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Abstract
Convolutional neural networks (CNNs) have achieved remarkable results in visual object
recognition. By using convolutional layers, filters are trained in order to detect distinct
features, which enable the network to correctly classify di�erent objects. A traditional
CNN follows a hierarchical structure, where every layer is used exactly once. In this work a
new network architecture is proposed which utilizes convolutional layers multiple times by
looping them. By doing so the following convolutional layers receive more refined feature-
maps of di�erent origins. It is shown experimentally, that looping convolutional operations
can have a shifting-e�ect on the detected features, such that the network focuses on certain
features in certain regions of the input, depending on the filter. Furthermore, a new type
of skip connection is presented, which makes more information available at the flatten
layer and is strengthening feature propagation. By looping convolutions the network is
very parameter e�cient, while still being able to create divers feature-maps. In order to
build deeper models with the proposed network architecture some methods are given in
order to reduce computational costs and parameters. The proposed network architecture
is compared to the traditional CNN architecture on 5 di�erent datasets (MNIST, Fashion-
MNIST, CIFAR-10, Fruits-360, Hand gesture), showing superior or similar results on most
datasets while having comparable computational costs.
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Kurzfassung
Convolutional Neural Networks haben bemerkenswerte Ergebnisse bei der visuellen Ob-
jekterkennung erzielt. Mit Hilfe von Convolutional Layers wurden Netzwerke trainiert,
um bestimmte Features zu erkennen, die es dem Netz ermöglichen, verschiedene Ob-
jekte korrekt zu klassifizieren. Ein traditionelles CNN folgt einer hierarchischen Struk-
tur, bei der jede Schicht genau einmal verwendet wird. In dieser Arbeit wird eine neue
Netzwerkarchitektur vorgestellt, bei der die Convolutional Layers mehrfach verwendet
werden, indem sie in Schleifen zum Einsatz kommen. Auf diese Weise erhalten die nach-
folgenden Convolutional Layers verfeinerte Feature-Maps unterschiedlicher Herkunft. Es
wird experimentell gezeigt, dass das wiederholte Anwenden von Convolutional Opera-
tionen einen Verschiebungse�ekt auf die erkannten Features haben kann, sodass sich
das Netzwerk je nach Filter auf bestimmte Merkmale in bestimmten Regionen des In-
puts konzentriert. Darüber hinaus wird eine neue Art von Skip-Connection verwen-
det, die mehr Informationen auf der Flatten-Schicht verfügbar macht und die Feature-
Propagation verstärkt. Durch die Verwendung von Convolutional-Loops ist das Netzwerk
sehr parameter-e�zient und kann dennoch vielfältige Feature-Maps erstellen. Um tiefere
Modelle mit der vorgeschlagenen Netzwerkarchitektur zu bauen, werden einige Methoden
angegeben, um den Rechenaufwand und die Parameter zu reduzieren. Die vorgeschlagene
Netzwerkarchitektur wird mit der traditionellen CNN-Architektur auf 5 verschiedenen
Datensätzen (MNIST, Fashion-MNIST, CIFAR-10, Fruits-360, Hand gesture) verglichen
und zeigt bessere oder ähnliche Ergebnisse bei den meisten Datensätzen bei vergleich-
barem Rechenaufwand.
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Chapter 1. Introduction

