for operating the EAF.

To increase the accuracy of the final model for each aggregate, a grid search could be

performed for each model over all possible hyperparameters. Additionally, multiple neural

networks could be created and an ensemble method (e.g. bagging) could be applied. While

this was not done in this thesis due to the large time requirements for a total of seven different

models, it can be done when one forecasting method has been decided on for

implementation.

Further research could be conducted in the space of time-series forecasting. While machine

learning methods showed great potential for some aggregates, traditional or stochastical

methods can and should also be used for comparison. Markov chains [49] and auto regressive

integrated moving average (ARIMA) models [67], for example, have been used in the iron and

steel and energy industry and can be compared to the neural networks used in this thesis. As

machine learning could not predict the F’s and D’s power demand, these traditional and

stochastical methods should especially be applied to them, to see if superior results are

possible.

For implementing the models in DSM_OPT, the most suitable forecasting horizon should be

determined, as it showed that forecasting one week without knowing input parameters was

not feasible. Furthermore, research on dependencies between different aggregates could be

analysed, e.g. if a standstill of the EAF also leads to a, potentially time-delayed, lower power

demand of the D. This information could improve the performance of the holistic model of

Marienhütte Graz that will be implemented for the whole steel and rolling mill.

Bibliography

PAGE | 84

7 BIBLIOGRAPHY

[1] National Academy of Sciences (2020) Climate Change [Online], Washington, D.C.,

National Academies Press. Available at https://nap.nationalacademies.org/catalog/

25733/climate-change-evidence-and-causes-update-2020.

[2] Alessia De Vita, Izabela Kielichowska, Pavla Mandatowa, Pantelis Capros and Guillaume

Dekelver (2018) Technology pathways in decarbonisation scenarios [Online]. Available

at https://ec.europa.eu/energy/sites/ener/files/documents/2018_06_27_technology_

pathways_-_finalreportmain2.pdf.

[3] Umweltbundesamt Austria's National Inventory Report 2021: Submission under the

United Nations Framework Convention on Climate Change and under the Kyoto Protocol

[Online], Vienna. Available at https://www.umweltbundesamt.at/fileadmin/site/

publikationen/rep0761.pdf.

[4] Pulm, P. and Raupenstrauch, H. (2014) Roadmap Industrie: Energieeffizienz in der Eisen-

und Stahlindustrie, Klima- und Energiefonds der österreichischen Bundesregierung.

[5] yria ides, E. and olycarpou, . 200 ‘ hort Term Electric oad Forecasting: A
Tutorial’, in hen, . and Wang, . eds Trends in neural computation, Berlin, Springer,

pp. 391–418.

[6] Di ina, F., arcía Torres, ., oméz Vela, F. A. and Vázquez oguera, J. . 201 ‘A
Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy

 onsumption rediction in mart Buildings’, Energies, vol. 12, no. 10, p. 1934 [Online].

DOI: 10.3390/en12101934.

[7] dilawar, u., haliq, A. and ureshi, . 2022 ‘E aluating Artificial ntelligence and
 tatistical ethods for Electric oad Forecasting’, International Journal of Innovations in

Science & Technology, 3 special Issue: 4, pp. 59–83 [Online]. Available at https://

ideas.repec.org/a/abq/ijist1/v3y2022i4p59-83.html.

[8] Butt, F. ., ussain, ., ahmood, A. and one, . J. 2020 ‘Artificial ntelligence based
accurately load forecasting system to forecast short and medium-term load demands’,
Mathematical biosciences and engineering : MBE, vol. 18, no. 1, pp. 400–425.

[9] Stahl- und Walzwerk Marienhütte GmbH (2022) Marienhütte: Das Unternehmen

[Online], Graz. Available at https://www.marienhuette.at/das-unternehmen.

[10] ong, T., inson, ., Wang, Y., Weron, ., Yang, D. and Zareipour, . 2020 ‘Energy
Forecasting: A e iew and utloo ’, IEEE Open Access Journal of Power and Energy,

vol. 7, pp. 376–388.

