
 

 

 

 

 

                                                              

  

Dipl.-Ing. Viorica Sîrghii 

 

The application of modern mathematical 

methods to understand, plan and forecast 

production cost optimization scenarios in 

the late field life 

 

Chair of Petroleum and Geothermal Energy Recovery 

 

 

Lehrstuhl für Modellierung und Simulation metallurgischer Prozesse 
Doctoral Thesis 

May 2022 



- 2 - 
 

 

Affidavit 

I declare on oath that I wrote this thesis independently, did not use other than the specified 

sources and aids, and did not otherwise use any unauthorized aids.  

I declare that I have read, understood, and complied with the guidelines of the senate of the 

Montanuniversität Leoben for "Good Scientific Practice".  

Furthermore, I declare that the electronic and printed version of the submitted thesis are 

identical, both, formally and with regard to content. 

 

___________________                              ______________________________  

Datum/Date              Unterschrift/Signature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.05.2022 



- 3 - 
 

Abstract 

Digitalization has had a significant impact on the complexity of oil and gas operations and has 

remodeled the entire industry. The ever-increasing amount of generated data accompanied by 

the energy transition, compliance with contemporary health, safety, and environmental 

regulations, followed by a cost-efficient production, represent both opportunities and 

challenges for the oil and gas companies nowadays. 

Examples of machine learning and artificial intelligence are everywhere around us and have 

been used for solving complex engineering tasks to bring more efficiency and safety to our 

daily lives and within major industrial operations. 

The aim of this research was to develop a novel approach for predicting and preventing failures 

in wells equipped with artificial lift production systems by using machine learning tools and 

artificial intelligence algorithms based on the extensive amount of data an oil and gas company 

is generating every day. 

Here I created a diagnostic tool for the automatic identification of the sucker rod pump states 

and malfunctions using digitally generated dynamometer cards. The proposed solution based 

on artificial neural networks led to a high precision recognition algorithm which can be used in 

preventing potential well failures and optimized production. 

Another major task was the identification of trends exhibited by the sucker rod pumps’ behavior 

and forecasting future pump states based on the identified trend. Various models have been 

found, tested and the most fitting approach was selected. The selected model was able to 

accurately and reliably predict results, almost identical to the real data points. These 

predictions can be used in daily operations for avoiding potential failures and malfunctions in 

sucker rod pumps, reduce costs, risks, and increase the mean time between failures. 

A novel automatic system for detecting and predicting unwanted events in the sucker rod pump 

operation was created. The results carry high degrees of precision, accuracy, and flexibility, 

which allow the application and extension of the model to other similar cases. 

Presented methods and functionalities based on artificial intelligence techniques have 

demonstrated its power as an enabling technology capable of delivering outstanding outcomes 

and help solve complex problems. 
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Kurzfassung 

Die Welt, in der wir leben, verändert sich in rasantem Tempo. Die Digitalisierung hat die 

Komplexität des Öl- und Gasgeschäfts erheblich beeinflusst und die gesamte Branche 

umgestaltet. Die ständig wachsende Menge an generierten Daten, die mit Energiewende, 

Einhaltung der aktuellen Gesundheits-, sowie Sicherheits- und Umweltvorschriften und einer 

kosteneffizienten Produktion einhergehen; stellt für die Öl- und Gasunternehmen sowohl 

Chance als auch Herausforderung dar. 

Beispiele für maschinelles Lernen und künstliche Intelligenz (KI) sind allgegenwärtig und 

werden für die Lösung komplexer technischer Aufgaben eingesetzt, um mehr Effizienz und 

Sicherheit in unser tägliches Leben und in große industrielle Prozesse zu bringen. 

Ziel dieser Forschungsarbeit war die Entwicklung eines neuartigen Ansatzes zur Vorhersage 

und Verhinderung von Ausfällen in Bohrlöchern, die mit künstlichen 

Aufzugsproduktionssystemen ausgestattet sind, durch den Einsatz von Werkzeugen des 

maschinellen Lernens und Algorithmen der künstlichen Intelligenz für die umfangreichen 

Datenmengen, die ein Öl- und Gasunternehmen täglich erzeugt. 

Die primäre Herausforderung dieser Arbeit war die Entwicklung eines Diagnosewerkzeugs für 

die automatische Erkennung des Zustands und der Fehlfunktionen der Gestängetiefpumpe 

anhand digital erzeugter Dynamometerkarten. Die vorgeschlagene Lösung auf der Grundlage 

künstlicher neuronaler Netze führte zu einem hochpräzisen Erkennungsalgorithmus, der zur 

Verhinderung potenzieller Bohrlochausfälle und zur Optimierung der Produktion eingesetzt 

werden kann. 

Eine weitere wichtige Aufgabe war die Identifizierung von Trends im Verhalten der 

Gestängetiefpumpen und die Vorhersage künftiger Pumpenzustände auf der Grundlage der 

identifizierten Trends. Verschiedene mathematische Modelle wurden getestet, und der 

passendste Ansatz wurde ausgewählt. Das gewählte Modell war in der Lage, genaue und 

zuverlässige Ergebnisse vorherzusagen, die fast identisch mit den realen Datenpunkten sind. 

Diese Vorhersagen können im täglichen Betrieb eingesetzt werden, um potenzielle Ausfälle 

und Fehlfunktionen in Gestängetiefpumpen zu vermeiden, Kosten und Risiken zu reduzieren 

und die mittlere Zeit zwischen Ausfällen zu erhöhen. 

Ein neuartiges automatisches System zur Erkennung und Vorhersage unerwünschter 

Ereignisse beim Betrieb von Gestängetiefpumpen wurde entwickelt. Die Ergebnisse zeichnen 

sich durch ein hohes Maß an Präzision, Genauigkeit und Flexibilität aus, was Anwendung und 

Erweiterung des Modells auf andere ähnliche Fälle ermöglicht. 

Die vorgestellten Methoden und Funktionen, die auf Techniken der künstlichen Intelligenz 

beruhen, haben die Leistungsfähigkeit der KI als eine Technologie gezeigt, die hervorragende 

Ergebnisse liefern und zur Lösung komplexer Probleme beitragen kann. 
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1 Introduction 

 

1.1 Research Problem and Motivation 

We are living in a world that is changing at a very fast pace. Digital technology development is 

affecting every industry. Oil and gas companies are not an exception, especially considering 

these challenging times of transition faced by the energy market at the moment. A safer, more 

sustainable, and cost-efficient production has become the main drivers. In order to ensure 

maximum production levels and minimum down time, newly available technology is 

implemented in daily operations. The areas of application for such advanced methods are 

nearly infinite. Some of the most popular purposes are effectively identifying and predicting 

failures, conducting remote operations, and improving decision making processes overall.  

The result of digitalizing operations is an ever-increasing amount of data that is being 

continuously created. Thanks to technological advancements the challenge of collecting and 

storing such large amounts of data can be easily overcome. Therefore, oil and gas companies 

have been using several sources to generate data such as sensors installed at different points 

in the entire production system and accompanying different operations. Data comes in different 

formats, at varying time intervals, and with diverse complexity levels. Gathered data represents 

valuable information that can be used in endless ways for improving daily operations and 

bringing business worth.   

Nowadays in the world, there are around 2 million active oil wells. In more than half of these 

wells, the reservoir pressure is not high enough in order to produce fluids to the surface. As a 

result, several artificial lift systems are being used. Due to its lower installation costs and longer 

lifetime, sucker rod pumping (SRP) has become the most widely used artificial lift system, 

being present in more than 750,000 wells (PetroWiki), (Fortune Business Insights 2019), 

therefore SRPs represent an inexhaustible source for data generation and application. 

Previous research for the artificial lift segment has shown successful applications for ESP 

optimization by combining an expert system for analyzing sensor data (McLean et al. 1998). 

Others have developed a model for automated dynamometer card reading for SRP (Nazi et al. 

1994), detecting liquid loading (Bouw 2017), and wax precipitation (Adeyemi, Sulaimon 2012) 

. However, despite a rapid development in data-based models for SRP, little efforts have been 

input for identifying the trend in pumps behavior. 

With every cycle, sucker rods are lifting big loads, which put the string under stress at both 

upstroke and downstroke. Additional factors related to the environment like corrosion, scale, 

wax depositions are contributing to wear and lead to abnormal functioning or even failure. In 
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order to prevent such failures, reduce maintenance operations and costs and become more 

sustainable, predicting the failures in SRPs would be of great use for operating companies 

from both technical and economical points of view. 

This main purpose of this work it to develop a novel approach on using SRP data in 

combination with machine learning algorithms to illustrate the benefits of applying data 

analytics on the immense amount of data an oil and gas company can produce, how good is 

the quality of generated information and how it can be applied in order to benefit the company’s 

success by predicting the tendency of SRP performance. 

 

1.2 Outline 

Chapter 2 is dedicated to literature review, describing the general concepts of machine learning 

and incorporates research outcomes related to the topic. Different types of learning models 

and artificial neural networks are explained, as well as all the steps involved starting from data 

acquisition to building models and evaluating their performance. The importance and methods 

for analyzing time series data and its advantages are also described. Followed by examples 

of application in several industries with a larger focus on the oil and gas sector.  

Chapter 3 lists the possibilities of applying machine learning in oil and gas industry, as a 

general concept and per sector, as well as in other industries. 

Chapter 4 refers to data acquisition. It describes the sources from where the data comes from, 

in which formats and types. All the ways needed to assess, manage, and integrate received 

information are explained in detail. 

Chapter 5 presents one of the most challenging parts of this work, data visualization. It is 

illustrated how challenging it can be to manage a large amount of data. An overview of the 

measurements frequency is illustrated and how judging solely on this one can already extract 

some valuable messages regarding pump’s operation.  

Chapter 6 describes the features that have been calculated in order to describe every 

measurement and further use as input for training artificial neural networks. All categories of 

features are described, challenges encountered in the process of selection, calculation and 

evaluation are also included. 

In chapter 7 the models built for identifying measurements quality are presented. An overview 

of trained models, including their architecture, data preparation, results evaluations are given. 

The criteria for the best performing model is described followed by its application. Finally, the 

outcome is illustrated, and results are discussed. 
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Similar to chapter 7, chapter 8 is dedicated to trained artificial neural network models but this 

time they are used for identifying normal and abnormal behaviors in SRPs. All scenarios are 

presented, causes, challenges and results are discussed, as well as further application for 

trend analysis. 

Chapter 9 incorporates the methodology used for the trend identification and forecasting. 

ARIMA model used for trend analysis is explained in detail. Main challenges related to data 

frequency and applied solutions are addressed. Finally, examples of identified trends and 

forecasted values are illustrated. 

All results, challenges and findings are summarized and described in chapter 10 which 

includes conclusions and recommendations. 

Sources, references and appendices can be found at the end of this report. 
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2 Literature Review 

Within the last years, the fast advancement of information technology and data availability have 

stimulated the development of artificial intelligence (AI). Data analysis is being used more and 

more in diverse fields and for multiple applications. Examples of machine learning (ML) are 

everywhere around us. Starting from voice assistants in our smart devices, advertisements 

recommendations, intelligent vacuum cleaners, self-driving cars, up to health care system, 

such as image recognition for identifying tumours.  

Considering the ever-increasing amount of data, accessibility and affordability of computing 

power, data science will keep on creating smarter algorithms and machine learning will bring 

more efficiency in our daily lives.  

In this chapter, general concepts of machine learning, the importance and evolution of 

intelligence algorithms will be described. Most relevant topics for understanding the concepts 

and findings of this research are covered, followed by examples of application. 

2.1 Machine Learning  

 “Machine learning is a branch of AI focused on building applications that learn from data and 

improve their accuracy over time without being programmed to do so.” (IBM Cloud Education) 

In other words, algorithms are trained to identify data patterns and features which will be further 

used for decision making processes and predictions based on used data. The larger the data 

sets used, the better and more precise the algorithm will be therefore the accuracy of decisions 

and predictions will be higher.  

Building a ML application requires a few main steps as following: 

1. Preparing the data set 

2. Selecting the algorithm 

3. Training the algorithm 

4. Applying the model 

2.1.1 Preparing the Data Set 

A training subset of data has to be prepared. This should represent the entire data set and will 

be used as input for the ML model used to solve the proposed problem. Often, the training set 

consists of labelled data used for feature extraction and classifications that will have to be 

identified by the model. Sometimes the data is unlabelled, in such cases the model will extract 

the features and make the classifications on its own. 
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In any case, the training subset has to be prepared correctly, to make sure that it does not 

contain any imbalances, duplicates or other characteristics that could negatively impact the 

training process. The training subset is then divided into two parts, one used for the training 

procedure itself and second for the validation, used for verification and improvement of the 

trained model.  

2.1.2 Selecting the Algorithm 

Selecting a certain type of algorithm depends on the type of data available and the problem 

that has to be solved.  

There is a variety of algorithms available such as: 

Regression algorithms – Linear and logistic regression are used to understand the 

relationships in the data. 

Decision trees – used for classified data for the purpose of making a decision based on a 

predefined set of rules. 

Instance based algorithms – used to identify the likelihood of a data point belonging to a 

certain group based on how close this data point to a member of that group is. 

Clustering algorithms – identifies groups of data points that have similar characteristics and 

tags the rest of variables based on their similarity to identified groups. 

Association algorithms – based on association rules, the algorithm finds patterns and 

relationships in data. 

Artificial neural networks – these algorithms contain a network of layers, input, hidden, and 

output. The input layer contains the training subset, hidden layers perform the calculations and 

come up with multiple conclusions on the input, which are further assigned a probability in the 

output layer. The results in this work were achieved by using artificial neural networks. The 

next sub chapter provides more details on this. 

2.1.3 Training the Neural Network 

Training the neural network is a process which requires multiple iterations. The variables are 

run through the algorithm, then the resulted output is compared to the expected one, weights 

are further adjusted, variables are rerun through the algorithm and the returned result should 

be more accurate. The trained and accurate algorithm obtained represents the final model. 
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2.1.4 Applying the Algorithm 

Last step is to apply the obtained model with new data. In the best-case scenario, the model 

should improve its accuracy and performance over time. This will depend on the source of the 

data and the nature of the problem to be solved.  

2.2 Machine Learning Styles 

There are three main categories of machine learning styles: 

• Supervised machine learning 

• Unsupervised machine learning 

• Semi- supervised machine learning 

2.2.1 Supervised Learning 

Supervised learning uses labelled data to train a function that can be extended to new 

examples. In other words, the model consists of an input and a desired output. The supervision 

is exerted upon the wanted output, which as a result is used to adjust model’s parameters in 

order to improve the actual output. (Jones 2018) 

The advantage of supervised learning is the requirement for less training data. This makes the 

training process faster and easier as results can be compared to actual labelled data points.  

2.2.2 Unsupervised Learning 

Algorithms based on unsupervised learning use as input unlabelled data which is further 

segregated based on some hidden features. Due to the lack of labels, evaluating the result is 

the main challenge. By grouping the data using unsupervised learning, some patterns present 

in the raw data could be identified that otherwise would not be visible. (Jones 2017) 

Unsupervised learning is focusing more on identifying patterns and relationships in the data 

rather than on providing automatized decisions and predictions. 

2.2.3 Semi-supervised Learning 

Semi-supervised learning is a middle course between supervised and unsupervised learning. 

For the training process, a smaller labelled data set is used as a guide for the classification 

process whereas features are extracted from a larger, unlabelled data set. This type of learning 

style is convenient in the situation when there is not enough labelled data available for training 

as compared to supervised learning. (IBM Cloud Education) 
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2.2.4 Reinforcement Learning 

Reinforcement machine learning is similar to supervised learning, but the algorithm is not 

trained using sample data sets. It learns as it goes by the means of trial and error. Successful 

outcomes will be reinforced to provide the best decision or recommendation for the given 

problem.  

2.3 Artificial Neural Networks 

The foundation of Artificial Neural Networks (ANN) has been laid in 1943 by two scientists, 

McCulloch and Pitts, who created a model based on two approaches. One focused on 

biological processes and the other on the application of neural networks to artificial intelligence. 