1. Introduction

1.1 Relevance of the topic
Since the introduction of the LeNet5 in 1998 [36], more complex network architectures
for visual object recognition have been developed. While the AlexNet, which consists of
8 layers and has about 60M parameters [6] [34], and the VGG-19, which consists of 19
layers and is twice the size of the AlexNet [65], were stacking more and more layers on
top of each other, more sophisticated architectures were proposed. In order to get deeper
networks ResNets, Highway Networks and FractalNets use special architectures, skip con-
nections of di�erent length and residual learning [26] [35] [67]. Despite a lot of e�ort in
the investigation of new and more powerful architectures there is still room for further
investigation. One of which is the use of convolutional loops in object recognition. In
the paper ”Loopy Neural Nets: Imitating Feedback Loops in the Human Brain” Caswell
et al. use feedback loops within the convolutional part of the network, showing that
looping the convolutional part can indeed improve the expressive capacity of the model
[29]. Furthermore, the Recurrent Convolutional Neural Network uses convolutional layers
recursively and by doing so can create a network with arbitrary depth while having a
constant number of parameters. Those Recurrent Convolutional Neural Network achieve
high performance on many popular benchmarking datasets while being extremely param-
eter e�cient [44]. However, there are still a lot of open questions regarding loops. What
e�ect do convolutional loops have on feature-maps? How can loops be integrated in the
network architecture? How many loops should be executed? How many layers should
be looped? Is looping convolutions advantageous for the performance? The proposed
network architecture is the attempt to create a model which can directly be applied to a
traditional CNN and loops single convolutional layers. When applying this architecture
on an ordinary CNN the number of loops are defined by the depth of the model. This
architecture represents a possible way on how to implement convolutional loops in a CNN.

1.2 Research Questions

1.2.1 Research Question 1

Skip connections have proven to be an important tool to improve the performance of
neural networks. They appear in several di�erent forms. In DenseNets skip connections of
di�erent length connect every convolutional layer with every following convolutional layer
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Chapter 1. Introduction

by concatenating their feature-maps [26]. Highway networks have special gating units that
can transfer information over many layers, making it possible to create extremely deep
networks which can be trained by stochastic gradient descent [67]. The skip connections of
those architectures have all in common, that they connect layers within the convolutional
part of the network. However, what if convolutional layers get connected with the flatten
layer? Can a direct connection between each convolutional layer and the flatten layer be
beneficial for the performance of such a network?

1.2.2 Research Question 2

DenseNets have shown, that skip connections which connect every convolutional layer
with every following convolutional layer can massively improve the performance of deep
neural networks. This is called a dense connectivity pattern [26]. What happens when
this method is applied on small sized networks consisting of few convolutional layers?
Furthermore, can this method also benefit from the skip connection mentioned in the first
research question? How does such network compare to ordinary CNNs with comparable
computational costs?

1.2.3 Research Question 3

The traditional CNN architecture consists of hierarchically ordered layers. The first layer
of the network receives an input and then computes an output which is fed to the second
layer. The second layer does the same thing. It receives the input from the first layer and
delivers its output to the third layer. This is done until the output layer of the network is
reached. This is commonly known as the feedforward pass. Within this feedforward pass
every layer gets utilized exactly once. However, what happens when a layer gets used
multiple times at di�erent times during the feedforward pass in form of a convolutional
loop? How can such a behavior be integrated in the traditional CNN architecture? How
does it perform in combination with the skip connection which is covered in the first
research question?

1.3 The structure of the work
This work consists of 8 chapters. The introduction outlines the research questions explored
in this thesis and the relevance of this work. In the second chapter related work is
outlined, which heavily influenced the design of the proposed methods and the network
architecture. After that, a new type of skip connection gets proposed, as well as, a
modified version of the DenseNet gets explained [26]. Those models should serve as a
comparison. Furthermore, the proposed network architecture is introduced. By doing
so the feedforward and the the backpropagation are explored. Possible variations of the
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network architecture and parameters are discussed.
After the new network architecture is introduced the datasets on which the di�erent
models are evaluated on will be explained. In addition to the description of the datasets
the data augmentation which is used during training is described. In the next chapter the
experiment and the evaluation procedure gets outlined. The results of the experiment is
discussed afterwards. Since the computational resources of this work are very limited, a
prospect is given in which areas in the context of the proposed network architecture further
investigations might be interesting. This includes ideas on how to create deeper models.
In the end the final results are summarized and the research questions get answered.

University of Leoben 3 Peter Niederl



Chapter 2. Related work

2. Related work
The proposed network architecture was inspired by many di�erent models and concepts,
which have shown incredible results in computer vision tasks. In this chapter those
architectures and concepts are explained and summarized. Furthermore, an explanation
is given on how these architectures a�ected the proposed neural network architecture.