Bibliography

PAGE | 85

[11] Zhang, Y. (ed) (2010) New Advances in Machine Learning [Online], IntechOpen.

Available at https://directory.doabooks.org/handle/20.500.12854/64827.

[12] Richter, S. (2019) Statistisches und maschinelles Lernen, Berlin, Heidelberg, Springer.

[13] Maleki, F., Ovens, K., Najafian, K., Forghani, B., Reinhold, C. and Forghani, R. (2020)

‘ er iew of achine earning art 1: Fundamentals and lassic Approaches’,
Neuroimaging Clinics of North America, vol. 30, no. 4, e17-e32 [Online].

DOI: 10.1016/j.nic.2020.08.007.

[14] Bonaccorso, G. (2018) Machine Learning Algorithms: Popular Algorithms for Data

Science and Machine Learning [Online], Birmingham, Mumbai, Packt. Available at

https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5504925.

[15] Avati, A. (2019) Bias-Variance Analysis: Theory and Practice [Online], Stanford

University. Available at http://cs229.stanford.edu/summer2019/

BiasVarianceAnalysis.pdf (Accessed 20 January 2022).

[16] Ardabili, S., Mosavi, A. and Várkonyi- óczy, A. . 2020 ‘Ad ances in achine earning
Modeling e iewing ybrid and Ensemble ethods’, pringer, ham, pp. 215–227.

[17] Kozak, K. (2020) Statistics using Technology, 3rd edn, Flagstaff, LibreTexts.

[18] Alpaydin, E. (2014) Introduction to Machine Learning, 3rd edn, Cambridge, MIT Press.

[19] Rawlings, J. O., Pantula, S. G. and Dickey, D. A. (2001) Applied regression analysis: A

research tool [Online], 2nd edn, New York, Berlin, Heidelberg, Springer. Available at

http://web.nchu.edu.tw/~numerical/course1012/ra/Applied_Regression_Analysis_A_

Research_Tool.pdf (Accessed 25 January 2022).

[20] Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G.,

Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E.,

Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D. and Lautenbach, S. (2013)

‘ ollinearity: a re iew of methods to deal with it and a simulation study e aluating their
performance’, Ecography, vol. 36, no. 1, pp. 27–46 [Online]. DOI: 10.1111/j.1600-

0587.2012.07348.x.

[21] Frochte, J. (2021) Maschinelles Lernen: Grundlagen und Algorithmen in Python [Online],

3rd edn, München, Hanser. Available at https://www.hanser-elibrary.com/doi/book/

10.3139/9783446463554.

[22] Shalabh, S. Regression Analysis [Online], Kanpur, Indian Institute of Technology Kanpur.

Available at http://home.iitk.ac.in/~shalab/regression/Chapter12-Regression-

PolynomialRegression.pdf (Accessed 26 January 2022).

Bibliography

PAGE | 86

[23] Sharer, Z. (2018) Curve Fitting [Online], Johor Bahru, Universiti Teknologi Malaysia.

Available at https://people.utm.my/zalilah/ (Accessed 3 February 2022).

[24] riyan a inha 201 ‘ ulti ariate olynomial egression in Data ining:
 ethodology, roblems and olutions’, International Journal of Scientific and

Engineering Research, vol. 4, no. 12 [Online]. Available at https://www.researchgate.net

/publication/264425037_Multivariate_Polynomial_Regression_in_Data_Mining_

Methodology_Problems_and_Solutions.

[25] Chen, G. (2020) Polynomial Regression Models [Online], San Jose, San José State

University. Available at https://www.sjsu.edu/faculty/guangliang.chen/Math261a/

Ch7slides-polynomial-regression.pdf.

[26] Waissi, G. Polynomial Regression - Model Testing [Online], Arizone State University.

Available at http://www.public.asu.edu/~gwaissi/ASM-e-book/module404.html

(Accessed 27 January 2022).