Later on, Rosenblatt created the perceptron, and Minsky with Papert showed the key issues 

of perceptrons. These were unable to process the exclusive-or circuit and handle effectively 

the work required by neural networks. This has stopped the evolution of machine learning until 

1980, when Hopfield and Kohonen revived the use of ANN. Since then they have been largely 

used in many fields of application such as image and speech recognition, economic forecasts 

and predictions, etc. (Wikipedia) 

A simple definition of ANN is given by Haykin and describes it as “a massively parallel 

combination of simple processing unit which can acquire knowledge from the environment 

through a learning process and store the knowledge in its connections.” (Guresen, Kayakutlu 

Gulgun 2011) 

2.3.1 Artificial Neural Network Components 

The main components of ANN are neurons, multiple inputs, activation functions, connection 

weights, and biases. The architecture of neural networks is determined by the layout of 

neurons in layers and the connections between them. A typical composition contains three 

layers as input, hidden, and output. See an example in Figure 1 below. 
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Figure 1: Artificial Neural Network Components (McCullum 2020) 

2.3.1.1 Neurons 

A single neuron represents the building block of a neural network. Figure 2 illustrates the 

structure of a neuron with a single input. X represents the input to the neuron; w is the weight 

associated with it. Weight is the essential parameter here as it is controlled by the model in 

order to receive a better fit for the output. When an input is passed into the neuron, it gets 

multiplied by the weight (𝑋 ∗ 𝑤). (Krishnamurthy 2021) 

 

Figure 2: Single neuron structure 

Bias represents the second element of the input. As it is represented in Figure 2, it is 

determined solely by value b as the value of the node is 1. Bias represents the unpredictable 

part of the model which helps to generalize it and offer the flexibility necessary for adapting to 

multiple unseen inputs when testing data is used. 

Output occurs as a result of combining the bias and the input: 𝑤 ∗ 𝑥 + 𝑏 = 𝑦. This formula 

resembles the equation of a straight-line 𝑦 = 𝑚 ∗ 𝑥 + 𝑐. It is because ANN are composed of 

multiple interconnected neurons, each of which runs its own regression.  
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2.3.1.2 Multiple Inputs  

In the real world, datasets to be analysed are complex and such a simple structure as 

illustrated in Figure 2Error! Reference source not found. cannot be used. A combination of 

multiple inputs will be used to estimate the output. However, the principle is similar to the 

neuron with a single input. 

 

Figure 3: Neuron with multiple inputs 

The formula for a network with multiple inputs illustrated in Figure 3 will be then: 

𝑥0 ∗ 𝑤0 + 𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 + 𝑏 = 𝑦 1 

 

2.3.1.3 Layers 

Neurons in a neural network are organized into layers. A layer where every neuron has a 

connection to every other neuron in its next layer is called a dense layer. (Krishnamurthy 2021) 
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Figure 4: ANN with one hidden layer 

With increasing complexity, ANNs are able to transform data and infer relationships in several 

complex ways. The more layers and nodes are added to the network, more complex it 

becomes. See Figure 4 for an example. 

2.3.1.4 Activation Function 

Previously discussed architecture can be used for predicting linear relationships. In the 

situation of a more complex architecture there are two options. One is to add more layers to 

the network between input and output layers, the so-called hidden layers. Every hidden layer 

has a pre-set number of nodes which will add complexity to the network and will separate it 

from the regression counterpart.  

 

Figure 5: Activation functions (left – Sigmoid, right – ReLu) 

Another way of adding complexity to a neural network is by introducing an activation function 

at every node that is not an input or output. An activation function is a function that transforms 

the input data using a non-linear method. Some of the most widely used are ReLu and Sigmoid 

function. See Figure 5. 
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𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 2 

𝑅𝑒𝐿𝑢  𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 3 

 

Both models are nonlinear and as a result an extra element of adaptability is added to the 

model. The network will be able to predict classes that do not have linear decision boundaries 

or approximate nonlinear functions.  

A neuron’s role in a hidden layer is to pass the sum of the products of the inputs and their 

weights into an activation function. (Krishnamurthy 2021) The resulted value will be passed as 

input to the next neuron, it can be a hidden neuron or the output. See Figure 6 as an example. 

 

Figure 6: ANN with ReLu activation function 

2.3.1.5 Weights Optimization 

Weights are randomly assigned in a neural network when it is initialised. A neural network has 

control over the data by adjusting its weights. This is an iterative process, and it takes place 

as many times as necessary until predictions are accurate enough or another stopping criterion 

has been reached.  

The purpose of a Loss function is to assess the exactitude of predictions. It is a function that 

compares the model output with the actual output and evaluates how accurate the model 

estimations are. A common metric for a loss function is the mean absolute error. It is a measure 

of the sum of absolute vertical differences between the estimated values and the actual values, 

see Figure 7 (Pascual 2018) 

ReLu 



- 29 - 
 

 

Figure 7: Mean Absolute Error 

In order to find the best set of weights, an optimisation method called stochastic gradient 

descent is used. For every epoch, the stochastic gradient will go through the following steps: 

1. Initialize a value for the weights 

2. Update weights until loss function is reduced 

3. Stop when the minimum error has been reached 

Gradient Descent needs a differentiable algorithm because when looking for the minimum 

value, the gradient of the current position is calculated and then it is decided which direction 

to take in order to reach gradient 0. It is known that the minimum point on the curve is the point 

at which the error gradient is 0. See Figure 8. 

Gradient Descent Algorithm 

Repeat until convergence: 

𝜔𝑗 = 𝜔𝑗 − 𝛼
𝛿

𝛿𝜔𝑗
𝐽(𝜔)            𝑓𝑜𝑟 𝑗 = 1 … 𝑘 

4 
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Figure 8: Gradient descent  

During the iterative process, the algorithm takes the current weight and subtracts it from the 

loss function and multiplies it by a learning rate, which size determines how quickly is converge 

or divergence from the minimum value reached. 

2.3.1.6 Fitting the Model 

There are two important concepts for ML known as overfitting and underfitting. They offer an 

understanding about the capability of a ML algorithm and help see whether it is capable of 

serving its initial purpose or not.  

From a mathematical point of view, overfitting represents the situation when the accuracy of 

the training subset is greater than the accuracy of the testing subset. Underfitting is simply the 

low performance of both training and testing data. 

In the situation of overfitting, the model does not generalise well to unseen data. The 

observations are solely built on observed behaviour of the training dataset and it could not find 

the more complex relationships it was supposed to look for. As a result, the model cannot be 

used for predictions as it is not capable of adjusting to new data or different datasets.  

Underfitting carries the opposite situation. As in the case of overfitting, the model was not able 

to find complex relationships, the difference is that the model has generated loose rules and it 

is not attached to any data or any concrete rules. Such a model will perform poorly on training 

data as it cannot see any relationships between the variables. 

A way of avoiding underfitting is by adding extra layers, neurons or features to the network in 

order to add more complexity and increase the training time. Meanwhile, overfitting can be 

𝜔 
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prevented by diminishing the intricacy of the model and stopping the training process earlier 

to prevent over-analysing the data. 

2.3.2 Artificial Neural Networks Types 

There are two multiple types of neural networks based on their complexity and purposes. The 

most used models and their applications are going to be described in the following section. 

2.3.2.1 Perceptron 

A perceptron is a single layer neural network consisting of one input and one output layer. It 

has no hidden layers. The input is taken, and weighted input is calculated for each node. 

Further, an activation function is used for classification. 

Perceptrons are used for solving simple problems such as classification, encode database, 

monitor access data. A typical structure is illustrated in Figure 9. 

 

Figure 9: Perceptron architecture (Shukla and Iriondo 2020) 

2.3.2.2 Feed-Forward Neural Networks (FFN) 

In feed-forward neural networks nodes do not from a circle, all perceptrons are arranged in 

layers. The input layer simply takes in input and the output layer generates the output. Every 

perceptron from one layer is connected to the nodes in the next layers, as a result all nodes 

are fully connected. In a feed-forward neural network there are no back-loops, therefore, in 

order to minimize errors a backpropagation algorithm is generally used for updating weights. 

Main applications for feed forward neural networks are pattern recognition, computer vision, 

speech recognition, etc. A typical example is illustrated in Figure 10 below. 
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Figure 10: Feed-Forward neural network architecture 

2.3.2.3 Radial Basis Networks 

Compared to other neural networks, radial basis networks have a faster learning rate and 

universal approximation, therefore they are mainly used for approximation problems. As 

compared to feed- forward networks, radial basis ones use a radial basis function for activation. 

A sigmoid function that gives an output of 0 and 1, in order to identify if the answer is yes or 

no. They are useful when the data contains continuous values. 

2.3.2.4 Deep Feed-Forward Networks (DFF) 

This is basically a feed-forward network with multiple hidden layers, as illustrated in Figure 11. 

The biggest issue associated to using one hidden layer is overfitting. Therefore, by increasing 

the number of hidden layers, the chance of overfitting is diminished, and the generalization is 

improved. Most common applications for deep feed-forward neural networks are computer 

vision, financial predictions, pattern recognition, noise filtering, etc.  

Figure 11: Deep Feed-Forward network architecture 

2.3.2.5 Recurrent Neural Networks (RNN) 

In recurrent neural networks, connections between units form a directed circle. This allows the 

access to previous information in current iterations. This is useful in situations like trying to 

predict the next word in a sentence, for that is important to know what the previously used 

words were. In order to achieve that, in the hidden layers every single neuron obtains inputs 

with a delay in time. The advantages of RNNs are the capability of processing inputs and 

sharing any lengths and weights over time, without increasing the size of the model. On the 

other side, computational time for this type of network is slow, additionally, it doesn’t consider 
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any future input for the current state because it is not able to remember information from a long 

time ago. A typical architecture of RNNs is shown in Error! Reference source not found.. 

 

Figure 12: Recurrent neural network architecture 

Typical uses for recurrent neural networks are robot control, time series prediction, time series 

anomaly detection, rhythm learning, music composition. 

2.3.2.6 Long / Short Term Memory (LSTM) 

It was previously mentioned that RNNs contain a time delay and it may fail when the number 

of data is large, and the goal is to identify most relevant values. In this case LSTM are the 

option to go for. These networks introduce a memory cell that aids with processing data with 

memory gaps and remember data from long time ago. LSTMs are usually used in speech and 

writing recognition. See Figure 13 for an example.  

 

Figure 13: Long/Short Term Memory network architecture 
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2.3.2.7 Gated Recurrent Unit (GRU) 

 

Figure 14: Gated Recurrent Unit architecture 

As it can be seen in Figure 14, GRUs are similar to LSTMs as they both have similar structure, 

therefore produce similar results. As the name implies, they are composed of two main gates. 

Update gate regulates how much of the former learning needs to be passed to the future and 

reset gate determines how much knowledge has to be forgotten and current memory gate. It 

is usually used in modelling processes such as speech modelling or music modelling, as well 

as in language processing. 

2.3.2.8 Auto Encoder (AE) 

Auto encoders are unsupervised machine learning algorithms. The number of input cells 

overcomes the number of hidden cells. AEs are usually trained to display an output as close 

as possible to the input, based on identified common patterns. This is a relatively simple 

algorithm with an output identical to the input. Most often used for classification, clustering and 

feature compression. See Figure 15. 

 

Figure 15: Auto Encoder architecture 

 

2.3.2.9 Markov Chain (MC) 

Markov Chains are mathematical systems that transform from one condition to another 

contingent on some probabilistic rules. The transitioning probability to a state depends on the 
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current state and the time elapsed. Some examples of possible states are letter, numbers, 

weather conditions, etc. MCs are applied for statistics, speech recognition, information and 

communication systems. See Figure 16 for an example. 

 

Figure 16: Markov Chain architecture 

2.3.2.10 Hopfield Network (HN) 

In Hopfield neural networks, every neuron is connected with another directly (see Figure 17). 

In such networks, neurons are either on or off. Their state changes based on the inputs they 

receive from other neurons. Usually, HNs are used for pattern storage and memories. They 

perform well in recognizing patterns even if the input is distorted or incomplete. Therefore, HNs 

are often used for image detection and recognition, especially in medicine, enhancing X-Ray 

images. 

 

Figure 17: Hopfield Network architecture 

2.3.2.11 Boltzmann Machine (BM) 

The usual function of a Boltzmann machine is learning a probability distribution from an original 

dataset and use it for reasoning on unseen data. BMs are composed of input and hidden 

nodes. Whenever hidden nodes change their state, input nodes change into output nodes. 

BMs are used for classification, regression, dimensionality reduction, etc. See Figure 18.  
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Figure 18: Boltzmann Machine architecture 

2.3.2.12 Deep Belief Network (DBN) 

A deep belief network contains multiple hidden layers and is used with an unsupervised 

algorithm. Features are detected by layers, then after unsupervised learning, models are 

trained with supervision methods to perform classification. See Figure 19. 

 

Figure 19: Deep Belief network architecture 

2.3.2.13 Deep Convolutional Network (DCN) 

Convolutional neural networks are mainly used for image classification, image clustering and 

object recognition. They enable unsupervised construction of hierarchical image 

representations. DCNs add more complex features, therefore resulted accuracies are higher. 

Usually they are used for image recognition, video analysis, time series forecasting, 

identification of face, street signs, tumours, etc. See Figure 20. 
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Figure 20: Deep Convolutional network architecture 

2.3.2.14 Deconvolutional Neural Networks (DN) 

These are convolutional neural networks that work in reverse and have a different application. 

Deconvolutional networks are used for identifying lost features or signals. A DN can make 

pictures out of vectors and are applied for surface depth estimation from an image for example 

or image super-resolution. See Figure 21. 

 

Figure 21: Deconvolutional neural network architecture 

2.4 Trend identification in Time Series Data 

Time series data represents a sequence of numerical values organized in a chronological 

order, often with fixed interval points in time. Such a scenario allows for an accurate prediction 

and forecast of future values. (Anish 2020) 

Typically, time series data shows seasonal patterns, trends and other relations to external 

data. 

In real life situations, time series as used for weather reports, earthquake prediction, finance, 

and many other scientific and engineering fields.  
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 2.4.1 Time Series Forecasting 

Based on previous observations, time series forecasting is used to model future values. 

Usually, models rich in historical data are used for prediction. It is worth mentioning that time 

series forecast is not an exact prediction of the future but more of an estimation of what should 

we expect based on what happened. 

There are two types of forecasting available: 

• Qualitative forecasting, considered when there is no access to historical data, therefore 

it is highly objective 

• Quantitative forecasting, used when there is a significant amount of historical data 

available, therefore considered more efficient 

2.4.2 Time Series Forecasting Application 

There are two important directions for using time series forecasting, as follows: 

1. To obtain and understand the factors behind produced data 

2. To fit a model and use it for forecasting 

In order to better understand time series datasets, it is useful to split in in 4 parts: level, trend, 

seasonality and noise. 

Level is the base value for series it if were a straight line. 

Trend is linearly increasing or decreasing behaviour of series over time. 

Seasonality shows patterns or cycles over time.  

Noise is the variability in observations that cannot be explained by the model. 

Most of the time, series have level and noise, while trend and seasonality are not mandatory 

2.4.3 Time Series Trend Analysis 

Looking for repeated behaviour in the graphical representation of data is known as trend 

analysis. If the trend is constantly increasing or decreasing, then analysing it is not that difficult. 

However, when data shows errors, then the first step would be to smoothen in before 

proceeding to trend identification. 

Smoothing calls for some form of local averaging of data. Most common technique is the 

moving average smoothing, where every element in time series is replaced with a weighted 

average of surrounding elements.  
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Fitting a function is the next step and it relates to transforming data or removing nonlinearity, 

should there be a nonlinear component present. Most common functions used are log, 

exponential, or polynomial. If we look in the example in Figure 22 below, it is clear the there is 

an upward trend. 

 

Figure 22: Example of upward trend 

2.4.4 Time Series Seasonality Analysis 

Seasonality is data reoccurrence at a determined time interval. For example, people tend to 

go on vacation between May and August – this is seasonality. It can be obtained by measuring 

the autocorrelation that follows the trend deduction from the data. 

  

Figure 23: Seasonality example 

Figure 23 above illustrates times of the year when people tend to go on a diet. It is easy to 

notice the spike in the beginning of every year. This means that yearly, in January, people go 

on diets as a resolution, compared to other months. 