2.1 DenseNets
DenseNets were introduced by Huang et al in 2016 and obtained significant improvements
at several benchmark tasks at that time. They embrace the concept of having a dense
connectivity pattern within the convolutional part of the network. In comparison to
traditional convolutional neural networks where every convolutional layer is just connected
to its predecessor and its successor, in DenseNets convolutional layers are connected to
every previous and every following convolutional layer. This means, that a DenseNets
with L layers have L(L+1)

2 connections, while a normal CNN with L layers just has L

connections. Those additional connections are created by feature-map concatenation,
which means that the input feature-maps of a convolutional layer is a collection of the
feature-maps which were generated by all preceding layers. Since a normal convolutional
operation changes the dimensions of the feature-maps, zero-padding was used in order to
keep the dimensions of the feature-maps the same. That way feature-maps of di�erent
layers can be concatenated. By doing so the depth of the input feature-maps increases for
every following layer. In the following figure the concept of a dense connectivity pattern
is illustrated more clearly [26]:
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Figure 2.1: A 5 layered dense block: The input of a layer consists of the output of all
previous layers. Each layer is connected to all following layers [26].

Since the feature-map dimensions do not change when using convolutional operations the
authors claim that it is still very important to have pooling layers to reduce the size of the
feature-maps. To accomplish this the network was divided in smaller blocks, which the
author called dense blocks. Within a block the generated feature-maps share the same
dimensions and therefore can be concatenated. Between those dense blocks transition
layers were used, which consist of a 1 ◊ 1 convolutional layer and a 2 ◊ 2 pooling layer.
Since the feature-maps at the end of a dense block consists of all the feature-maps gen-
erated in this particular dense block, a 1 ◊ 1 helps to reduce the number of feature-maps
and decrease computational costs. The number of feature-maps that get generated in a
dense block depends on the growth rate. This rate defines the number of feature-maps
that get generated in a convolutional layer. When using multiple convolutional layers
during a dense block, the number of feature-maps can get very large. In order to be more
computational e�cient, bottleneck layers can be used before the actual convolution. This
bottleneck layer is a 1 ◊ 1 convolution, which reduces the number of feature-maps and
has the same purpose as the 1 ◊ 1 convolution in the transition layer. DenseNets are also
less prone to overfit since they are very parameter e�cient, especially when incorporating
bottleneck layers before the actual convolution. The dense connectivity pattern creates
a form of collective knowledge, as called from the authors. Since every layer has all the
information available which was generated by all the previous layers. By doing so many
more paths were created, which eliminates the vanishing gradient problem. This might
also be the key to the DenseNet’s success [26].
DenseNets have heavily influenced the design of the proposed neural network architec-
ture, since it also includes some form of a dense connectivity pattern. Additionally,
LoopyDenseNets use special skip connections, which also create a collective knowledge.
However, those skip connections are operating di�erently then the skip connections used
in the DenseNet. Furthermore, the LoopyDenseNet uses feature-map concatenation in
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order to concatenate feature-maps of di�erent layers, just like the DenseNet does.

2.2 Loopy Neural Nets
In the paper ”Loopy Neural Nets: Imitating Feedback Loops in the Human Brain” the
authors Caswell et al. propose a new network architecture, which mimics feedback loops
within the brain. Although artificial neural networks are the attempt to imitate the hu-
man brain, which according to neuroscience has many feedback loops, traditional neural
networks are acyclic computational graphs. Therefore the principle architecture of artifi-
cial neural networks di�ers from its real model. With the proposed loopy neural network
model the authors investigate on the e�ects of having feedback loops in an artificial neural
network, which is supposed to approximate the functioning of a real human brain [29].
In order to be able to include loops within the neural network the feature-maps, which
are generated at the end of the convolutional part, undergo element-wise addition or mul-
tiplication with the input of the network, before feeding it to the first convolutional layer
again. To make this possible the feature-maps need to be compressed to the size of the
input. This is done via a 3 ◊ 3 convolution. Assuming that the input is a colored image,
three 3 ◊ 3 convolutions have to be applied to the feature-maps, before they get merged
with the input. In comparison to an ordinary convolutional neural network where each
convolutional layer gets used just once, in a loopy neural network a convolutional neural
network can be utilized multiple times at di�erent times during calculation. To avoid an
infinite loop in the network the authors introduced the unroll factor, which defines the
number of loops that will be executed [29].
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Figure 2.2: A loopy neural network with an unroll factor of 3. On the right is the unrolled
network [29].