[27] usmita ay 201 ‘A Quic e iew of achine earning Algorithms’, 2019

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing

(COMITCon) [Online]. Available at https://www.semanticscholar.org/paper/A-Quick-

Review-of-Machine-Learning-Algorithms-Ray/

8db8166249dfb94dd8d52f88d27917b5755ae049.

[28] Gajewicz-Skretna, A., Kar, S., Piotrowska, M. and Leszczynski, J. 2021 ‘The ernel-
weighted local polynomial regression (KwLPR) approach: an efficient, novel tool for

de elopment of Q A /Q AA to icity e trapolation models’, Journal of

cheminformatics, vol. 13, no. 1, p. 9 [Online]. DOI: 10.1186/s13321-021-00484-5

(Accessed 10 February 2022).

[29] Číže , . and adı oğlu, . 2020 ‘ obust nonparametric regression: A re iew’, Wiley

Interdisciplinary Reviews: Computational Statistics, vol. 12, no. 3 [Online].

DOI: 10.1002/wics.1492.

[30] Cutler, A., Cutler, D. R. and Ste ens, J. . 2012 ‘ andom Forests’, in Ensemble Machine

Learning, Springer, Boston, MA, pp. 157–175.

[31] Haltuf, M. (2014) Support Vector Machines in Credit Scoring, Prague, University of

Economics in Prague [Online]. Available at https://svm.michalhaltuf.cz/ (Accessed 3

February 2022).

[32] Hemayet Ahmed Chowdhury, Md. Azizul Haque Imon, Anisur Rahman, Aisha Khatun and

Md. Saiful Islam (2020) A Continuous Space Neural Language Model for Bengali

Bibliography

PAGE | 87

Language [Online]. Available at https://www.researchgate.net/publication/338621083_

A_Continuous_Space_Neural_Language_Model_for_Bengali_Language.

[33] Elgeldawi, E., ayed, A., alal, A. . and Za i, A. . 2021 ‘ yperparameter Tuning for
Machine Learning Algorithms Used for Arabic entiment Analysis’, Informatics, vol. 8,

no. 4, p. 79 [Online]. DOI: 10.3390/informatics8040079.

[34] undt, ., Johnson, W. ., otthast, W., ar ert, B., ian, A. and Alderson, J. 2021 ‘A
Comparison of Three Neural Network Approaches for Estimating Joint Angles and

 oments from nertial easurement nits’, Sensors (Basel, Switzerland), vol. 21,

no. 13.

[35] an Veen, F. 201 ‘The eural etwor Zoo’, The Asimov Institute, 14 September

[Online]. Available at https://www.asimovinstitute.org/neural-network-zoo/ (Accessed

31 March 2022).

[36] O'Shea, K. and Nash, R. (2015) An Introduction to Convolutional Neural Networks

[Online]. Available at https://arxiv.org/pdf/1511.08458.

[37] anaswi, . . 2018 ‘ and T ’, in Deep Learning with Applications Using

Python, Apress, Berkeley, CA, pp. 115–126.

[38] Olah, C. (2015) Understanding LSTM Networks [Online]. Available at https://

colah.github.io/posts/2015-08-Understanding-LSTMs/ (Accessed 31 March 2022).

[39] Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996) A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise [Online], Institute for

Computer Sccience, University of Munich. Available at https://www.aaai.org/Papers/

KDD/1996/KDD96-037.pdf (Accessed 21 January 2022).

[40] Sutton, R. and Barto, A. Reinforcement Learning: An Introduction [Online], Cambridge,

London, MIT Press. Available at https://web.stanford.edu/class/psych209/Readings/

SuttonBartoIPRLBook2ndEd.pdf (Accessed 10 February 2022).

[41] Azhi odan, A. ., Bhat, A. . . and Jadha , . V. 201 ‘ toc Trading Bot sing Deep
 einforcement earning’, in aini, . ., ayal, ., o ardhan, A. and Buyya, . eds
Innovations in Computer Science and Engineering: Proceedings of the Fifth ICICSE 2017,

Singapore, Springer, pp. 41–49.