2.5 Moving Average Models 

Autoregression Model (AR) 
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AR is a time series model which uses previous observations as input to a regression equation 

in order to predict the value at the next time step. The equation for a regression takes the form 

of: 

𝑦ℎ𝑎𝑡 = 𝑏0 + (𝑏1 ∗ 𝑥1) 5 

This method can be applied for time series where input variables are taken as observations at 

previous time steps, called lag variables. (Anish 2020) This would look like: 

𝑥𝑡+1 = 𝑏0 + (𝑏1 ∗ 𝑥𝑡) + (𝑏2 ∗ 𝑥𝑡−1) 6 

The term of auto regression comes from the fact that the regression model uses data from the 

same input variable at previous time steps. (Anish 2020) 

2.5.1 Moving Average Model (MA) 

Residual errors from forecasts in a time series represent an additional source of information 

which can be modelled. Such an autoregression model can be used to anticipate any forecast 

errors, which then can be used to correct forecasts. 

Trend, bias & seasonality found in the residual error can be modelled directly. It is possible to 

create a model of the residual error time series and predict the expected error of the model. 

The predicted error can then be subtracted from the model prediction & in turn provide an 

additional improvement in performance. 

Moving Average Model is an autoregression of the residual error. 

2.5.2 Autoregressive Integrated Moving Average (ARIMA) 

ARIMA is a forecasting technique that calculates future values entirely based on its inertia. 

Autoregressive Integrated Moving Average (ARIMA) models include a clear-cut statistical 

model for the asymmetrical component of a time series that allows for non-zero 

autocorrelations in the irregular component. (Anish 2020) 

ARIMA models work only for stationary time series. Therefore, if a time series is non-stationary, 

it first needs to be ‘differenced’ until stationarity is obtained 

More about ARIMA can be found in Chapter 9. 

2.5.3 ACF and PACF 

The correlation for time-series observations can be calculated with observations from previous 

time steps, called lags. Considering the fact that the correlation of the time series observations 
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is obtained using values of the same series at previous times, this is called a serial correlation, 

or an autocorrelation. 

The AutoCorrelation Function (ACF) is a plot of the autocorrelation of a dataset of a time series 

by lag. This plot is sometimes called a correlogram or an autocorrelation plot. 

A partial autocorrelation or PACF is represented by the summary of the correlation between 

an observation in a time series with observations at previous time steps with the correlations 

of in between removed observations. (Anish 2020) 

Conclusion 

Time series analysis is one of the major aspects in data analysis for any large organization as 

it helps in understanding seasonality, trends, cyclicality and randomness in the sales and 

distribution and other attributes. These factors help companies in making a well-informed 

decisions which are highly crucial for any business. 
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3 Application of ML 

 

3.1 Application of ML in Oil and Gas Industry  

A big part of daily routine tasks performed in oil and gas industry require analysing large and 

complex datasets, a process that can be automatized in order to achieve maximum efficiency 

and return on investment. 

Potential ML applications in oil and gas industry are as following: 

• Automation 

• Data collection 

• Data evaluation 

• Algorithms development 

• Consumable analytics 

• Automated recommendations 

• Maximized efficiencies 

• Automated adjustments 

The aforementioned applications can be implemented over the entire chain of oil and gas. 

3.1.1 Upstream 

Machine learning is capable of assisting with locating the most efficient place to start a well, 

as well as improving ways of oil and gas extraction such as: 
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• Predictive analysis (EAG 1Source 2020)   

o Accurate modelling 

o Exploration 

o Dig sites 

o Well logging 

• Oilfield operations 

• Drilling efficiencies 

• Rig optimization 

• Risk detection 

• Remote operations 

• Completion 

These processes are very convenient as computers can analyse large datasets faster and 

more efficient than any human. 

3.1.2 Midstream 

For services such as transporting products from the field to the refinery, ML can be helpful in 

providing recommendations for improving the delivery system. 

3.1.3 Downstream  

Similar to upstream and midstream applications, ML algorithms are important for the 

downstream in processes like refining, processing, remote system operations and risk 

analysis.  

Operating a refinery is a challenging task due to the multitude of processes going on 

simultaneously. Therefore, analysing and reporting every step can be difficult for human 

employees. ML however, can process all that information and come up with informed decisions 

as a support for human experts. 

3.1.4 Back-office Management  

The office environment can be improved with the use of ML too. By observing a variety of 

working elements during operations, collected data can used to make recommendations for 

business stimulation in areas such as: 
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• Maintenance 

• Market analysis 

• Forecasting 

• Product marketing 

• etc. 

Implementing machine learning in oil and gas can bring a series of advantages. 

• Increased production and decreased labour costs as a result of an improved drill 

modelling 

• Increase revenues 

• More stable profit margins 

• Reduced risks 

• Extended meantime between failures 

• Energy consumption reduction 

The list of advantages can continue, what is important to mention is that ML represents a long-

term enhancement for oil and gas industry. Automation and data processing bring more 

effectiveness and attention to detail.   

3.2 Application of ML in Other Industries 

The importance of machine learning has been recognized by many industries that are dealing 

with large volumes of data. Being able to find the message behind this data, companies can 

work in a more efficient, sustainable and economical manner. Some examples of already 

existing application of ML are: 
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• Financial sector – companies use ML to identify valuable insights in financial data and 

avoid any frauds. Opportunities for investments and trade can be recognized more 

easily, etc. 

• Marketing and sales – ML is applied in analysing customers purchase history and 

provide recommendations shaped for their preferences.  

• Government agencies – sensor data can be used to recognize ways to reduce costs 

and improve efficiency for agencies like public safety or utilities. 

• Healthcare system – real-time patient information is generated by the means of sensors 

and provide details about heartbeat, blood pressure and other vital parameters. ML is 

used for identifying patterns in a patient’s history and predict the probability of 

occurrence for any illnesses, as well as in diagnostics. 

• Transportation systems – based on identified patterns on multiple routes, ML 

algorithms are used to identify potential problems that might arise on the way and come 

up with an automatic recommendation for a different route.  
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4 Data Acquisition 

Data used in this work was acquired from OMV’s production database GDB – 

Gewinnungsdatenbank. This is an internal database for OMV Austria, and it contains 

information about fields, horizons, produced media, workover reports, production data, surface 

data, equipment, etc. In this chapter, used datasets for this work are described.  

4.1 Available Data 

All the necessary data downloaded from GDB was stored in MS Excel, MS Word, PDF, VSD, 

JPG and DYN files. Data corresponds to wells equipped with SRP only. The following data 

sets have been received: 

• Digital dynamometer cards 

• Analogue dynamometer cards  

• Workover reports 

• Production data 

• Equipment data 

• Well schematics 

• Surface data 

4.1.1 Digital Dynamometer Cards  

These cards have been recorded by the means of sensors installed at the wellbore. The 

frequency of such measurements varies from over 5000 files a day to 1 file a day. This part of 

the dataset is the most valuable and widely used in this work. The challenges related to 

visualization and high variation in the frequency will be discussed later, in a separate chapter. 

4.1.2 Analogue Dynamometer Cards 

These cards have been provided as JPG files and they represent surface dynamometer 

measurements performed manually at the wellbore. As the frequency of such measurements 

is not as high as digital ones, they have been used as a mean of proofing the correctness of 

sensor measurements. In Figure 24 such an example is illustrated. 
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Figure 24: An example of an analogue dynamometer card downloaded from GDB 

 

4.1.3 Workover Reports 

Workover reports contain information about repairing, stimulation and/or maintenance 

activities performed in order to restore, prolong or enhance production. The reports have been 

retrieved in Excel files. See Figure 25 for an example.  

 

Figure 25: An example of workover reports file downloaded from GDB 

The main challenge was reading the report itself as the entire information is contained in a 

single column. In order to tackle this challenge, individual reports have been extracted as Word 

files.  

4.1.4 Production Data 

Two different production data sets from separator measurements for 26 wells were used, 

containing information about the gross production volume, water cut, gas/oil ratio, gas volume, 

oil volume, fluid density, injected chemicals volumes, volumes of produced impurities (if any), 

tubing and casing pressure. Figure 26 and Figure 27 show how such files look like.  
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Figure 26: An example of production data file downloaded from GDB, including produced volumes 

 

Figure 27: An example of production data downloaded from GDB, including produced volumes and 
other information 

4.1.5 Equipment Data 

 

Figure 28: An example of equipment data file downloaded from GDB 

This is a single Excel file which includes all details describing horizons, pump parts installed in 

the wellbore, pressures, fluid levels, produced media volume. Figure 28 shows how such a file 

looks like. 

4.1.6 Well Schematics 

Well schematics files have been retrieved in VSD files and these contain details about 

geological horizon, well’s trajectory, TVD, MVD, perforations, tubing and casing parameters, 

artificial lift system. See Figure 29 for an example. 



- 49 - 
 

 

Figure 29: An example of well schematics file downloaded from GDB 

4.1.7 Surface Data 

Surface data files contain information about the energy consumption, active power of the 

motor, dynamic fluid level, frequency output. Figure 30 illustrates an example.  
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Figure 30: An example of surface data file downloaded from GDB 

4.2 Data Integration  

Having such a large amount of different data files, it was necessary to find a structured way 

for viewing the available data at once. As a result, a data matrix was created containing all 

available data sets, listed per well. The matrix consists of well names listed in a column, 

followed by the time intervals for which every data set listed above is available, number of 

samples/measurements. This particular way of viewing the available data allows to identify at 

a glance missing data interval and any patterns in data storage. See Appendix A for snapshots 

of the data matrix. 
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5 Data QC/QA  

The data set containing digital dynamometer cards is the most extensive one, including over 

7.5 million measurements. One of the main challenges in tackling such a large data set was 

developing an automatized process for visualization and quality check. For this purpose, Excel 

was used to automatically plot digital dynamometer cards altogether with multiple functions 

and tasks to be applied. The detailed steps of managing digital dynamometer cards are 

explained in this chapter. 

5.1 DC Data Overview 

Digital dynamometer cards (DCs) were extracted from GDB in DYN format. There are multiple 

series of apps that can be used in order to open such files. Most accessible ones are Notepad 

++ or MS Excel. The DCs were received for 79 wells for the years 2017 – 2020.  

Figure 31: Examples of files per day 

Figure 31 illustrates a few examples of numbers of files per day over the entire duration of 

three years for four different wells. It can be noticed that the measurements are not stored 

continuously as there are some gaps in the data at the same time intervals. This is explained 

by the fact that during these periods some sensors changing activities took place and data 
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could not be recorded. Another important observation can be found in figures A and B, the 

number of files per day and over time is significantly higher as compared to figures C and D. 

In the wellbore illustrated in figure C the sensors have been installed later in time, starting 

September 2018. The wellbore illustrated in figure D had a defective production and was 

removed from active wells.  

Another visible finding is the frequency of files per day. It is described by significant fluctuations 

over time. An explanation to this is still unclear as the measurements are stored according to 

some pre-set criteria defined by the data management team. The number of files vary between 

5000/day to 1/day.  

5.2 Data Visualization 

The main challenge consisted not only in dealing with the high number of measurements 

initially received but also the continuity of this process as new data was constantly fed in. As a 

result, a standardized method for automatically plotting surface dynamometer cards, labelling 

them, and performing the visual analysis has been created using Excel.  

Resulted plot represents position (m) versus load (N) as illustrated in Figure 32. 

 

Figure 32: Surface dynamometer card 

Load and position are also plotted separately for a better identification of existing errors.  

An example of an erroneous measurement is illustrated in Figure 33. 
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Figure 33: Example of erroneous measurement 

The dynamometer card such as those plotted in Figure 33 will be labelled as “bad” and filtered 

out from the entire dataset.  

 

Figure 34: Example of good measurement 

Figure 34 illustrates an example of a good measurement, this will receive two labels, one for 

the quality “good” and second for the pump state identified by the shape of the card (ex: 

“normal”, “fluid pound”, “gas interference”, etc.).   

As the main goal in the entire project was to identify the trend in SRP behaviour, new data was 

constantly fed in. The advantage of the afore mentioned plot consists in its flexibility as it is 

linked directly to the folders containing raw data, it can automatically extract, correct, and plot 

the measurements.  
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6 Features for Model Building 

After visualizing available dynamometer cards, as expected, a variety of shapes indicating 

measurements quality and SRP state were identified. Based on that, it was decided to create 

an intelligent model using artificial neural networks which would automatically identify 

dynamometer cards shapes and further use its results for performing the SRP trend analysis.  

Considering the afore mentioned challenge, it was decided to divide the model’s tasks into two 

steps. The first step was to identify the quality of the data and classify it in two classes related 

to quality. 

After removing bad quality data, the good part was used to distinguish pump states and classify 

them in 10 categories which are representative of identified pump states. 

A dataset composed of multiple channels including time stamps, data quality and pump states 

was created and used as desired output. It is worth mentioning that the input set contained 

manually labelled dynamometer cards. Out of 5 million measurements provided, 12.300 were 

manually labelled for the quality and 17.330 for the pump states. Due to the availability of 

labelled data sets, supervised learning was selected for the learning approach and feed-

forward neural network for the model building.  

Proposed model idea implies a very complex structure, therefore in order to reduce complexity 

and computational costs, it was necessary to select and calculate different features and use 

them as an improved learning process and input for the neural network. After all, feature 

selection has always been an exercise of great importance for machine learning, often 

overcoming the model selection itself. 

Different features have been calculated using macros in order to describe every measurement.  

Calculated features have been grouped as following: 
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• Statistical features 

• Physical features 

• Elliptic Fourier Transform features 

• Fractal dimensions 

• Others 

Statistical features have been applied to physical values such as the raw sucker rod data 

and processed values. Processed data is data that has been converted in order to ensure 

that each dynamometer card contains exactly one stroke and the starting point is the 

beginning of the upstroke. The importance of this step lies in the fact that raw data contains 

examples of single dynamometer cards with multiple stroke recordings (up to five) and the 

starting point of the recording would not always be the beginning of an upstroke rather 

located at some arbitrary position between up and down strokes, seldom directly at the 

downstroke outset.  

Raw data is exclusively used for the QC model which is further described in Chapter 7 and 

processed data was used for the pump sate model described in Chapter 8. 

Later, statistical features have been applied to the physical features, described in 6.1. 

Physical features have been calculated from raw data, normalized rod position and rod 

load and by calculating stroke integrals from full, up and down stroke, physical features of 

surface dynamometer cards could be integrated in the artificial neural network input. Used 

and calculated physical features are as following:  

• Sucker rod load [N] – obtained from the raw dataset. 

The surface dynamometer card records the movement of the polished rod during a 

pumping cycle. The rod string is following a time versus position model, reacting with the 

load exerted on the string by the well. As a result, surface dynamometer cards record the 

variation of load on the polished rod during a pumping cycle.  

Load is a function of pump position at which the force is measured during a pump cycle. 

• Standardized sucker rod load [N] – calculated from raw sucker rod load with the 

aim of having a better identification of the shape independent of the size and 

position on the graph. 
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• Sucker rod yank [N/s] – calculated from the sucker rod load as a differential of the load 

with respect to time, respectively the change of load over time. 

This term is taken from biophysics. Biologists and biomedical engineers are suggesting 

to designate the term "yank" for changes in force over time, phenomenon that our 

muscles and nerves can perceive and respond to. 

Their ideas were published on September 12, 2019 in Journal of Experimental Biology. 

Scientists that study sports often use the term "rate of force development", a measure 

of explosive strength. Scientists who research gait and balance, in both animals and 

humans, further analyse how quickly the change of forces on the body takes place. 

They believe that existing terminology describing the time derivative of force was too 

unwieldy and limiting, therefore Lena Ting, Ph.D., professor of rehabilitation medicine 

at Emory University School of Medicine and the Wallace H. Coulter Department of 

Biomedical Engineering at Georgia Tech and Emory and her colleagues came up with 

the term “yank”. 

To a great extent, until now yank has been used in the study of jumping, sprinting, 

capturing prey and maintaining balance, in the analysis of muscles behaviour and 

tendons, sensory feedback and spinal reflexes, all the way down to the contributions of 

individual cells. (Lin, McGowan, Blum and Ting 2019) 

Similar perturbations and movements to those in the musculoskeletal system can be 

associated with the movements happening during the pumping cycle of a sucker rod 

pump. As a physical phenomenon and its characteristics yank could be applied 

universally as a representation of changes in force over time.  

• Sucker rod cycle time [spm] – obtained from the raw dataset. 

• Sucker rod velocity [m/s] – calculated from the sucker rod position as a differentiation 

of position with respect to time. 