When knowing the number of loops, the network can be represented as an unrolled neural
network which reuses the same layers again as can be seen in the figure 2.2. Therefore
the forward propagation for a loopy neural network is the same as for an ordinary neural
network, however, it has to be unrolled first. Similarly to the forward propagation the
backpropagation is performed in the common manner as well. Nevertheless, since the
same layers were used multiple times the final gradient for a convolutional layer is the
sum of all the individual gradients of each loop [29].
In the original work the loopy neural network was compared to the corresponding deep
neural network, as well as the non-loopy version of the network on the CIFAR-10 and
MNIST datasets. It managed to outperform the non-loopy version, as well as the deep
representation of the loopy neural network on the CIFAR-10 dataset. Furthermore, the
loopy neural network met the performance of the non-loopy and the deep models on the
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MNIST dataset, while having the same amount of parameters as the plain network and
almost three times fewer parameters compared to the deep network, since a unroll factor
of three was chosen. This indicates, that loopy neural networks can have the same or
better expressive capacities as their deep representations [29].
The LoopyDenseNet also incorporates the concept of loops in its architecture. However,
it uses loops in order to generate a dense connectivity pattern by only looping single layers
and not the whole convolutional part of the network. This process is described in further
detail in section 3.4.1.

2.2.1 Advantages of loops in neural networks

One aspect of using feedback loops in neural networks is, that information from later
layers get fed to earlier layers. This should enable the network to make a more sophis-
ticated choice for the weights of earlier layers. Furthermore, loopy neural networks are
very parameter e�cient. Depending on the number of unrolls, a loopy neural network
may represent a deep convolutional neural network, while having much fewer parameters,
because of the filter reuse. Additionally a loopy neural network is easier to train then
its deep representation. The deep representation of a 4 layered loopy neural network,
which gets looped 3 times, would consist of 12 layers which is harder to train, because
of the vanishing gradient problem. When the derivatives are large then with each layer
the gradient will grow until it explodes and learning will not be possible. On the other
side when the derivative is small, then the gradient will shrink with each layer to the
point backpropagation has basically no e�ect on the parameters of the network [52] [71].
Because of that training a smaller network which uses loops can ease learning. This is
especially true since the parameters of each layer get updated multiple times. Caswell
et al. also state, that the looped output combined with the input image results in an
attention map, indicating, that loops learn to weight the important regions of the image
[29].

2.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) di�erentiate themselves from Feedforward Neural
Networks (FNN) since they incorporate loops within their architecture. While CNNs
have a hierarchical structure where the output of one layer is fed directly to the next
layer, RNNs have cycles, which means, that they pass information back to themselves.
Traditionally this property is used to feed sequential data to the network, since it is able to
account for previous inputs. Because of that RNNs are used in many di�erent domains,
such as language modeling, speech recognition and image description generation. The
following figure should demonstrate the di�erence between a Feedforward Neural Network
and a Recurrent Neural Network [62] [11].
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Figure 2.3: Comparison between a Feedforward Neural Network and a Recurrent Neural
Network [62].

When unrolling the Recurrent Neural Network, the following structure can be seen.

Figure 2.4: Recurrent Neural Network unrolled [62].

In order to see the di�erences between FNNs and RNNs more clearly, equations were
given, which calculate the di�erent variables. The hidden variable of the Feedforward
Neural Network is calculated by:

h = ‡(xwxh + bh) (2.1)

and the output is calculated with the following equation:

y = ‡(xwhy + by). (2.2)

In this equation ‡ stands for any activation function. Usually the sigmoid or tanh func-
tions where used in the RNNs, while in CNNs the ReLU function is most often used [22]
[38] [62] [11]. In comparison to that, the calculation of the hidden state in the RNN looks
as follows:

h
t = ‡(xt

wxh + h
t≠1

whh + bh) (2.3)
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This time the hidden variable at time step t is not only dependent on the input at time
step t , but also on the previous hidden state h

t≠1. For completion the output variable at
time step t is calculated as follows:

y
t = ‡(ht

why + by) (2.4)

Here it is possible to see another key di�erence between FNN and RNN. The RNN can
calculate di�erent outputs over time. Therefore the total loss of a RNN with T time steps
is the sum of all losses over all outputs. The loss function can be chosen for the specific
problem that needs to be addressed [62].