[42] Wei, H., Wang, Y., Mangu, L. and Decker, K. (2019) Model-based Reinforcement Learning

for Predictions and Control for Limit Order Books [Online]. Available at https://arxiv.org/

pdf/1910.03743.pdf (Accessed 25 January 2022).

Bibliography

PAGE | 88

[43] h, E. and Wang, . 2020 ‘ einforcement-Learning-Based Energy Storage System

 peration trategies to anage Wind ower Forecast ncertainty’, IEEE Access, vol. 8,

pp. 20965–20976.

[44] Mosavi, A., Salimi, M., Faizollahzadeh Ardabili, S., Rabczuk, T., Shamshirband, S. and

Varkonyi- oczy, A. 201 ‘ tate of the Art of achine earning odels in Energy
 ystems, a ystematic e iew’, Energies, vol. 12, no. 7.

[45] Hahn, H., Meyer- ieberg, . and ic l, . 200 ‘Electric load forecasting methods: Tools

for decision ma ing’, European Journal of Operational Research, vol. 199, no. 3,

pp. 902–907.

[46] arlsson, . ., amuelsson, . B. and Jönsson, . . 201 ‘ redicting the Electrical
Energy Consumption of Electric Arc Furnaces sing tatistical odeling’, Metals, vol. 9,

no. 9, p. 959.

[47] o ačič, ., topar, ., Vertni , . and Šarler, B. 201 ‘ omprehensi e Electric Arc
Furnace Electric Energy onsumption odeling: A ilot tudy’, Energies, vol. 12, no. 11,

p. 2142.

[48] Zhou, D., Gao, F., Guan, X., Chen, Z., Li, S. and Lu, Q. (eds) (2004) Daily Electricity

Consumption Forecast for a Steel Corporation Based on NNLS with Feature Selection,

Singapore, IEEE.

[49] Dock, J., Janz, D., Weiss, J., Marschnig, A. and Kienberger, T. 2021 ‘Time- and

component-resol ed energy system model of an electric steel mill’, Cleaner Engineering

and Technology, vol. 4, p. 100223.

[50] Gajic, D., Savic- ajic, ., a ic, ., eorgie a, . and Di ennaro, . 201 ‘ odelling of
electrical energy consumption in an electric arc furnace using artificial neural networ s’,
Energy, vol. 108, pp. 132–139.

[51] hen, ., iu, Y., umar, . and Qin, J. 2018 ‘Energy onsumption odelling sing
Deep Learning Technique — A ase tudy of EAF’, Procedia CIRP, vol. 72, pp. 1063–
1068.

[52] arlsson, . ., amuelsson, . B. and Jönsson, . . 2020 ‘ sing tatistical odeling to
Predict the Electrical Energy Consumption of an Electric Arc Furnace Producing Stainless

 teel’, Metals, vol. 10, no. 1, p. 36.

[53] arlsson, ., amuelsson, . and Jönsson, . 201 ‘ sing interpretable machine
learning to predict the electrical energy consumption of an electric arc furnace’, Stahl

und Eisen (1881), vol. 139, no. 9, pp. 24–29 [Online]. Available at http://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A1505062&dswid=-6694.

Bibliography

PAGE | 89

[54] lemp a, . and wiate , B. 200 ‘ n Day-Ahead Electricity Forecasting’, Electrical

Power Quality and Utilisation, 2009. EPQU 2009. 10th International Conference on,

pp. 1–5.

[55] Lange, S. Evolutionary Algorithms [Online], Freiburg, Albert-Ludwigs-Universität

Freiburg. Available at https://ml.informatik.uni-freiburg.de/former/_media/documents/

teaching/ss11/ml/04_evolution.pdf.

[56] Durrett, R. (2011) Essentials of Stochastic Processes [Online], Duke University. Available

at https://services.math.duke.edu/~rtd/EOSP/EOSP2E.pdf (Accessed 31 March 2022).