Sucker rod position [m] – obtained from the raw dataset. 

Every subchapter contains graphical representations of feature values. These visual 

representations embody the relationship between feature values and quality labels 

assigned to each measurement, calculated for four of the most representative parameters 

used to describe sucker rod pump performance. The feature analysis based on the graphs 

depicted below helps to understand their impact and importance for the automatic 

identification of dynamometer cards quality. 

https://phys.org/tags/force/
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Darker areas betoken the overlap between values representing good and bad quality 

measurements. Brighter points (usually on the sides) illustrate unique values for the 

particular label and correspond to 100% separation between good and bad quality data 

points.  

Hence comes the greatest importance of having calculated multiple features as with every 

feature we can have a clearer understanding about the division of values corresponding to 

good or bad quality measurements.  

6.1 Statistical Features 

Calculating statistical features is a common approach for identifying patterns in time series 

data. That is because the dataset to be used has a very high dimensionality and the number 

of possible features to be extracted is enormous. 

A set of statistical features has been calculated in order to measure multiple properties of the 

variables and reduce the data dimensionality. These are as following: 

• Median – as a measure of central tendency.  

Median is the central number in an organized list of numbers. In order to find out the median 

value in a succession of numbers, initially, the numbers have to be sorted, or ordered from 

lowest to highest or highest to lowest. The median can be used to determine an approximate 

average, or mean, but is not to be confused with the actual mean. 

• In the situation of an odd total of numbers, the median value will be the number that is 

in situated the middle, with an equal amount of numbers below and above. 

• In the case of an even total of numbers, the middle pair has to be identified, then added 

together, and further divided by two in order to find the median value. 

The median is occasionally applied as opposed to the mean, usually when there are outliers 

in the progression that could skew the average of the values. The median of a sequence is 

normally less afflicted by outliers than the mean. (Ganti 2021) 

https://www.investopedia.com/terms/m/mean.asp
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Looking at median derived features, one can easily detect the fact that all values higher that 

5,5 m for the raw sucker rod position in Figure 35 are definitely bad, whereas values between 

1 m and 3 m contain data points for both good and bad labels.  

In the case of raw sucker rod load in Figure 36, values lower than 20000 N are bad, values 

between 20000 N and 74000 N can be linked to both good and bad measurements.  

Raw sucker rod velocity in Figure 37 carries a clearer distinguishment of bad cards and 

specifically, values lower than -0,05 m/s and higher than 0,025 m/s are certainly bad.  

Values smaller than -300 N/s for the raw sucker rod yank in Figure 38 are clearly attributed to 

bad dynamometer cards.  

By analysing the first sub-set of statistical features it is hard to make a clear separation 

between good and bad points, therefore it is necessary to analyse other features calculated 

for the same parameters. 

3. The arithmetic mean represents the average of the variables {𝑥1,𝑥2, … , 𝑥𝑚} located in a 

time window. 

Figure 35: Raw sucker rod position, m Figure 36: Raw sucker rod load, N 

Figure 37: Raw sucker rod velocity, m/s Figure 38: Raw sucker rod yank, N/s 
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4. Span value – it represents the difference between the minimum and maximum values of 

a given range. The main goal of calculating span is to make sure that every datapoint has 

the same scale and every feature is equally important. 

 

 

 

 

The raw sucker rod position in Figure 39 derived using span value shows almost a 

complete overlap between good and bad data points. 

Meanwhile, for the raw sucker rod load in Figure 40 one can very clearly see that all values 

higher than 50000 N are bad cards. 

For velocity in Figure 41, all points exceeding 4 m/s are bad measurements. 

Raw sucker rod yank in Figure 42, similar to load, illustrates very well the fact that all bad 

measurements are linked to values higher than 100000 N/s.  

5. Skewness represents the degree of distortion from the normal distribution. When the 

distribution is symmetrical, it will have a skewness equal to zero. Positive skewness is 

represented by the shift to the left which means that the tail on the right side is longer. 

Negative skewness is represented by a shift to the right, the tail on the left side is longer 

(Dugar 2018). 

Figure 39: Raw sucker rod position, m Figure 40: Raw sucker rod load, N 

Figure 41:  Raw sucker rod velocity, m/s Figure 42: Raw sucker rod yank, N/s 
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Skewness features offer a better separation between good and bad data points. As for raw 

sucker rod position in Figure 43, all values higher than 0,5 m are bad. 

For the raw sucker rod load in Figure 44, values lower than -2,5 N and higher than 2,5 N 

are bad. 

Raw sucker rod velocity in Figure 45 has a clear division of good from bad values, placing 

all bad measurements to values lower than -3 m /s. 

Raw sucker rod yank in Figure 46 has all bad quality measurements placed below -5 N/s.  

 

Figure 43: Raw sucker rod position, m Figure 44: Raw sucker rod load, N 

Figure 45: Raw sucker rod velocity, m/s Figure 46: Raw sucker rod yank. N/s 

Figure 47: Processed sucker rod position, m Figure 48: Processed sucker rod load, N 
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Skewness was applied also for processed values in order to have a better understanding 

of these features. In the processed sucker rod position in Figure 47 one can notice that all 

values smaller than - 0,5 m and larger than 0,5 m are representative for the bad label. 

In processed sucker rod load in Figure 48, datapoints situated lower than -2 and higher 

than 1 are bad measurements. 

For processed sucker rod velocity in Figure 49, the distinguishment between bad and good 

labels is high. Datapoints under -0,5 and over 0,5 are bad.  

Processed sucker rod yank in Figure 50 has bad labelled data under -1,5 N/s. 

6. Kurtosis represents the outliers in the data distribution, it is a measure of the flatness or 

peakedness of data distribution. There are three categories: mesokurtic – the normal 

distribution, leptokurtic – longer distribution, peak is higher than the mesokurtic, narrow 

vertical range, platykurtic – shorter distribution, peak is lower than the mesokurtic, wider 

vertical range (Dugar 2018). 

 

Figure 49:  Processed sucker rod velocity, 
m/s 

Figure 50: Processed sucker rod yank, 
N/s 

Figure 51:  Raw sucker rod position, m Figure 52:  Raw sucker rod load, N 
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Analysing kurtosis derived features, raw sucker rod position (Figure 51) and load (Figure 

52) have a very distinct division of bad samples, whereas for position, bad data points are 

located above -1 m and for load above 18 N. 

 Raw sucker rod velocity, m/s 

Figure 53:  Raw sucker rod yank, N/s Figure 54: Processed sucker rod load, N 

Figure 55: Processed sucker rod position, m Figure 56: Processed sucker rod position, m 

Figure 57: Processed sucker rod position, 
m 

Figure 58:  Raw sucker rod velocity, m/s 
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For raw sucker rod yank in Figure 53 good and bad values are almost overlapping. 

Meanwhile, for processed sucker rod velocity (Figure 58) it is clear that all datapoints larger 

than 195 m/s are linked to good labelled dynamometer cards. 

Processed data shows a similar behaviour for all four parameters. Processed position 

(Figure 55) has its bad cards over the values of -1,3 m, processed load over 2 N (Figure 

54), yank (Figure 57) higher than 17 N/s, and velocity (Figure 56) over 0 m/s. 

7. Entropy was calculated as a measure of impurity, or in other words, entropy is a 

measurement of homogeneity. It returns the information about how non-homogeneous the 

input dataset is. (Analytics Vidhya 2020) 

 

 

 

 Figure 60: Raw sucker rod load, N Figure 59:  Raw sucker rod position, m 

 Figure 61: Raw sucker rod velocity, 
m/s 

 Figure 62: Raw sucker rod yank, N/s 

 Figure 63: Processed sucker rod 
velocity, m/s 

 Figure 64: Processed sucker rod 
yank, N/s 
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Raw sucker rod position in Figure 59 illustrates a separation of bad from good measurement 

at datapoints smaller than 10 m and larger than 55 m. For raw sucker rod load in Figure 60 

this takes place at points lower than 10 N and higher than 65 N. All datapoints over 100 m/s 

are bad cards as of raw velocity (Figure 61) calculations.  

Comparable to kurtosis derived features, the raw sucker rod yank (Figure 62) calculated for 

entropy features shows an overlap between good and bad data points. 

Processed sucker rod velocity (Figure 63) has its bad measurements over 55 m/s, processed 

sucker rod yank (Figure 64) over 80 N/s, position (Figure 65) over 55 m, and load (Figure 66) 

over 60 N. 

6.2 Physical Features 

Before proceeding to calculating physical features, rod position had to be normalized. A 

normalized rod position is situated between a very small value at the beginning of the stroke 

up to a very large value at the end of the upstroke and turns to a very small value close to zero 

at the end of the downstroke, which is the beginning of the next upstroke. It makes data usable 

for different wells and stroke sizes and used as a feature. After normalizing all rod positions, 

the maximum delta position or the maximum change in position was identified. If there were 

some abnormal changes of stroke, then most probably, the value was larger than the usual 

maximum of the regular strokes. 

Fractal dimensions 

In order to better identify the trend, a rescaled range statistical analysis was performed. 

Calculated features are as mentioned earlier for raw and processed sucked rod load, position, 

velocity and yank, but this time as fractal dimensions. In other words, a fractal dimension 

describes how complicated a self-figure is and quantifies the complexity as a ratio of the 

change in detail to the change in scale. 

Figure 65:  Processed sucker rod position, m  Figure 66: Processed sucker rod load, N 
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Rescale range analysis helps to identify and evaluate how much persistence, randomness or 

mean reversion is in time series data. Strong trends are captured by the Hurst exponent, also 

known as long – range dependence, it is also capable of extrapolating a future value or average 

of the data. The Hurst exponent oscillates between zero and one. When the Hurst exponent is 

greater than 0.5, the data is exhibiting a strong long-term trend, as in the case of our data, and 

when H is less than 0.5, a trend reversal is more likely.  

Rescaled range is simply calculated by dividing the span value of cumulative mean adjusted 

data points (sum of each data point minus the mean of the data series) by the standard 

deviation of the values over the duration of given time series. The rescaled range is increasing 

with increasing the number of observations in a times series. (Cory 2020) 

Proceeding to feature plots, physical features show a better separation of good from bad 

dynamometer-cards. 

 

 

Raw sucker rod position in Figure 67 derived from normalized absolute differences in the whole 

stroke shows that values larger than 0,2 m are bad data.  

Same conclusion can be drawn by looking at raw position (Figure 68) derived from normalized 

absolute differences at the end of the stroke, values larger than 0,2 m are bad measurements. 

For the load in Figure 69, the division between good and bad happens at values over 0,6 N for 

bad cards. 

Figure 67: From stroke detector, raw sucker 
rod position, m 

Normalized absolute differences in the 
whole stroke 

Figure 68: From stroke detector, raw sucker 
rod position, m 

Normalized absolute differences at the end 
of the stroke 
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Fractal dimensions features have a very good separation of bad measurements. As for raw 

sucker rod load (Figure 70) derived from rescaled range statistical analysis, bad datapoints 

are below 0,1 N and larger than 1,1 N. 

For position derived features in Figure 71, values smaller than 1 m and larger than 1,25 m are 

linked to bad quality data. 

Figure 70: Fractal dimensions, raw sucker 
rod load, N 

Rescaled range statistical analysis, Hurst 
exponent 

Figure 69: From stroke detector, raw sucker 
rod load N 

Normalized absolute differences at the end 
of the stroke 

Figure 71: Fractal dimensions, raw sucker 
rod position, m 

Rescaled range statistical analysis, Hurst 
exponent 
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For the same position (Figure 72) but derived using rescaled range statistical analysis and log-

log power function, we see that points located under 0,925 m are bad quality datapoints.  

For the sucker rod load in Figure 73, bad quality data has values smaller than 1 N. 

 

 

 

 

Raw sucker rod velocity (Figure 74) derived with rescaled range statistical analysis and Hurst 

exponent doesn’t show a good separation between good and bad values, thus practically 

overlapped. 

Whereas, for velocity derived using log-log power function (Figure 75), it is easy to see that 

values below 0,96 m/s are bad measurements. 

Raw sucker rod yank (Figure 76) derived with Hurst exponent has its bad measurements range 

for values lower than 0,3 N/s, and higher than 1,2 N/s. 

 

Figure 72: Fractal dimensions, raw 
sucker rod position, m 

Rescaled range statistical analysis, 
log-log power function 

 

Figure 73: Fractal dimensions, raw 
sucker rod load, N 

Rescaled range statistical analysis, 
log-log power function 

 

Figure 75: Fractal dimensions, raw 
sucker rod velocity, m/s 

Rescaled range statistical analysis, 
log-log power function 

 

Figure 74: Fractal dimensions, raw 
sucker rod velocity, m/s 

Rescaled range statistical analysis, 
Hurst exponent 
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Yank derived with log-log power function in Figure 77 has its bad quality values under 0,93 

N/s. 

 

 

 

 

Processed sucker rod position (Figure 78) derived with strokes per minute ratio has a broad 

range of bad measurements, and these are all values lower than 0,1 N/s, and higher than 1,1 

m. 

Processed sucker rod yank (Figure 79) derived with strokes per minute ratio has a 

distinguished range for bad measurements, and these are all values lower than 0,1 N/s, and 

higher than 1,2 N/s. 

Figure 76: Fractal dimensions, raw 
sucker rod yank, N/s 

Rescaled range statistical analysis, 
Hurst exponent 

 

Figure 77: Fractal dimensions, raw 
sucker rod yank, N/s 

Rescaled range statistical analysis, 
log-log power function 

 

Figure 79: From stroke detector, 
processed sucker rod yank, N/s 

Strokes per minute ratio 

Figure 78: From stroke detector, 
processed sucker rod position, m 

Strokes per minute ratio 
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Raw sucker rod position in Figure 80, derived from Fourier transform with root mean square 

errors, has its bad measurements situated at values over 0,2 m. 

Raw sucker rod position in Figure 81, derived from Fourier transform with strokes per minute, 

has its bad measurements situated over 10 m. 

 

Velocity derived from stroke detector (Figure 82) features with strokes per minute ratio has a 

poorer separation of good and bad data points, showing a slight range of values over 1,5 m/s 

as good. 

For processed sucker rod load (Figure 83) derived from the same features, all values smaller 

than 1 N and larger than 1,4 N are bad. 

 

 

Figure 80: From stroke detector, raw 
sucker rod position, m 

 Fourier transform, root mean square 
error 

Figure 81: From stroke detector, raw 
sucker rod position, m 

Fourier transform, strokes per minute 

Figure 82: From stroke detector, processed 
sucker rod velocity, m/s 

 Strokes per minute ratio 

Figure 83: From stroke detector, processed 
sucker rod load, N 

 Strokes per minute ratio 
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A similar case is for the processed sucker rod position (Figure 84), a few data points are 

located over 9 m, with few bad labelled data. 

For the processed sucker rod load (Figure 85) features calculated with instantaneous phase 

and strokes per minute, all values larger than 12 N are bad. 

 

Meanwhile, for the processed sucker rod velocity in Figure 86, features calculated with 

instantaneous phase and strokes per minute, all values larger than 10 m/s are bad. 

Processed sucker rod yank (Figure 87) features obtained with instantaneous phase and 

strokes per minute have bad values in the range above 70 N/s. 

Figure 84: From stroke detector, processed 
sucker rod position, m 

 Instantaneous phase, strokes per minute 

Figure 85: From stroke detector, 
processed sucker rod load, N 

 Instantaneous phase, strokes per minute 

 

Figure 86: From stroke detector, processed 
sucker rod velocity, m/s 

 Instantaneous phase, strokes per minute 

 

Figure 87: From stroke detector, processed 
sucker rod yank, N/s 

 Instantaneous phase, strokes per minute 
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Using the coefficient of performance, processed sucker rod position (Figure 88) has its bad 

values in the range below 0,9 m. 

Processed sucker rod load paired (Figure 89) )with the coefficient of performance has distinct 

bad data points under 0,7 N. 

 

 

Processed sucker rod position (Figure 90) features calculated with instantaneous phase and 

root mean square error have bad values above 0,25 m. 

Whereas, processed sucker rod load (Figure 91) features obtained with instantaneous phase 

and root mean square error have their bad cards for values larger than 1 N. 