L =
Tÿ

t=1
L

t (2.5)

Not only the feedforward pass is di�erent from a FNN to a RNN, also the backpropagation
is executed di�erently. While the weights of a convolutional layer are only used once in a
FNN, in the RNN the weights can be used an arbitrary amount of times. This depends on
the number of unrolls. In order to consider this Backpropagation Through Time (BPTT)
has to be used. During backpropagation the weights wxh, whh and why have to be updated
in respect to the calculated loss. For the proposed network architecture the update for
whh is especially interesting and would look like this:

ˆL
t

ˆwhh
= ˆL

t

ˆyt

ˆy
t

ˆht

tÿ

k=1

ˆh
t

ˆhk

ˆh
k

ˆwhh
. (2.6)

Important to node is, that whh is used multiple times to calculate the current state h
t, as

well as all previous states [62].
The equation 2.6 will be important when doing backpropagation in the LoopyDenseNet,
since it contains looped convolutions. In fact, standard backpropagation and Backprop-
agatin Through Time were used in the LoopyDenseNet. This will be explained in more
detail in the section 3.4.2.

2.4 Recurrent Convolutional Neural Networks
Recurrent Convolutional Neural Networks (RCNN) were introduced by Liang et al. in
2015 and can be seen as a combination of a Recurrent Neural Network and a Convolutional
Neural Network. While it has recurrent layers like a recurrent multilayered perceptron
(RMLP), the layers itself are not fully connected, however, share local connections in the
form of convolutions [16] [36]. They incorporate recurrent connections inspired by the Re-
current Neural Network for static object recognition and classification, which were called
recurrent convolutional layers. The authors claim, that those recurrent convolutional lay-
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ers reinforce the ability of the network to incorporate context information. Furthermore,
the RCNN is extremely parameter e�cient, while it can be arbitrary deep depending on
the number of unrolls [44]. The following graphic should illustrate the di�erence between
the common Convolutional Neural Network, the Recurrent Multi-Layered Perceptron and
the Recurrent Convolutional Neural Network.

Figure 2.5: Comparison between the Convolutional Neural Network, the Recurrent Multi-
Layered Perceptron and the Recurrent Convolutional Neural Network [44].

The proposed neural network also loops convolutional layers, similar to the RCNN. While
a looped recursive layer receives two inputs, the original input to this layer coming from
the previous layer and the state of the previous loop, the LoopyDenseNet only uses the
previous state as input.

2.5 FractalNet
FractalNet is a network architecture, which was introduced in 2017 by Larsson et al. This
architecture consists of many di�erent subpaths with alternating length and is based on
self-similarity. FractalNets get generated by using a simple expansion rule, creating many
paths of di�erent length. What is special about FractalNets is that each internal signal is
processed by a filter and a nonlinearity before being passed to the following layer. This
distinguishes FractalNets from other network architectures like ResNets [21]. Despite
not using residual representations very deep Fractal Networks achieve similar results as
popular residual networks, suggesting that the ability to transition from a shallow to
a deep network may be the key to achieve high performance [35], rather than learning
residuals.
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All the internal signals of the proposed LoopyDenseNets are also processed by a filter,
followed by a nonlinearity. It does not use residual representations like ResNets.