[57] Abdi, H. Partial Least Squares (PLS) Regression [Online], The University of Texas at

Dallas. Available at https://personal.utdallas.edu/~herve/Abdi-PLS-pretty.pdf (Accessed

11 February 2022).

[58] Balaram Panda (2019) Hyperparameter Tuning, University of Auckland [Online].

Available at https://www.researchgate.net/publication/340720901_Hyperparameter_

Tuning (Accessed 10 April 2022).

[59] Heaton, J. (2017) Heaton Research: The Number of Hidden Layers [Online], St. Louis

(Missouri), Heaton Research, Inc. Available at https://www.heatonresearch.com/2017/

06/01/hidden-layers.html (Accessed 15 April 2022).

[60] Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E. and Stoica, I. (2018) Tune: A

Research Platform for Distributed Model Selection and Training [Online]. Available at

http://arxiv.org/pdf/1807.05118v1.

[61] Lisha Li, Kevin Jamieson, Afshin Rostamizadeh, Katya Gonina, Moritz Hardt, Benjamin

 echt and Ameet Talwal ar 2018 ‘ assi ely arallel yperparameter Tuning’ [nline].
Available at https://openreview.net/forum?id=S1Y7OOlRZ.

[62] Time series forecasting (2022) [Online]. Available at https://www.tensorflow.org/

tutorials/structured_data/time_series (Accessed 7 May 2022).

[63] Chollet, F. (2018) Deep learning with Python, Shelter Island, Manning.

[64] Kingma, D. P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization [Online].

Available at https://arxiv.org/pdf/1412.6980.

[65] Tawhid, A., Teotia, T. and Elmiligi, . 2021 ‘ hapter 1 - Machine learning for

optimizing healthcare resources’, in umar, . ed Machine Learning, Big Data, and IoT

for Medical Informatics, San Diego, Elsevier Science & Technology, pp. 215–239.

Bibliography

PAGE | 90

[66] Bo de, . D., Yaseen, Z. . and Andersen, . B. 2020 ‘ForecastTB—An R Package as a

Test-Bench for Time Series Forecasting—Application of Wind Speed and Solar Radiation

 odeling’, Energies, vol. 13, no. 10, p. 2578 [Online]. DOI: 10.3390/en13102578.

[67] Xavier Serrano Guerrero, Luis-Fernando Siavichay, Jean-Michel Clairand and Guillermo

Escrivá Escri á 2020 ‘Forecasting Building Electric onsumption atterns Through
 tatistical ethods’, in Botto-Tobar, M. (ed) Advances in Emerging Trends and

Technologies: Volume 2, Cham, Springer International Publishing AG, pp. 164–175.

Appendix

PAGE | 91

8 APPENDIX

8.1 Grid Search: Perfect Forecast LSTM – EAF

The following code was used to perform the grid search for the Perfect Forecast LSTM model

of the EAF.

Import libraries

import pandas as pd
import numpy as np
import matplotlib as mpl
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
from sklearn.preprocessing import MinMaxScaler
import ray
from ray import tune
from ray.tune.integration.keras import TuneReportCallback
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

np.set_printoptions(linewidth=1000,precision=5)
pd.set_option('display.max.columns', 15)
mpl.rcParams['figure.figsize']=(17, 8)
mpl.rcParams['axes.grid']=True

Read data and choose input parameters

df=pd.read_csv('EAF_cont.csv', sep=';', encoding='cp1252',

 na_values=['#DIV/0!'])

df['timestamp_utc'] = pd.to_datetime(df['timestamp_utc'],

 infer_datetime_format=True)

print("ORIGINAL DF:")
for i in range(0,len(df.columns)):
 print(str(i)+": "+df.columns[i])
 i+=1
print("\t")

df.drop(df.columns[[]], axis=1, inplace=True) #6,7,8,9,10,11,
df.dropna(inplace=True)

df_input = df.drop(df.columns[[0]], axis=1)

print("DF COLUMNS USED FOR MODELLING:")
for i in range(0,len(df_input.columns)):
 print(str(i)+": "+df_input.columns[i])
 i+=1
print("\t")

print(len(df_input))