Figure 88: From stroke detector, processed 
sucker rod position, m 

 Instantaneous phase, coefficient of 
performance 

Figure 89: From stroke detector, processed 
sucker rod load, N 

 Instantaneous phase, coefficient of 
performance 

 

Figure 90: From stroke detector, processed 
sucker rod position, m 

 Instantaneous phase, root mean square 
error 

 

Figure 91: From stroke detector, processed 
sucker rod load, N 

 Instantaneous phase, root mean square 
error 



- 72 - 
 

 

Processed sucker rod velocity (Figure 92) obtained with instantaneous phase and root mean 

square error identifies bad values for points over 0,3 m/s. 

Same features for sucker rod yank (Figure 93) do not show any clear distinguishment for bad 

labels but there is a denser area for values over 6 N/s. 

 

 

 

 

 

 

 

 

 

 

 

Processed sucker rod yank obtained with the coefficient of performance (Figure 94), however, 

doesn’t show a good separation between the two labels. 

Figure 92: From stroke detector, processed 
sucker rod velocity, m/s 

 Instantaneous phase, root mean square 
error 

 

 

Figure 93: From stroke detector, processed 
sucker rod yank, N/s 

 Instantaneous phase, root mean square 
error 

 

 

Figure 94: From stroke detector, processed 
sucker rod yank, N/s 

 Instantaneous phase, coefficient of 
performance 

 



- 73 - 
 

 

 

 

Using fractal dimensions, rescaled range statistical analysis and the coefficient of 

performance, processed sucker rod position (Figure 95) features lower than 0,997 m are bad. 

Processed sucker rod position (Figure 96) obtained with Hurst exponent has its bad data under 

1,04 m. 

 

 

 

 

Whereas, for velocity derived using rescaled range statistical analysis (Figure 97), it is easy to 

observe that values below 0,996 m/s are bad measurements. 

Processed sucker rod load (Figure 98) features obtained with the coefficient of performance 

are bad if data points are smaller than 0,99 N. 

Figure 95: Fractal dimensions, processed 
sucker rod position, m 

 Rescaled range statistical analysis, 
coefficient of performance 

 

Figure 96: Fractal dimensions, processed 
sucker rod position, m 

 Rescaled range statistical analysis, Hurst 
exponent 

 

Figure 97: Fractal dimensions, processed 
sucker rod velocity, m/s 

 Rescaled range statistical analysis, 
coefficient of performance 

 

Figure 98: Fractal dimensions, processed 
sucker rod load, N 

 Rescaled range statistical analysis, 
coefficient of performance 
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For yank (Figure 99) features obtained with Hurst exponent, all values smaller than 0,35 N/s 

are linked to bad measurements. 

Using fractal dimensions, rescaled range statistical analysis and the coefficient of 

performance, processed sucker rod position (Figure 100) features smaller than 0,997 m are 

bad. 

 
 

 

 

Processed sucker rod velocity features (Figure 101) using Hurst exponent show that values 

smaller than 1 m/s are bad cards, whereas for the load (Figure 102) features all values smaller 

than 1, 2 N are bad. 

Figure 99: Fractal dimensions, processed 
sucker rod yank, N/s 

 Rescaled range statistical analysis, Hurst 
exponent 

 

Figure 100: Fractal dimensions, processed 
sucker rod position, m 

 Rescaled range statistical analysis, 
coefficient of performance 

 

Figure 101: Fractal dimensions, processed 
sucker rod velocity, m/s 

 Rescaled range statistical analysis, Hurst 
exponent 

 

Figure 102: Fractal dimensions, processed 
sucker rod load, N 

 Rescaled range statistical analysis, Hurst 
exponent 
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Using full- stroke integral and standardized sucker rod load, processed sucker rod position 

features (Figure 103) were calculated. Here one can see that although there are some data 

points for bad labels under 0 m, a denser frequency is noticed in values corresponding to the 

good label, as well as for values over 300 m. 

Similar to processed sucker rod position obtained from down-stroke integral, sucker rod cycle 

time (Figure 104) also shows a good separation for good points, in particular for values larger 

than 220 s. Meanwhile, values smaller than -100 s are bad cards. 

 

 

 

 

 

 

 

 

 

 

For processed sucker rod velocity in Figure 105, bad points are situated under -200 m/s and 

over 50 m/s. 

The same features obtained from the full-stroke integral (Figure 106) show that bad values are 

represented by points smaller than -300 s and larger than 800 s. 

Figure 103: Full-stroke integral, processed 
sucker rod position, m 

 From standardized sucker rod load 

Figure 104: Full-stroke integral, sucker rod 
cycle time, s 

 From standardized sucker rod load 

Figure 105: Full-stroke integral, processed 
sucker rod velocity, m/s 

 From standardized sucker rod load 

Figure 106: Full-stroke integral, sucker rod 
cycle time, s 

 From standardized sucker rod load 
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Processed sucker rod time (Figure 107) features obtained from the full- stroke integral have 

their good labelled data for values larger than 1500000 m/s. 

For processed sucker rod velocity (Figure 108), all values smaller than -500000 m/s are bad. 

 

 

 

 

 

 

 

 

 

 

For the processed sucker rod position (Figure 109), good values are situated under -300000 

m. 

For upstroke, the integral derived processed sucker rod position (Figure 110) features with 

values larger than 300 m are good and smaller than -100 m are bad. 

Figure 109: Full-stroke integral, processed 

sucker rod position, m 

 From processed sucker rod load 

Figure 107: Full-stroke integral, sucker 
rod cycle time, s 

 From processed sucker rod load 

Figure 108: Full-stroke integral, processed 
sucker rod velocity, m/s 

 From processed sucker rod load 

Figure 110: Up-stroke integral, processed 

sucker rod position, m 

 From standardized sucker rod load 
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Processed sucker rod velocity (Figure 111) features obtained with the up-stroke integral and 

standardized sucker rod load, locate bad labels for values smaller than- 50 m/s and larger than 

50 m/s. 

For the rod cycle time (Figure 112) there are a few bad points for values above 500 s. 

 

 

 

Processed sucker rod velocity (Figure 113) obtained from processed sucker rod load places 

the bad values under -50000 m/s and over 50000 m/s. 

A similar situation can be observed for the sucker rod cycle time (Figure 114); however, the 

density of bad values is very low over 1000000 s, therefore, it can be assumed that good 

values are larger than 7500000 s.  

Figure 111: Up-stroke integral, processed 
sucker rod velocity, m/s 

 From standardized sucker rod load 

Figure 112: Up-stroke integral, sucker 
rod cycle time, s 

 From standardized sucker rod load 

Figure 113: Up-stroke integral, processed 
sucker rod velocity, m/s 

 From processed sucker rod load 

Figure 114: Up-stroke integral, sucker rod 
cycle time, s 

 From processed sucker rod load 
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For the processed sucker rod position (Figure 115)  features, the distinguishment between bad 

and good related features is hard to define. 

For sucker rod cycle time (Figure 116) features obtained using the down-stroke integral, values 

are overlapping, having a single bad data point around 2000000 s. 

 

When using the down-stroke integral and processed sucker rod load, the values for processed 

sucker rod position (Figure 117) features are overlapping. 

Sucker rod velocity features (Figure 118) obtained using down-stroke integral have their bad 

values smaller than -50000 m/s and larger than 4500000 m/s. 

Figure 115: Up-stroke integral, processed 
sucker rod position, m 

 From processed sucker rod load 

Figure 116: Down-stroke integral, 
sucker rod cycle time, s 

 From processed sucker rod load 

Figure 117: Down-stroke integral, processed 
sucker rod position, m 

 From processed sucker rod load 

Figure 118: Down-stroke integral, processed 
sucker rod velocity, m/s 

 From processed sucker rod load 
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For processed sucker rod position (Figure 119) obtained from standardized sucker rod load, 

all values smaller than -400 m are good. 

For processed sucker rod velocity (Figure 120), all values smaller than -150 m/s and larger 

than 50 m/s are features for data labelled as bad quality. 

6.3 Elliptic Fourier Transform Features  

In order to recreate the shape of dynamometer cards, Elliptic Fourier Transform (EFT) was 

applied and used as another category of inputs to the neural network.  

Fourier analysis converts a signal its original domain or space to frequency domain or the other 

way round.  

The choice was made in favour of EFT as dynamometer cards are a closed contour and Fourier 

descriptors have a success story of use for closed contours characterization. They are invariant 

with contours’ rotation, dilation and translation so no information about the shape is lost (Kuhl 

and Giardina 1982) 

First step is to locate first two points, respectively: 

𝑥𝑝 = ∑ ∆𝑥𝑖

𝑝

𝑖=1

 8 

𝑦𝑝 = ∑ ∆𝑦𝑖

𝑝

𝑖=1

  9 

Fourier series expansion for 𝑥 projection is: 

Figure 119: Down-stroke integral, processed 
sucker rod position, m 

 From standardized sucker rod load 

Figure 120: Down-stroke integral, processed 
sucker rod velocity, m/s 

 From standardized sucker rod load 
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𝑥(𝑡) = 𝐴𝑜 + ∑ 𝑎𝑛𝑐𝑜𝑠

∞

𝑛=1

2𝑛𝜋𝑡

𝑇
+ 𝑏𝑛𝑠𝑖𝑛

2𝑛𝜋𝑡

𝑇
     10 

Where: 

𝐴𝑜 =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡

𝑇

0

 

 

       11 

Fourier coefficients for the nth harmonic are: 

𝑎𝑛 =
2

𝑇
∫ 𝑥(𝑡)𝑐𝑜𝑠

2𝑛𝜋𝑡

𝑇
𝑑𝑡

𝑇

0
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𝑏𝑛 =
2

𝑇
∫ 𝑥(𝑡)𝑠𝑖𝑛

2𝑛𝜋𝑡

𝑇
𝑑𝑡

𝑇

0
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After derivation: 

𝑎𝑛 =
𝑇

2𝑛2𝜋2
∑

∆𝑥𝑝

∆𝑡𝑝
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𝑇
]

𝐾
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𝑇
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∆𝑥𝑝

∆𝑡𝑝
[𝑠𝑖𝑛
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𝑇
− 𝑠𝑖𝑛

2𝑛𝜋𝑡𝑝−1

𝑇
]

𝐾

𝑝=1
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Fourier series for y projection is:  

𝑦(𝑡) = 𝐶𝑜 + ∑ 𝑐𝑛𝑐𝑜𝑠

∞

𝑛=1

2𝑛𝜋𝑡

𝑇
+ 𝑑𝑛𝑠𝑖𝑛
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𝑇
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𝑐 =
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∆𝑦𝑝

∆𝑡𝑝
[𝑐𝑜𝑠

2𝑛𝜋𝑡𝑝

𝑇
− 𝑐𝑜𝑠

2𝑛𝜋𝑡𝑝−1

𝑇
]

𝐾

𝑝=1

 17 

𝑑𝑛 =
𝑇

2𝑛2𝜋2
∑

∆𝑦𝑝

∆𝑡𝑝
[𝑠𝑖𝑛

2𝑛𝜋𝑡𝑝

𝑇
− 𝑠𝑖𝑛

2𝑛𝜋𝑡𝑝−1

𝑇
]

𝐾
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𝐴𝑜 and 𝐶𝑜 are DC components of Fourier series: 

𝐴𝑜 =
1

𝑇
∑

∆𝑥𝑝

2∆𝑡𝑝
(𝑡𝑝

2 − 𝑡𝑝−1
2 ) + 𝜀𝑝(𝑡𝑝 − 𝑡𝑝−1)

𝐾

𝑝=1

   19 



- 81 - 
 

𝐶𝑜 =
1

𝑇
∑

∆𝑦𝑝

2∆𝑡𝑝
(𝑡𝑝

2 − 𝑡𝑝−1
2 ) + 𝛿𝑝(𝑡𝑝 − 𝑡𝑝−1)

𝐾

𝑝=1

   20 

Where:  

𝜀𝑝 = ∑ ∆𝑥𝑗 −
∆𝑥𝑝

∆𝑡𝑝
∑ ∆𝑡𝑗

𝑝−1

𝑗−1

𝑝−1

𝑗=1

 21 

𝛿𝑝 = ∑ ∆𝑦𝑗 −
∆𝑦𝑝

∆𝑡𝑝
∑ ∆𝑡𝑗

𝑝−1

𝑗−1

𝑝−1

𝑗=1

 22 

𝜀1 = 𝛿1 = 0 23 

Number of harmonics in the Fourier approximation can be specified as: 

𝑋𝑁 = 𝐴0 + ∑ 𝑎𝑛𝑐𝑜𝑠
2𝑛𝜋𝑡

𝑇
+ 𝑏𝑛𝑠𝑖𝑛

2𝑛𝜋𝑡

𝑇

𝑁

𝑛=1

 24 

𝑌𝑁 = 𝐶0 + ∑ 𝑐𝑛𝑐𝑜𝑠
2𝑛𝜋𝑡

𝑇
+ 𝑑𝑛𝑠𝑖𝑛

2𝑛𝜋𝑡

𝑇

𝑁

𝑛=1

 25 

A truncated Fourier approximation of a closed contour can be written as 

𝑥(𝑡) = 𝐴0 + ∑ 𝑋𝑛

𝑁

𝑛=1

 26 

𝑦(𝑡) = 𝐶0 + ∑ 𝑌𝑛

𝑁

𝑛=1

 27 

𝑋𝑛, 𝑌 𝑛 (1 ≤ 𝑛 ≤ 𝑁) are the components of the projections  

𝑋𝑛(𝑡) = 𝑎𝑛𝑐𝑜𝑠
2𝜋𝑛𝑡

𝑇
+ 𝑏𝑛𝑠𝑖𝑛

2𝜋𝑛𝑡

𝑇
 28 

𝑌𝑛(𝑡) = 𝑐𝑛𝑐𝑜𝑠
2𝜋𝑛𝑡

𝑇
+ 𝑑𝑛𝑠𝑖𝑛

2𝜋𝑛𝑡

𝑇
 

29 

Points (𝑋𝑛, 𝑌 𝑛) have elliptic loci and the Fourier conjecture to the original contour can be 

considered an inclusion in proper phase relationship of rotating phasors, which are described 

by the projections. Every rotating phasor has an elliptic locus and it rotates faster than the first 
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harmonic by its harmonic number n. The same elliptic loci will be obtained for the points (𝑋𝑛, 𝑌 𝑛) 

despite the starting point of the contour (Kuhl and Giardina 1982).  

We are reconstructing the shape of dynamometer cards from Fourier descriptors. Starting from 

the origin, the shape is reconstructed by adding all spatial components. We can go back to 

original shape by inversion. When DC and the first descriptor is included, we recreate a circle 

and by adding all descriptors, the circle becomes very close to the original dynamometer card 

shape.  

Elliptic Fourier descriptors for absolute, real and imaginary parts represent the main part of 

calculated features. They maintain the ellipsis description in a two-dimensional space by 

considering that the image space defines a complex plane. Real part is represented by the first 

coordinate system, the imaginary part is the second co-ordinate system.  

The amplitude and the phase have been identified. Amplitude is the square root of the squared 

real plus the squared imaginary values, phase is the arccos tangent of the imaginary value 

over the real value.  

Figure 121 below illustrates the plotted output of calculated Fourier descriptors. Harmonic 

representations can be found in red. The recreation capability of the red contour can be 

increased by increasing the number of harmonics. 

 

Figure 121: DC card representation with the first harmonic EFT component 

The relationship between features’ values related to each quality label has been plotted for 

Elliptic Fourier descriptors Figures 122 - 229. Each graph represents feature values for a single 

descriptor. Pr is the raw sucker rod position, Lr is the raw sucker rod load, lnA is the natural 

log of amplitude spectrum, ph is the unwrapped phase spectrum, Re is the real part of the 

spectrum, Im is the imaginary part of the spectrum. 