2.6 Highway Networks and ResNets
Increasing the depth of neural networks has shown to be crucial to achieve better perfor-
mance. However, increasing the number of layers of the network makes training harder.
Therefore oftentimes the performance of deeper models do not match shallower ones.
Highway networks try to add highway connections, which should act as information high-
ways and are inspired by the Long Short Term Memory of recurrent networks [25]. These
highway connections, come in the form of information gates ensuring, that information
can flow over several layers. They enable to train networks of tremendous size with sim-
ple stochastic gradient descent. Highway networks show, that information routing can
be beneficial for training and for the performance of a neural network, since they enable
larger models, which are capable of learning more complex behaviors. Models consisting
of hundreds of layers can still be optimized, while plain networks of the same size fail
to achieve similar results. Additionally the authors mention, that highway networks con-
verge faster then plain networks [67] [68].
Similarly to Highway Networks, ResNets also try to benefit from the increasing depth
of neural networks. However, instead of using highway connections, ResNets introduce
a residual learning framework, which enables to train much deeper models. They claim,
that it is easier to optimize the residual mapping then learning unreferenced functions.
That way ResNets can benefit from increased depth and achieve better performance then
shallower networks [21].

University of Leoben 12 Peter Niederl



Chapter 3. Introduction to own work

3. Introduction to own work
The following chapter consists of three major parts. In the first section a new type of skip
connection is described, which increases the connectivity between the convolutional part of
the network and its flatten layer. It can easily be applied to an ordinary CNN to increase
its connectivity and create multiple paths for the information to flow. Next a modified
version of the DenseNets is described, which brings the idea of a dense connectivity pattern
to smaller convolutional neural networks, as well as the above introduced skip connections.
This modified DenseNet should serve as a comparison to the proposed architecture and
includes many concepts which influenced the design of the LoopyDenseNet architecture.
In the final section the proposed network architecture with the name LoopyDenseNet gets
presented. This model includes similar ideas as the modified DenseNet and furthermore
incorporates loops in the convolutional part of the network.

3.1 Flat-Skips
DenseNets, ResNets, HighwayNets and FractalNets and many more network architectures
have a similar characteristic. They all have some sort of shortcut, which transfers infor-
mation from an earlier layer to a later layer and that way modifies the e�ective depth
of the network [26] [21] [67] [35]. In this section the concept of skip connections, which
directly connect each convolutional layer with the flatten layer, is discussed. First the
functionality of the proposed skip connection, which in the course of the work is called
Flat-Skips, is described. Furthermore, possible benefits of those skip connections are il-
lustrated. In order to evaluate these benefits the performance of CNN’s with and without
Flat-Skips were compared. In comparison to other skip connections, Flat-Skips have the
attributes, that they directly transfers the output of each convolutional layer to the flat-
ten layer. This is done via feature-map concatenation. The generated feature-maps of
each convolutional layer are passed to the flatten layer, where they get flattened, just like
the feature-maps of the last convolutional layer of an ordinary CNN. By doing so, a form
of ”common knowledge” is created, which is comparable to the ”common knowledge” in
DenseNets [26]. As a result the flatten layer is a collection of all the feature-maps that
were generated during the convolutional part of the network.
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Figure 3.1: Convolutional part of an ordinary CNN: The flatten layer just consists of the
feature maps of the last convolutional layer.

Figure 3.2: Convolutional part with Flat-Skip connections: The flatten layer consists of
the concatenated feature maps of all convolutional layers.

As the figure 3.2 illustrates, using Flat-Skip connections increases the length of the flatten
layer significantly. Since the feature-maps of earlier layers typically have a larger size, it
will be necessary to use pooling operations before passing the feature-maps to the flatten
layer in order to reduce the number of parameters. This is especially true when the flatten
layer is the input layer for a fully-connected layer. However, when using global average-
pooling for the final prediction, pooling might not be necessary [40]. During testing
max-pooling seems to perform slightly better then average-pooling, however, for certain
scenarios average-pooling might be advantageous. All the networks which are tested in
the course of this work only own a single fully connected layer, which connects the flatten
layer with the output layer of the network, which is making the final prediction.