Scale data and create TimeSeriesGenerators

win_length=1440

Appendix

PAGE | 92

batch_size=64
num_features=len(df_input.columns)-1
num_epochs=30
print(num_features)

data=df_input.to_numpy()

train_set, test_set=train_test_split(data, test_size=0.1, shuffle=False)

train_set, val_set=train_test_split(train_set, test_size=0.11,
shuffle=False)

scaler=MinMaxScaler()

train_scaled=scaler.fit_transform(train_set)

val_scaled=scaler.transform(val_set)

test_scaled=scaler.transform(test_set)

x_train=train_scaled[:,1:]
y_train=train_scaled[:,0]

x_val=val_scaled[:,1:]
y_val=val_scaled[:,0]

x_test=test_scaled[:,1:]
y_test=test_scaled[:,0]

train_generator=TimeseriesGenerator(x_train, y_train, length=win_length,

 sampling_rate=1,
 batch_size=batch_size)

val_generator=TimeseriesGenerator(x_val, y_val,

 length=win_length, sampling_rate=1,
 batch_size=batch_size)

test_generator=TimeseriesGenerator(x_test, y_test,

 length=win_length,

 sampling_rate=1,
 batch_size=batch_size)

Define an objective function

def train_model(config):

 n_nodes=config['n_nodes']

 n_layers=config['n_layers']

 model=tf.keras.Sequential()

 i=0
 while i < n_layers:
 if i==0:
 model.add(tf.keras.layers.LSTM(n_nodes,

input_shape=(win_length, num_features),

 return_sequences=True))

 else:
 model.add(tf.keras.layers.LSTM(n_nodes,return_sequences=True))

 i+=1
 if i==0:
 model.add(tf.keras.layers.LSTM(n_nodes, input_shape=(win_length,

num_features),

 return_sequences=False))

Appendix

PAGE | 93

 else:
 model.add(tf.keras.layers.LSTM(n_nodes, return_sequences=False))

 model.add(tf.keras.layers.Dense(1, activation='linear'))

 model.compile(loss=tf.losses.MeanSquaredError(),

 optimizer=tf.optimizers.Adam(),

 metrics=['MAE', 'MSE', 'MAPE'])

 mycallbacks=[

 TuneReportCallback({'Mean Squared Error': 'MSE'}),

]

 model.fit(train_generator, epochs=num_epochs,

 validation_data=val_generator,

 shuffle=False,

 verbose=1,
 callbacks=mycallbacks)

 print("---DONE---")

Define a search space

search_space = {

 'n_layers': tune.grid_search([0,1,2]),
 'n_nodes':

tune.grid_search([3,5,7,10,15,20,25,30,40,50,60,70,80,90,100])
}

asha_scheduler=tune.schedulers.ASHAScheduler(

 max_t=num_epochs,

 grace_period=1,
 reduction_factor=4,
 brackets=1
)

Start a Tune run and print the best result

if __name__ == "__main__":
 ray.init(num_gpus=1)
 analysis=tune.run(train_model,

 config=search_space,

 metric="Mean Squared Error",

 mode="min",

 resources_per_trial={"gpu": 1},
 scheduler=asha_scheduler,

 verbose=3
)

 print('Best Configuration:', analysis.get_best_config)
 print('Best Trial:', analysis.best_trial)
 print('Logdir of Best Configuration:', analysis.best_logdir)

 df_results = analysis.results_df

 df_results.to_csv('MA_PerfectForecast_LSTM_GridSearch_Results.csv')

Appendix

PAGE | 94

8.2 Final Model: Perfect Forecast LSTM – EAF

The following code was used to create, train and verify the Perfect Forecast LSTM model of

the EAF.