- 83 - 
 

 

 

 

 

 

 

Figure 122: Descriptor (0), raw sucker rod 
position, natural log of amplitude spectrum 

Figure 123: Descriptor (1), raw sucker rod 
position, natural log of amplitude spectrum 

Figure 124: Descriptor (2), raw sucker rod 
position, natural log of amplitude spectrum 

Figure 125: Descriptor (3), raw sucker rod 
position, natural log of amplitude spectrum 

Figure 126: Descriptor (4), raw sucker rod 
position, natural log of amplitude spectrum 

Figure 127: Descriptor (0), raw sucker rod 
position, unwrapped phase spectrum 
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Figure 128: Descriptor (1), raw sucker rod 
position, unwrapped phase spectrum 

Figure 129: Descriptor (2), raw sucker rod 
position, unwrapped phase spectrum 

Figure 130: Descriptor (3), raw sucker rod 
position, unwrapped phase spectrum 

Figure 131: Descriptor (4), raw sucker rod 
position, unwrapped phase spectrum 

Figure 132: Descriptor (0), raw sucker rod 
load, natural log of amplitude spectrum 

 

Figure 133: Descriptor (1), raw sucker rod 
load, natural log of amplitude spectrum 
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Figure 134: Descriptor (2), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 135: Descriptor (3), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 136: Descriptor (4), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 137: Descriptor (5), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 138: Descriptor (6), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 139: Descriptor (7), raw sucker rod 
load, natural log of amplitude spectrum 
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Figure 140: Descriptor (8), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 141: Descriptor (9), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 142: Descriptor (10), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 143: Descriptor (11), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 144: Descriptor (12), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 145: Descriptor (13), raw sucker rod 
load, natural log of amplitude spectrum 
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Figure 146: Descriptor (14), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 151: Descriptor (19), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 147: Descriptor (15), raw sucker rod 
load, natural log of amplitude spectrum 

Figure 149: Descriptor (17), raw sucker rod 
load, natural log of amplitude spectrum 

 

Figure 150: Descriptor (18), raw sucker rod 
load, natural log of amplitude spectrum 

Figure 148: Descriptor (16), raw sucker rod 
load, natural log of amplitude spectrum 
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Figure 152: Descriptor (20), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 153: Descriptor (21), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 154: Descriptor (22), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 155: Descriptor (23), raw sucker rod 
load, natural log of amplitude spectrum 

 

 

Figure 156: Descriptor (24), raw sucker rod 
load, natural log of amplitude spectrum 
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Figure 157: Descriptor (0), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 158: Descriptor (1), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 159: Descriptor (2), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 160: Descriptor (3), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 161: Descriptor (4), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 162: Descriptor (5), raw sucker rod 
load, unwrapped phase spectrum 
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Figure 163: Descriptor (6), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 164: Descriptor (7), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 165: Descriptor (8), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 166: Descriptor (9), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 167: Descriptor (10), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 168: Descriptor (11), raw sucker rod 
load, unwrapped phase spectrum 
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Figure 169: Descriptor (12), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 170: Descriptor (13), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 171: Descriptor (14), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 172: Descriptor (15), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 173: Descriptor (16), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 174: Descriptor (17), raw sucker rod 
load, unwrapped phase spectrum 

 



- 92 - 
 

 

 

 

 

 

 

 

 

 

Figure 175: Descriptor (18), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 176: Descriptor (19), raw sucker 
rod load, unwrapped phase spectrum 

 

Figure 177: Descriptor (20), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 178: Descriptor (21), raw sucker 
rod load, unwrapped phase spectrum 

 

Figure 179: Descriptor (22), raw sucker rod 
load, unwrapped phase spectrum 

 

Figure 180: Descriptor (23), raw sucker rod 
load, unwrapped phase spectrum 
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Figure 181: Descriptor (24), raw sucker 
rod load, unwrapped phase spectrum 

 

Figure 182: Descriptor (1), raw sucker 
rod load, real part of the spectrum 

 

Figure 183: Descriptor (2), raw sucker rod 
load, real part of the spectrum 

Figure 184: Descriptor (3), raw sucker rod 
load, real part of the spectrum 

Figure 185: Descriptor (4), raw sucker rod 
load, real part of the spectrum 

Figure 186: Descriptor (5), raw sucker rod 
load, real part of the spectrum 
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Figure 187: Descriptor (6), raw sucker rod 
load, real part of the spectrum 

Figure 188: Descriptor (7), raw sucker rod 
load, real part of the spectrum 

Figure 189: Descriptor (8), raw sucker 
rod load, real part of the spectrum 

Figure 190: Descriptor (9), raw sucker 
rod load, real part of the spectrum 

Figure 191: Descriptor (10), raw sucker 
rod load, real part of the spectrum 

Figure 192: Descriptor (11), raw sucker 
rod load, real part of the spectrum 
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Figure 193: Descriptor (12), raw sucker 
rod load, real part of the spectrum 

Figure 194: Descriptor (13), raw sucker rod 
load, real part of the spectrum 

Figure 195: Descriptor (14), raw sucker 
rod load, real part of the spectrum 

Figure 196: Descriptor (15), raw sucker 
rod load, real part of the spectrum 

Figure 197: Descriptor (16), raw sucker 
rod load, real part of the spectrum 

Figure 198: Descriptor (17), raw sucker rod 
load, real part of the spectrum 
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Figure 199: Descriptor (18), raw sucker rod 
load, real part of the spectrum 

Figure 200: Descriptor (19), raw sucker rod 
load, real part of the spectrum 

Figure 201: Descriptor (20), raw sucker rod 
load, real part of the spectrum 

Figure 202: Descriptor (21), raw sucker rod 
load, real part of the spectrum 

Figure 203: Descriptor (22), raw sucker rod 
load, real part of the spectrum 

Figure 204: Descriptor (23), raw sucker rod 
load, real part of the spectrum 
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Figure 205: Descriptor (24), raw sucker rod 
load, real part of the spectrum 

Figure 206: Descriptor (1), raw sucker rod 
load, imaginary part of the spectrum 

Figure 207: Descriptor (2), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 208: Descriptor (3), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 209: Descriptor (4), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 210: Descriptor (5), raw sucker rod 
load, imaginary part of the spectrum 
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Figure 211: Descriptor (6), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 212: Descriptor (7), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 213: Descriptor (8), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 214: Descriptor (9), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 215: Descriptor (10), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 216: Descriptor (11), raw sucker rod 
load, imaginary part of the spectrum 
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Figure 217: Descriptor (12), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 218: Descriptor (13), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 219: Descriptor (14), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 220: Descriptor (15), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 221: Descriptor (16), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 222: Descriptor (17), raw sucker rod 
load, imaginary part of the spectrum 
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Figure 223: Descriptor (18), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 224: Descriptor (19), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 225: Descriptor (20), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 226: Descriptor (21), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 227: Descriptor (22), raw sucker rod 
load, imaginary part of the spectrum 

 

Figure 228: Descriptor (23), raw sucker rod 
load, imaginary part of the spectrum 

 



- 101 - 
 

 

 

 

Elliptic Fourier Transform features are very similar in quality and do not show a distinctive split 

between two labels apart from a few descriptors from the imaginary part of the spectrum., 

therefore, these will be omitted for the feature selection and will only be used as an input for 

the neural networks. 

All above mentioned features, were used as inputs to the neural network with the same 

configuration as the previous approaches to classify the resampled data into different classes 

determined by the labelled data. 

6.4 Feature Selection 

In order to minimize the classification error, understand the performance of calculated features 

and identify most representative candidates, a feature selection process was initiated. 

A few methods have been used such as sequential features selection method with two 

variants, sequential forward selection, and sequential backward selection; and search 

strategies with random search extension and exhaustive search extension.   

Sequential feature selection has two components: 

1. An objective function – criterion. In this method, we seek to reduce the criterion to its 

minimum over all subsets.  

2. A sequential search algorithm – it removes or adds features from a predefined subset, 

meanwhile evaluating the criterion. A sequential search is only capable of moving in 

one direction by constantly expanding or shrinking the size of the candidate set. 

6.4.1. Sequential Forward Selection (SFS)  

SFS implies the addition of features to an empty candidate set until a point when adding more 

features do not increase the criterion. Initially, the best single feature is designated, then 

couples of features are created with the use of a single remaining feature and then, this leading 

Figure 229: Descriptor (24), raw sucker rod 
load, imaginary part of the spectrum 
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feature, and the best match is selected. The next step, triplets of features are formed using 

one of the remaining features, together with remaining two best features, and as a result, the 

best triplet is selected. This procedure takes place until all available features are selected. 

(Siddheshwar 2018) 

From the mathematical point of view, when the input data in the algorithm is:  

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑑} 

Then the output will be: 

𝑋𝑘 = {𝑥𝑗| 𝑗 = 1, 2, … , 𝑘; 𝑥𝑗 ∈ 𝑌}, 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0, 1, 2, … , 𝑑) 

Where the selected features are 𝑘 and 𝑘 < 𝑑.  

In the initialization 𝑋 is a null set and 𝑘 = 0 (where 𝑘 is the size of the subset). 

In the termination, the size is 𝑘 = 𝑝 where 𝑝 is the number of desired features. (Verma 2021) 

6.4.2. Sequential Backward Selection (SBS)  

SBS is similar to the forward selection with the difference that in this case features are removed 

from the set until the highest criterion has been reached. So first, the criterion is calculated for 

all features and then, one by one, features are deleted until a predefined number of features 

are left. 

Mathematically if the input data is:  

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑑} 

The output of the variant will be: 

𝑋𝑘 = {𝑥𝑗| 𝑗 = 1, 2, … , 𝑘; 𝑥𝑗 ∈ 𝑌}, 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0, 1, 2, … , 𝑑) 

In the initialization 𝑋 is a subset of features and 𝑘 = 𝑑 (where 𝑘 is the size of the subset). 

In the termination, the size is 𝑘 = 𝑝 where 𝑝 is the number of desired features. (Verma 2021) 

 

6.4.3. Random Search Extension (RSX)  

Assuming we have a multi-dimensional grid, and we are looking for a point in this grid which 

minimizes or maximizes an objective function, a random point is taken, and the objective 

function value is measured. If the obtained value is better than the one already achieved, this 

point is kept in the memory. This procedure is repeated for a certain number of times. So, it 
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basically chooses features randomly, measures the model performance, and repeats it more 

times, the feature combination with the best performance is selected. 

6.4.4. Exhaustive Search Extension (ESX)  

ESX evaluates every possible combination of features and returns the best-performing subset. 

6.4.5 Results Evaluation 

Sequential Forward Selection 

The analysis started with 30 features continuously adding one by one additional features.  

 

Figure 230: SFS results 

Figure 230 illustrates a screenshot of the results derived from the SFS analysis. LF1 represents 

the F1-Score (criterion function) and the following column represents the number of input 

channels. Every channel is a feature.  

By observing the LF1 column, we can see that F1 score value increases with the addition of 

each feature. The graphic illustration of overall results is presented in the chart in Figure 231.  

First point on the graph represents the initial 30 channels, giving the highest error and lowest 

F1-score value. As features are sequentially added, the value of error decreases and F1-score 

increases.  

Going back to Figure 230, columns to the right (marked 1-17…) contain letters “c” and “o” 

which indicate which features have been selected in order to get the F1-score value for the 

F1- Score classification, 
learning subset 

Number of input 
channels 

Channel name 
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particular number of channels. For example, in row number 15, we have a F1- score value of 

91%, 44 features, out of which features under number 2, 3, 4, 12, 16, 17 have been kept as 

the best set.  

 

Figure 231: Visualization of F1- Score and learning error for the SFS analysis 

 

Sequential Backward Selection 

Similar to SFS but reversed, SBS analysis started with 88 channels, sequentially removing 

feature by feature. Results are illustrated in Figure232. 
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Figure 232: SBS results 

For example, in row 5, we have used 84 channels, which means 4 features have been deleted. 

The F1- score value has increased from 92,2% to 92,4%, keeping the 5th feature and leaving 

out the rest. 

 

Figure 233: Visualization of F1-Score and learning error for the SBS analysis 
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The graph in Figure 233 should be read from right to left. The first points to the right include all 

features and we can see that reducing feature by feature, the value of both error and F1-Score 

are increasing. 

SFS vs SBS 

Comparing the results of these two analyses it can be identified that the learning error varies 

in both cases between 0,13 and 0,2 and F1-score between 80% and 93%.  

Taking a closer look (Figure 234 A and B) it can be seen that the peak performance for SBS 

is reached at 92,7% corresponding to 61 channels.  

In the case of SFS (Figure 235 A and B) peak performance is reached at the same value of 

92,7% corresponding to 89 channels. Considering the fact that the analysis here started at 30 

channels, therefore subtracting 30 out of 89, we reach a total number of 59 channels. 

In conclusion it can be said that the highest value of the criterion function (F1-score) has been 

reached in both cases after the same average number of iterations, that is 60. This means that 

a subset of 28 features gives the best score. 

 

Figure 234 A  

Peak performance 
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Figure 234 B 

Figure 234: Performance evaluation of the SBS analysis 

  

Figure 235 A 

  

Figure 235 B 

Figure 235: Performance evaluation of the SFS analysis 

Peak performance 
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Random Search Extension 

For the RSX, the objective function will also be considered F1 Score. In total, 818 random 

iterations took place for a single channel and for two channels. The best scoring features have 

been selected as illustrated in the Figure 236. 

 

Figure 236 RSX analysis output 

For the single channel, highest F1 score has a value of 79,5% and for 2 channels 88,4%. 

Lerr, Verr, Terr represent model errors for learning, validation, and testing subsets. Vent and 

Tent are entropies for validation and testing sets.  

Analyzing a graphical representation of these results (Figure 237) it is evident that the overall 

performance of two features is higher than a single channel.  

Winning features in this case are all derived from stroke detector. For a single channel, the 

winning feature is the raw sucker rod position with normalized absolute differences in the whole 

stroke. For two channels, the winners are the raw sucker rod load with normalized absolute 

differences in whole stroke and processed sucker rod position with instantaneous phase and 

mean square error of linear fit. 
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Figure 237: Results visualization for the RSX analysis 

 

Exhaustive Search Extension 

In this case all features have been paired between them and as a result 3916 iterations took 

place. Similar to RSX, best candidate for the single channel and best candidates for the pair 

have been selected, as illustrated in Figure 238. 

 

Figure 238: ESX analysis output 

Lent is the entropy for the learning subset and Lacc is the classification accuracy for the 

learning subset. Highest F1 score for a single channel is 80,2% and for two channels it is 

86,5%.  

The winning feature for the single channel is also derived from the stroke detector, that is 

processed sucker rod velocity obtained using the instantaneous phase and root mean square 

error of linear fit. For two channels the winners are the raw sucker rod load with normalized 

absolute differences in the whole stroke, obtained from the stroke detector together with the 
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processed sucker rod velocity with rescaled range statistical analysis and Hurst exponent 

calculated using fractal dimensions. 

  

Figure 239: Results visualization for the ESX analysis 

Figure 239 illustrates the fact that the error is lower for two channels instead of a single 

channel. 

RSX vs ESX 

Comparing the outputs of these two analyses it can be concluded that a pair of two features 

gives better results as compared to a single feature. The F1 score value is higher in the ESX 

analysis as all features have been considered. Nevertheless, RSX can also provide an optimal 

result in case we want a good, reasonably high value that it’s not the highest possible. 
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7 Heuristic QC model 

In this chapter the heuristic algorithm based on artificial neural networks for determining data 

quality will be described.   

 7.1 ANN Training 

Due to a very large number of dynamograms available it was necessary to come up with an 

automatized method for identifying erroneous measurements. The most efficient and secure 

way to do it was by training an algorithm based on artificial neural networks which is able to 

classify the data in two categories, “good” and “bad”.  

The features described in chapter 6 calculated for a subset of manually labelled cards have 

been used as input. The subset contains examples with “good” and “bad” labels and was set 

as the desired output for the neural network. 

The data to be used for training and testing were organized in an Excel spreadsheet. The next 

step was to split the input data into three parts. 60% were allocated for learning, 20% for 

validation, and the remaining 20% for testing. 