Import libraries

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
from sklearn.preprocessing import MinMaxScaler
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

np.set_printoptions(linewidth=1000,precision=5)
pd.set_option('display.max.columns', 15)

Read data and choose input parameters

df=pd.read_csv('EAF_cont.csv', sep=';', encoding='cp1252',

 na_values=['#DIV/0!'])

df['timestamp_utc'] = pd.to_datetime(df['timestamp_utc'],

 infer_datetime_format=True)

print("ORIGINAL DF:")
for i in range(0,len(df.columns)):
 print(str(i)+": "+df.columns[i])
 i+=1
print("\t")
df.drop(df.columns[[]], axis=1, inplace=True) #6,7,8,9,10,11,
df.dropna(inplace=True)

df.reset_index(inplace=True)

df_input = df.drop(df.columns[[0,1]], axis=1)
print("DF COLUMNS USED FOR MODELLING:")
for i in range(0,len(df_input.columns)):
 print(str(i)+": "+df_input.columns[i])
 i+=1
print("\t")

Scale data and create TimeSeriesGenerators

win_length=1440
batch_size=64
num_features=len(df_input.columns)-1

data=df_input.to_numpy()

train_set, test_set=train_test_split(data, test_size=0.10, shuffle=False)
train_set, val_set=train_test_split(train_set, test_size=0.11,
shuffle=False)

scaler=MinMaxScaler()

train_scaled=scaler.fit_transform(train_set)

val_scaled=scaler.transform(val_set)

test_scaled=scaler.transform(test_set)

Appendix

PAGE | 95

x_train=train_scaled[:,1:]
y_train=train_scaled[:,0]

x_val=val_scaled[:,1:]
y_val=val_scaled[:,0]

x_test=test_scaled[:,1:]
y_test=test_scaled[:,0]

train_generator=TimeseriesGenerator(x_train, y_train, length=win_length,

 sampling_rate=1,
 batch_size=batch_size)

val_generator=TimeseriesGenerator(x_val, y_val,

 length=win_length, sampling_rate=1,
 batch_size=batch_size)

test_generator=TimeseriesGenerator(x_test, y_test,

 length=win_length,

 sampling_rate=1,
 batch_size=batch_size)

Create Single Model

model=tf.keras.Sequential()

model.add(tf.keras.layers.LSTM(70, input_shape=(win_length, num_features),
 return_sequences=False))

model.add(tf.keras.layers.Dense(1, activation='linear'))

mycallbacks=[

 tf.keras.callbacks.ModelCheckpoint('checkpoint_bestmodel.keras',

 save_best_only=True,

 monitor='val_loss', mode='min'),

 tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10,
 mode='min'),

 tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1,
 min_lr=1e-4, patience=2,
verbose=1)
]

model.compile(loss=tf.losses.MeanSquaredError(),

 optimizer=tf.optimizers.Adam(),

 metrics=['MAE', 'MSE', 'MAPE'])

print(model.summary())

Train Model

history=model.fit(train_generator, epochs=100,
 validation_data=val_generator,

 shuffle=False,

 callbacks=mycallbacks)

np.save('history_bestmodel_final.npy',history.history)

print("---DONE---")

Make Predictions

Appendix

PAGE | 96

model.load_weights(filepath='checkpoint_bestmodel_final.keras')

results=model.evaluate(test_generator, verbose=0)
predictions=model.predict(test_generator)

Create final scaled dataset

total_length=len(data)

train_length=len(y_train)

val_length=len(y_val)

test_length=len(y_test)

df_pred_scaled=pd.concat([pd.DataFrame(predictions,

 columns=['Predicted Future

Scaled']),

 pd.DataFrame(y_test[win_length:],

 columns=['True Future Scaled'])],

 axis=1)

df_datetime=df.iloc[-test_length+win_length:,0].reset_index(drop=True)
df_final_scaled=pd.concat([df_datetime, df_pred_scaled], axis=1)

print(df_final_scaled)

df_final_scaled.to_csv('PerfectForecastLSTMEAF.csv')