A repeated random sub-setting validation, also known as Monte Carlo cross-validation was 

performed for the error evaluation. The data gets divided into several multiple splits of training 

and validation data. For each split the model is fit for the training data and the accuracy is 

evaluated using validation data. The results are averaged over the splits. The main advantage 

of Monte Carlo cross-validation is that the amount of splits is independent from the number of 

iterations.  (Wikipedia) 

Multilayer perceptron (MLP), illustrated in Figure 240, was selected as the type of artificial 

neural network to be used, the number of experts in the cluster is 10. Three different 

configurations have been trained and tested. As general parameters for all three models, 

standard backpropagation was selected as training method, and local adaptive learning with 

weight and error backtracking iRProp+ (Improved Resilient Propagation Plus) as a learning 

rule. The number of hidden layers varies from 0 to 10 in two models and from 0 to 20 in one 

model. After manually labelling some part of the data and classifying it in two categories as 

“good” and “bad, the models were trained.  
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Figure 240: MLP architecture (Fath et al. 2020)  

7.1.1 Training Results 

After training all three models, the one with the best performance based on the smallest 

validation error and highest F1-score was selected. The network configuration is (MLP+0c 

i244b-l3s-o1bL2/R+)AMx10.8e5.4(k5.4), this means that the MLP network has 244 inputs with 

bias, 3 hidden units using sigmoid activation function without bias, 1 linear output unit with 

bias, 8th expert out of 10 was selected and trained with the 4th subset out of 5 splits. 

Table 1 illustrates the confusion matrix for the validation set of the best performing network 

and Table 2 shows the additional performance evaluation of the model based on entropy, 

accuracy, precision, recall and F1-score.  

In Table 1, blue cells represent the number of correctly identified classes as a result of the 

trained neural network. This means that 292 dynamometer cards with label “bad” have been 

identified correctly. The same way, 4423 cards have been correctly classified as “good”. 

Meanwhile, 24 cards from class “bad” have been identified incorrectly as “good”. Similarly, 9 

cards from class “good” have been identified as “bad”.  

The total number of dynamometer cards used for the validation set is 4748, out of it, 316 have 

been identified as bad and 4432 as good. As a result, only 33 measurements out of 4748 have 

been incorrectly classified. Resulted accuracies for each class are 92.4% for “bad”, 99.8% for 

class ”good”; 99.5% is the precision for class “bad” and 97.0% is the precision for class “good”. 

The confusion matrices for learning, testing, and validation for all three models that have been 

trained can be found in Appendix B. 

 

 

 

 



- 113 - 
 

Table 1: Confusion matrix for the validation set of the best performing network 

Class bad good  

 92.4% 99.8%  

bad 292 9 97.0% 

good 24 4423 99.5% 

 24 9 33 

 316 4432 4748 

 

In order to further evaluate the performance of the model, additional parameters have been 

calculated and results are shown in Table 2. 

Accuracy is the percentage of correct predictions, precision is the ratio of correctly identified 

observations to the total number of observations, recall is the ratio of correctly identified 

observations to the all observations in the actual class, and F1-score is the harmonic mean of 

precision and recall.  

Table 2: Model performance evaluation 

Sub-set Accuracy Precision Recall 
F1-

score 

Validation 99.3% 96.1% 98.1% 97.2% 

7.1.2 Challenges Encountered in ANN Training 

The training dataset is used for fitting the neural network in order to update the model weights 

and create a good mapping of inputs and outputs. An optimization algorithm is used for the 

training process to look through all possible values for ANN’s weights that will produce a high 

performance of the training dataset. (Brownlee 2019) 

Training problem is hard because the algorithm depends on labelled training data.  Sometimes 

the amount of labelled data is not enough and as a result, it becomes difficult to fit the 

parameters in a complex model without overfitting, in a supervised training.  

Training neural networks requires solving a non-convex optimization problem, therefore 

gradient – based training is able to find the local minima only. Having a deeper architecture, 

achieving a good generalization becomes more difficult with increasing number of local 

minimums. 
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Diffusion of gradients can also result into a deficient tuning of the lower layers and as a result 

lead to unsatisfactory outcome. In other words, the weights in the lower layers change more 

slowly due to the fact that increasing network depth leads to a rapid decrease of gradients 

magnitude. (Audhkhasi, Sethy, Rambhardan and Shrinkanth 2013) 

During the training process, the derivatives of slopes can become very small or very big, as a 

result it leads to vanishing or exploding gradients. 

As a rule, stochastic gradient is used to tackle challenges related to training neural networks. 

Nevertheless, it can give no guarantees and lead to following situations: 

• Questionable solution quality as the optimization process can or cannot find an 

appropriate solution as solutions can only be compared relatively. 

• Long training time due to the iterative nature of search. 

• Possible failure as due to regions with zero gradient, the optimization process may get 

stuck or isn’t able to identify a viable solution. (Brownlee 2019) 

Main challenges encountered in the training process during current work, were mainly related 

to the data quality. In order to have a proper subset to be used for training, a part of 

dynamometer cards had to be labelled by hand. As a result, over 12,300 cards have been 

manually labelled as “good” and “bad”.  

7.1.2.1 Manual Labelling of Dynamometer Measurements 

It was mentioned several times that in supervised learning a labelled subset of training data is 

necessary for the neural network input. As in the current work, the amount of available data is 

very large, respectively the manually labelled subset was required to have a significant amount 

of samples. Therefore, 12,300 digital surface dynamometer cards were labelled manually, and 

further used for quality checking the entire dataset. 

During the labelling process a few challenges have been encountered as: 

Occasional inability to distinguish between bad measurements due to sensor error or pump 

function. Figure 241: An example of bad measurement is illustrated in Figure  below. 
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Figure 241: An example of bad measurement 

In such cases, the situation was discussed with OMV experts and based on their experience 

and knowledge about particular wells, the distinguishment was made. The importance behind 

making this difference is that if the measurement was bad due to a sensor error, then it was 

labelled as “bad” and later removed from the dataset. Whereas, if the measurement was bad 

due to a pump malfunction, then the issue was addressed to production engineers and the well 

was checked.   

• Missing data gaps due to periods when measurements were stopped. During the 

course of historical data provided, there were some periods of time for which no data 

is available. This phenomenon is explained by the fact that sensors got changed over 

time, therefore no recordings have been made for that duration. The challenge in this 

situation is that for some of the wells the data quality is different, compared to previous 

time periods and due to missing data, it is unknown what happened in between. This 

is not affecting the quality check as much as pump states identification, problem that 

will be discussed more into details in the next chapter.  

• Long training time due to a high volume of data and multiple number of iterations was 

another challenge. Multiple network parameters have been modified over the course of 

training in order to reduce the computational time. Covariance based weight adaptive 

initialisation was selected as the most efficient weight initialisation method. 

After feeding the data in the best performing model and checking the results, it was found that 

88% of the total dataset was good data and the remaining 12% was removed. This is a very 

good indicator which means that most of received measurements were good and could be 

further used for trend identification. It is also good news for OMV as it means that most of the 

data is of a high quality and can be analysed and used for production optimization. 
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8 Heuristic Pump State Model 

In this chapter, the method developed to detect sucker rod pump states is explained.  

8.1 Sucker Rod Pump Diagnosis 

SRP is the most widely used artificial lift system, being present in more than 750,000 wells 

around the world. Maintenance and optimization activities for this type of system can be rather 

expensive and time consuming, fact which leads to a constant necessity of installing a 

monitoring system, to assure a proper operation of the pump. 

A diagnosis system used to detect any pump malfunctions and maintain the pumping system 

intact is achieved by the means of dynamometer measurements. Resulted dynamometer cards 

are used to analyse the downhole working conditions of the pump and identify its efficiency. 

By analysing a dynamometer card, it can be decided upon modifying some operating 

conditions such as pump speed, stroke length, pump size, in order to increase production and 

efficiency. 

Dynamometer cards are divided into two categories, surface and downhole. Surface 

dynamometer cards records all forces acting on the pump and rod string during a full pump 

cycle. These forces are the dynamic and static rod forces, dynamic and static fluid forces, 

dumping effects that appear as a result of friction between the pump, fluid column, rods, and 

tubing. The combination of all these forces as a function of the polished rod position represents 

the surface dynamometer card.  

Downhole dynamometer cards can be calculated from surface cards, using the wave equation 

and recreate rod string elastic nature assuming a downhole friction factor. A downhole card 

illustrates the fluid load of the pump plunger over a pump cycle. See an example in Figure 242. 

 

Figure 242: Surface and downhole dynamometer card example (Li et al. 2015) 
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8.2 Sucker Rod Pump States 

Depending on the operating conditions, several pump states of SRP can be identified in 

dynamometer cards.  

Figure 243 illustrates surface dynamometer cards with various pumping conditions for 

unanchored tubing. Figure A shows the normal pumping conditions without gas. In this case, 

the pump is working properly. Figure B depicts the leaking travelling valve situation and Figure 

C the leaking standing valve case. Figure D depicts one of the most common conditions, fluid 

pound. It takes place when tubing is hit due to rod buckling, the resulted high loads are 

damaging the travelling valve ball and seat, and as a result the pump valve rod undergoes 

buckling and creates plunger side – loading into the barrel. These stresses significantly 

decrease rod life, and the impact is transmitted all the way up to the gearbox. Figure E portrays 

the gas interference situation. Gas Interference is similar to fluid pound and although the 

impact is less, the inefficiency level stays the same. During this situation, extra strokes are 

required which will produce the same damage to the equipment. Entering gas travels up to the 

tubing string and may cause leaking stuffing box and brings in an erratic pump 

performance. Figure F shows a condition named gas lock. In this case the pump operates at 

very low volumetric efficiency and due to gas compression and expansion, no liquid is being 

pumped. As a result, there is no valve action so that the card has a very small area.  

Additionally, to afore described pump states, many other pump malfunctions can be derived 

based on the interpretation of dynamometer measurements. 
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Figure 243: Dynamometer cards pump states  

(EPT = Effective Plunger Travel, MPT = Maximum Plunger Travel) 
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8.3 Sucker Rod Pump States Identification – ANN Training 

In order to be able to perform a trend analysis, it is important to first identify pump behaviours 

in existing data.  

Data was split the same way and the networks were of the same type (multilayer perceptron) 

and have the same parameters and architecture. The difference was the input data.  

The subset used for input consisted of 17,330 manually labelled dynamometer cards from 52 

wells. 10 major pump states have been identified and used as labels. These are: 

1. Normal 

2. Fluid pound  

3. Gas interference  

4. Fluid pound + tagging 

5. Gas interference + tagging 

6. Leacking travelling valve  

7. Overtravel 

8. Pumped off 

9. Tagging 

10. Unset anchor 



- 120 - 
 

 

Figure 244: Identified pump states 

Figure 244 illustrates examples for each pump state identified in the data during visualization 

and labelling processes.  

The approach was to train 4 different models and select the best performing network based on 

lowest validation error and highest F1-score percentage. F1- score was selected as the main 

model metric because it combines both precision and recall and works better for imbalanced 

class distribution as compared to accuracy which works better for a symmetric data set. 

Considering this criteria, network with the following parameters had the best performance: 

(iMLP+0c i163b-l8s-o10b L2/R+)AMx10.10e5.4(k5.4), this means that the MLP network has 

163 inputs, 8 hidden units and 10 outputs, 10th expert out of 10 was selected and trained with 

the 4th subset out of 5 splits. 

Table 3 illustrates the confusion matrix for the validation set of the best performing network 

and Table 4 shows the additional performance evaluation of the model based on parameters 

like entropy, accuracy, precision, recall and F1-score. 
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Table 3: Confusion matrix for the validation set of the best performing network 
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fpound 401 3 2   3  4   97.1% 

fpound+tag  0         0% 

gasif 5  304 8  2 4    94.1% 

gasif+tag   1 12   2    80% 

ltv     97      100% 

normal 6  5   2056     99.5% 

overtravel       2    100% 

poff        0   0% 

tagging         48  100% 

unset anchor          84 100% 

 11 3 8 8 0 5 6 4 0 0 45 

 412 3 312 20 97 2061 8 4 48 84 3049 

Table 4: Model performance evaluation 

Sub-set Accuracy Precision Recall F1-score 

Validation 98.5% 68% 77.1% 72.2% 

Confusion matrices for learning, testing, and validation for all trained models are found in 

Appendix C. 

In Table 3, blue cells represent the number of correctly identified classes as a result of the 

trained neural network. This means that 401 dynamometer cards with label “fpound” have been 

identified correctly. The same way, 2056 cards have been correctly classified as “normal”. 

Meanwhile, 11 cards from class “fpound” have been identified incorrectly, 5 as “gasif” and 6 as 
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“normal”. Similarly, 3 cards from class “normal” have been identified as “fpound” and 2 as 

“gasif”, and so on for the rest of the classes.   

The total number of dynamometer cards used for the validation set is 3049, out of it, 45 have 

been identified with a wrong class. Resulted accuracies for each class are shown in percent in 

the second row under classes names and precisions in the last column of the table.  

After the classification was performed on labelled data, using supervised learning, the rest of 

the data (unseen) was fed into the selected network to be classified in those 10 classes 

mentioned earlier and check how accurate are the results provided by the network. 

The network identifies a class for every input based on probabilities. In order to make sure that 

these classes were assigned correctly, some measurements classified by the network have 

been visulaized in Excel for assessing the accuracy of the classification. As a result, it was 

conlcuded that all measurements have been correctly classified, which means that there is a 

good match between input and output. 

It is worth mentioning that most measurements have been classified as „normal”, indicating 

that the majority of the wells are operating at good conditions and assure maximum production 

and efficiency. Nevertheless, the next two most common pump states are fluid pound and gas 

interference. These are most damaging malfunctions and as a result, it is important to have a 

model which offers the posibility to identify and predict trends in pumps behaviour, in order to 

avoid future failures and imporve production and pumps efficiency. 

8.4 Challenges Encountered in ANN Training 

Training time and manually labelling the dataset to be used for training were the main 

challenges encountered. 

It was expected to have a longer training time as the amount of data was very large, in order 

to achieve a shorter computing time, covariance base adaptive weight initialisation has been 

applied.  

8.4.1 Distinguishing Between Similar Dynamometer Cards Shapes 

Most common pump states were normal, therefore easy to identify. However, distinguishing 

between fluid pound and gas interference can be challenging sometimes as shapes look 

similar and only minor differences can make a separation between the two. Whenever this 

difficulty was encountered during the manually labelling process, other parameters such as 

gas-liquid ratio and historical data related to previous pump malfunctions for the particular well 

were checked. By accessing additional data about well’s production and pump behaviour, it 

was clear whether the condition was fluid pound or gas interference. As for the network it would 
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have been too complex to include additional inputs, some well distinguishable examples have 

been selected as input for training, accompanied by features described in Chapter 6. The final 

check between networks output and real measurements showed that the model was capable 

of differentiating between fluid pound and gas interference with 98% precision, as well as other 

pump states. 
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9 Trend Analysis 

The main goal in this project is the identification of trends present in SRP states behaviour and 

forecasting future pump states based on the identified trend. In this chapter, the methodology 

of trend identification and forecasting will be described, altogether with challenges encountered 

and results discussion. 

9.1 ARIMA 

Autoregressive integrated moving average model represents a generalisation of the 

autoregressive moving average model. It is usually applied to time series data for forecasting. 

The “AR” part represents the variable that is regressed based on its previous variables. The 

“MA” part represents the regression error as a linear combination between the errors that 

occurred concomitantly and at diverse times in the past. The “I” part denotes the fact that the 

values of data points have been replaced with the difference between these values and the 

previous values with the purpose to fit the data as precise as possible. (Wikipedia) 

ARIMA is described by three parameters: (p, d, q).  

(p) stands for the auto regressive part (AR) and it relates to the past values in the regression 

equation for a series X, as well as defining the number of lags used in the model. If for example 

ARIMA (2,0,0) then the series looks as following: 

𝑋𝑡 = 𝑐 + 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 + 𝑒𝑡  30 

 

𝜑1 and  𝜑2 are parameters for the model. 

(d) stands for the differencing in the integrated part (I). A differenced series is a series where 

current and previous values have been subtracted d times. It is applied for stabilizing the 

series. 

(q) stands for the error in the moving average part (MA) and is described as the total of previous 

error terms 𝑒𝑡. It determines the number of terms included in the model. 

𝑋𝑡 = 𝑐 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 + 𝑒𝑡  31 

 

Differencing, autoregressive, and moving average components of an ARIMA model can be 

written as a linear equation: 
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𝑋𝑡 = 𝑐 + 𝜑1𝑥𝑑   𝑡−1 + 𝜑𝑝𝑥𝑑   𝑡−𝑝 + ⋯ + 𝜃1𝑒𝑡−1 + 𝜃𝑞𝑒𝑡−𝑞 + 𝑒𝑡 32 

 

where 𝑥𝑑 is X differenced d times and c is a constant. (Dalinina) 

9.1.1 The Main Challenge 

The main requirement for applying ARIMA to time series data is for the data points to be 

sampled regularly. As mentioned earlier, in chapter 5, dynamometer cards’ sampling rate is 

rather irregular, therefore before proceeding with ARIMA, a separate process for interpolating 

and resampling data had to be initiated. In order to identify the best resampling time interval, 

the variation of pump states in every well was analysed. As a result, it was found that in most 

cases, pump states vary between 2 minutes to 7 minutes. See an example in Figure  

 

Figure 245:  Every 2 minutes pump states variation in a single well 

Three resampling intervals have been tested as following, one hour, one minute and every five 

minutes. In the one-hour interval, a lot of data points were not taken into consideration 

therefore the risk of running into aliasing was too high. In one minute-interval the data points 

were too frequent and ARIMA model took too long to be run. Therefore, the five-minute interval 

was selected as the most optimal resampling rate. 

The software used to perform the data modifications and apply ARIMA is R-Studio. In order to 

achieve the regular data set, an additional timeseries was created containing a timestamp at 

every fifth minute. This timeseries was bound with existing data points and then cubic 

interpolation was applied for replacing missing values.   
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Individual probabilities for every pump states have been used as the values for ARIMA 

estimation, trend identification and forecasting.  

In order to perform the quality check of resampled data points, a visual comparison between 

the original data and resampled data has been plotted as illustrated in the figures below.  

Figure 246: Original data vs resampled data, normal pump state

Figure 247: Original data vs resampled data, gas interference pump state 
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 Figure 248: Original data vs resampled data, gas interference pump state 

 

Figure 249: Original data vs resampled data, normal pump state 
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Figure 250: Original data vs resampled data, fluid pound state 

Each figure illustrates a test set of a single well in the first picture and a zoomed caption of the 

same test set in the second picture. It can be noticed that resampled data fits the original data. 

Of a great importance is to be noticed that already at this step one can identify patterns in 

pump behaviour, prior to trend identification and forecasting.  

In Figure 246 in May there is a change in pump states occurring at exactly every four hours, 

switching between normal behaviour and fluid pound. This can be an indicator of accumulation 

of low gas pressure between the valves. Such condition can lead to extremely high stresses 

and equipment failure. Therefore, some protective measures have to be taken such as 

installing a smaller downhole pump, reducing the speed of the pumping unit, or shortening the 

stroke length. 

Figure 247 depicts a well with a continuous pump state and a rather irregular sampling rate 

varying between one sample a day up to multiple samples a day, with some outliers that form 

negative peaks in the resampled data.  

 Figure 248 is an example of a good sampling rate with one measurement stored every hour.  

Figure 249 illustrates a well where the pump behaves normally most of the time and every 

once a month there is a fluid pound happening. This is another example of a good sampling 

rate, one measurement a day has been stored. The peaks created due to fluid pound may not 

affect negatively the equipment, but it is worth to monitor this well in time in order to identify 

the moment when the occurrence of abnormal behaviour becomes more often.  
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Figure 250 is a typical example of a transition from one pump state to another. This can be 

noticed in the beginning of July where the switch from fluid pound to normal state changes 

abruptly. Also, the sampling rate after this change has become more regular and often, this is 

an indicator that some workover or intervention took place in the wellbore altogether with 

adjusting sensors activity.  

9.2 Forecasting 

ARIMA model was built based on multiple channel estimation and the so called marima 

package was used (multivariate ARIMA). The selection was made in favour of marima as the 

time series in the data set is multivariate and the effect of forecasting is significantly improved. 

A multivariate time series is a data set that contains more than one time-dependent variable. 

This means that each of the variables does not depend only on its past values but also on the 

other variables.  

In order to define marima models in R -Studio, 0/1 indicator arrays corresponding to the AR 

part are created. Value 1 indicates the fact that a parameter is to be assumed at that position. 

Value 0 shows that the parameter corresponding to that position is 0.  

A pseudo-regression method is used for estimating the model. In R - Studio, this will allow 

marima to look for the best model in a step-by-step procedure.  The model is then iterated until 

it reaches convergence. (Spliid) 

9.3 Trend Analysis 

According to OECD Glossary of Statistical Terms: “The trend is the component of a time series 

that represents variations of low frequency in a time series, the high and medium frequency 

fluctuations having been filtered out.”  

There are multiple functions available in R – Studio which can be used for trend calculation. 

STL is one of the most robust and functional options. It stands for Seasonal and Trend 

Decomposition using Loess. This method was developed in 1990 by R.B. Cleveland, 

Cleveland, McRae, and Terpenning. The benefits of this function compared to other available 

options is that it can handle any seasonality, the user is able to control the smoothness of the 

trend-cycle, and unusual observations present in the time series do not affect the estimated 

trend. (Hyndman and Athanasopoulos) 

In this case, as the data is multivariate, there is a high chance of multiple seasonality to be 

present in the time series. Therefore, the MSTL (multiple seasonal decomposition) function 

was selected. Seasonal components are determined using STL, allowing multiple seasonal 
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periods. Trend components are extracted from the last iteration of STL. In the situation of non-

seasonal time series, data is decomposed only into two components, trend and remainder.  

A major advantage of the MSTL function is that it is completely automatic, which results in a 

better equilibrium between overfitting seasonality and permitting its steady changes over time. 

(Hyndman and Athanasopoulos) 

In the current project, trend analysis was performed for every pump state’s individual 

probability of occurrence.   

 

Figure 251: Identified trend for the fluid pound state 

 

Figure 252: Identified trend for the gas interference state 

 

Figure 253: Identified trend for the gas interference + tagging state  
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Figure 254: Identified trend for the normal state 

Figure 251 - Figure 254 represent some examples for the trend identified in the data. The black 

line illustrates the original data points plotted over time and the blue line is the trend identified 

with the MSTL function. The zig-zag shape of the black line is given by the outliers in the 

original data which does not influence the trend identification process. As it can be seen the 

identified trend is non-linear and follows the variations of the original data. Up to this point it 

was important to establish a precise way for trend identification. In the next steps the same 

procedure will be applied to the forecasted data and compared to the original data trend in 

order to make sure that forecasted values are trustworthy.  

9.3.1 Forecasted Values 

As it was previously mentioned, the forecasting of future values was performed using MARIMA 

type model. The function within MARIMA that is responsible for the forecasting is 

arima.forecast.  

So as to test the veracity of the forecasted values, the last part of the original dataset was 

deleted and then forecasted using arima.forecast. Afterwards, the forecasted values were 

compared with the original values as a measure for quality assurance.  

 

Figure 255: An example of forecasted data points 

In Figure  the yellow line represents the original data plotted over the interpolated data (orange 

line) and forecasted data (red line). Green lines represent the confidence interval or prediction 

interval. It has two limits, upper and lower. They represent the range within which the real 
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future observations should lie. It is very important to have this interval identified so as to 

minimize the uncertainty in future values. There is no general method for calculating the 

prediction interval as it is difficult to evaluate. In the current work a 95% interval was assumed 

and calculated using standard deviation of the forecast distribution.  

It can be observed that interpolated data fits exactly the original data, the forecasted data lies 

within the confidence interval and follows the original data path. Therefore, it can be concluded 

that predicted values are trustworthy and almost identical to the real data points. A closer look 

of the forecasted interval is shown in Figure 256. 

 

Figure 256: Zoomed view of the forecasted interval 

 

9.3.2 Trend of the Forecasted Values 

The same method described in 10.3.1 has been applied to identify the trend in forecasted 

values. 

 

Figure 257: Identified trend for the original data and the forecasted data 
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Figure 258: Identified trend for resampled and forecasted data 

 

Figure 259: Zoomed view of predicted trend vs forecasted values 

In  

Figure  Figure 257 and Figure 258 it can be seen that the trends of the original data and 

forecasted data are indistinguishable. When we take a closer look in Figure  at the trend of the 

forecasted data, it is observed that it follows the forecasted values line. This is a good indicator 

for the trendline veracity. 

 

Figure 260: Zoomed view of predicted trendline vs original data trend 

An additional quality check measure for the predicted trendline (purple line) is the comparison 

with the original data trend (blue line), represented in Figure 260. As it is impossible to reach 

100% match with the original trend, the error between the predicted data and original data was 

calculated and resulted in 0.21%.  
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In conclusion, it should be mentioned that this is an excellent result and provides well 

acceptable predicted values, very close to the original data.  
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10 Conclusions and Recommendations 

The main goal in this work was to investigate and find ways of applying artificial intelligence 

techniques, machine learning algorithms, data visualization methods and analysis in order to 

identify trends in sucker rod pumps behaviour and predict future operating states. As a result, 

the outcome should serve as a tool for production optimization and improving wells operation. 

10.1 Contributions  

Multiple methods and types of artificial neural networks have been studied for identifying 

sucker rod pump states. Main challenges were understanding provided data, preparing it, 

building and evaluating models’ performance. ARIMA was used for identifying trends in SRP 

behaviour and predict future pump states. The most important contributions of this work are as 

following: 

➢ A consistent literature review on machine learning algorithms, different types or artificial 

neural networks available, application and use in different industries and potential 

application in oil and gas industry, use of moving average techniques for trends 

identification in time series data 

➢ Understanding available data, organizing and integrating it in a common format 

catalogue 

➢ Identifying most common sucker rod pump malfunctions 

➢ Creating testing subsets out of manually labelled data  

➢ Extracting features and using them as input to the neural networks in order to identify 

surface dynamometer cards quality and pump states 

➢ Training several models based on feed-forward neural networks and selecting the best 

performing one. Applying the model on the remaining data and evaluating the results 

related to data quality and pump malfunctions. 

➢ Application of Autoregressive Integrated Moving Average for identifying trends in pump 

states and forecasting future behaviours. 

 10.2 Findings 

Modern technologies provide an endless source of inspiration and possibilities for applying 

collected data to increase businesses success rate. Nevertheless, most companies do not use 

available data to its full potential. It is important to understand the magnitude of potential carried 

by artificial intelligence and machine learning for improvement in decision making processes, 

risk reduction and cost optimization.  
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One of the greatest and most demanding challenges in this work was the data acquisition 

process, data cleaning, filtering and organizing. Due to a very large amount of data available, 

it was necessary to automatize the aforementioned processes by creating a standardised way 

of visualizing data, applied for data processing and further investigations. 

By extracting features from dynamometer cards and using them as inputs for neural networks, 

it was possible to develop models for detecting good quality measurements and next for 

identifying pump states. All results were very accurate and solid. After verifying networks 

outputs using comparison with real data, it can be stated that developed models are reliable 

and ready to use for real field operations. Furthermore, they carry a high degree of flexibility 

which allows the application and extension to new data without retraining or reprogramming. 

The application of ARIMA model to identify pump trends behaviour has shown reliable results. 

By comparing past pump behaviours and ARIMA outputs, it can be proved that predicted 

trends are trustworthy and can be used in daily operations for avoiding failures in sucker rod 

pumping systems.  

The combination of artificial neural networks models output and ARIMA forecast provides an 

intelligent diagnostic system for sucker rod pumps. 

 10.3 Recommendations 

After performing a detailed search on what has been done in oil and gas industry related to 

machine learning, being aware of most common operating issues and the work that has been 

carried out over the course of this research, following recommendations are suggested: 

1. It is of major importance for a company to comprehend the power of data which is 

stored and perspectives of its application altogether with intelligent algorithms. Surface 

dynamometer cards alone represent an extensive source for operational improvement 

of an oil and gas company. Combined with ML algorithms, a series of issues can be 

addressed and improved. 

2. Assuring constant data recording without gaps over the timeline. This will allow an 

improved trend analysis as information about pumps behaviour is not lost over time.  

3. If constant data recording is not possible, then calibrating the recordings storage time 

intervals to constant ones is recommended. In case of modifications, creating a 

notifying system containing the reason behind is of important benefit. This will ease the 

work of the data analyst or production engineer who operates with this data. 

4. Coming up with more complex models capable of evaluating additional datasets (e.g. 

complete failure and workover reports) in order to have a more precise and faster 
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prediction of pump malfunctions and an understanding of potential reasons behind. For 

example, by using more diverse data which would contain multiple types of pump 

malfunctions, later used for the network input. With a different/new input, neural 

networks can be retrained in order to be able to detect a larger pool of potential pump 

states and failures. Workover reports, well schematics and other historical data 

available can be utilized to improve the output of the trend analysis and failure 

forecasting model and adding automatic recommendations for procedures to be 

followed in order to avoid the particular unwanted events. 
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12 Appendices 

Appendix A: Snapshots of Data Matrix 
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Appendix B: QC Models Performance Evaluation 

Model C (best performance) 

Validation 

Class bad good  

 92.4% 99.8%  

bad 292 9 97.0% 

good 24 4423 99.5% 

 24 9 33 

 316 4432 4748 

Learning 

Class bad good  

 94.4% 99.9%  

bad 922 12 98.7% 

good 55 13524 99.6% 

 55 12 67 

 977 13266 14243 

Testing 

Class bad good   

 92.7% 99.8%   

bad 357 9 97.5%  

good 28 4354 99.4%  

 28 9 37  

 385 4363 4748  

Sub-set Accuracy Precision Recall F1-score 

Validation 99.3% 96.1% 98.1% 97.2% 

Learning 99.5% 97.1% 99.2% 98.1% 

Testing 99.2% 96.3% 98.5% 97.3% 
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Model A 

Validation 

Class bad good  

 91.1% 99.8%  

bad 288 7 97.6% 

good 28 4425 99.4% 

 28 7 35 

 316 4432 4748 

Learning 

Class bad good  

 93.4% 99.9%  

bad 913 13 98.6% 

good 64 13253 99.5% 

 64 13 77 

 977 13266 14243 

Testing 

Class bad good  

 91.2% 99.8%  

bad 351 7 98.0% 

good 34 4356 99.2% 

 34 7 41 

 385 4363 4748 

 

Sub-set Accuracy Precision Recall F1-score 

Validation 99.3% 95.5% 98.5% 97.0% 

Learning 99.5% 6.7% 99.1% 97.9% 

Testing 99.1% 95.5% 98.6% 97.0% 
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Model B 

Validation 

Class bad good  

 91.1% 99.9%  

bad 288 5 98.3% 

good 28 4427 99.4% 

 28 5 33 

 316 4432 4748 

Learning 

Class bad good  

 93.8% 99.9%  

bad 916 11 98.8% 

good 61 13255 99.5% 

 61 11 72 

 977 13266 14243 

Testing 

Class bad good  

 91.2% 99.7%  

bad 351 12 96.7% 

good 34 4351 99.2% 

 34 12 46 

 385 4363 4748 

 

Sub-set Accuracy Precision Recall F1-score 

Validation 99.3% 95.5% 98.8% 97.1% 

Learning 99.5% 96.8% 99.2% 98.0% 

Testing 99.0% 95.4% 98.0% 96.7% 
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Appendix C: Pump States Models Performance Evaluation 

 

Model B (best performance): (iMLP+0c i163b-l8s-o10b L2/R+)AMx10.10e5.4(k5.4) 
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Sub-set Accuracy Precision Recall F1-score         

Validation 98.5% 68% 77.1% 72.2%         

Learning 98.7% 67.3% 82.3% 74.1%         

Testing 98.1% 66.1% 76% 70.7%         
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Model A: (iMLP+0c i163b-f7s-o10b L2/R+)AMx10.5e5.5(k5.5) 
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Model C: (MLP+0c i163b-l8s-o10b L2/R+)Amx10.3e5.4(k5.4) 
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Model D: (MLP+0c i163b-l8s-l8s-o10b L2/R+)Amx10.10e5.1(k5.1) 
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fpound 389 3    1  5   97.7% 

fpound+tag  0         0% 

gasif 4  353 15  1 4    93.6% 

gasif+tag   6 19   2    70.4% 

ltv     104      100% 

normal 6  1   2028     99.9% 

overtravel       0    0% 

poff        0   0% 

tagging         39  100% 

unset anchor          73 100% 

  6 3 7 15 0 2 6 5 0 0 44 

  395 3 360 34 104 2030 6 5 39 73 3049 

Sub-set Accuracy Precision Recall F1-score         

Validation 98.9% 65.7% 65.9% 65.8%         

Learning 98.6% 64.1% 65.2% 64.6%         

Testing 98.6% 65.2% 66.2% 65.7%         

 

 