3.1.1 Benefits of Flat-Skips

Flat-Skips have three major benefits. First of which is, that it makes more information
available in the flatten layer. Similar to the skip connections of DenseNets, Flat-Skips
concat the feature-maps of di�erent convolutional layers [26]. Instead of using this as the
input for the next convolutional layer, those feature maps get flattened and then used as
input for a fully connected layer or an global average-pooling layer [40]. The underlaying
idea is the same. The belief is, that also feature-maps of earlier layers include useful
information for the final prediction, which in the end lead to more accurate predictions.
This should be especially true, when combining the information of all feature maps of all
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layers. A L layered CNN with Flat-Skips has the same amount of information available
as L CNNs with 1 to L layers.
Many recent network architecture, like residual networks (ResNets), fractal networks and
highway networks [26] [67] [35], have shown, that the ability to adapt the depth of a
convolutional network can be crucial for its performance. In the paper [74] the authors
claim, that residual networks can be seen as a collection of many paths of di�erent length.
ResNets do this by their shortcut connections, which enables to pass information through
multiple layers, allowing for ResNets with hundreds of layers [21]. Fractal networks consist
of interacting subpaths of di�erent lengths, suggesting that being able to transition from
shallower to deeper models during training might be crucial to the performance of a neural
network [35]. Expanding CNNs with Flat-Skips is a simple way to add the ability to adapt
the depth of a CNN, since those skip connections can directly shorten the depth of a CNN.
The next advantage of Flat-Skips is the improved gradient flow. By using Flat-Skips the
vanishing gradient problem gets eliminated, since the gradient of the flatten layer can
directly be passed to the corresponding layer [18] [15]. Furthermore, with Flat-Skips the
gradient has many more paths to propagate back through the network. The advantage
of these skip connections is that there are more and more paths for the gradient, the
earlier the layer is. This means that the e�ect of the connections becomes stronger as
the number of layers increases. Taking into account that the vanishing gradient problem
also becomes greater as the number of layers increases, this is an advantageous property.
Considering a CNN with 5 convolutional layers, there is only one path for the gradient of
the first convolutional layer. However, if we add Flat-Skips, there are 5 paths from which
the final gradient of the first layer results.

3.2 Backpropagation with Flat-Skips
Since Flat-Skips add additional connections to the network architecture and therefore
creates more paths for the gradient to flow, the backpropagation has to be looked at
in more detail. There are two approaches on how to backpropagate the gradient when
Flat-Skips are involved. The first of which is based on the perception, that Flat-Skips
transform a L layered CNN is a collection of 1 to L layered CNNs and for each of these
CNNs backpropagation is performed individually. This means, that L backpropagation
cycles have to be executed in order to respect the gradient of each Flat-Skip connection.
First, backpropagation is performed on the normal L layered CNN as if there were no
Flat-Skips. Afterwards the feature-maps of the Flat-Skips which connects the (L ≠ 1)-th
layer with the flatten layer were considered and backpropagation on a (L ≠ 1)-th layered
CNN is performed. This continuous until the first Flat-Skip of the network. By doing
so, the final gradient for each parameter is the result of L backpropagation processes.
This way of using backpropagation is simple to implement, especially when not every
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convolutional layer is connected with the flatten layer via Flat-Skips, however, it is not
very computational e�cient.
The second way to do backpropagation with Flat-Skips is to add the gradient of the Flat-
Skips to the corresponding layer and perform backpropagation in a single run. This is
faster then the approach described above, since only a single backpropagation run has to
be made. However, the implementation can be more di�cult.

3.3 Modified DenseNet
DenseNets have shown great results in computer vision tasks. The idea is to use a dense
connectivity pattern within the convolutional part of the network, which creates a form
of ”common knowledge”. In order to apply this pattern for very deep neural networks
the authors of the original paper [26] use dense blocks. Within these dense blocks every
convolutional layer is connected with every following convolutional layer via feature-map
concatenation. Since the dimensions of the generated feature maps within such block are
always the same, it is very simple to concat those feature maps. However, there is no
feature-map concatenation between di�erent blocks. In order to reduce the dimensional-
ity of the feature-maps, transition layers were used between those dense blocks. These
transition layers consist of a 1 ◊ 1 convolutional and a pooling layer [26].
In this work the DenseNet architecture is adapted for smaller networks and is called
modified DenseNets. Modified DenseNets do not use any transition layers, however, they
use the dimension-reducing property of the convolutional operation. Therefore pooling
is not as required as in the original DenseNet. In order to reduce the dimensions of the
feature-maps no padding is used during a convolutional operation. This results in di�er-
ent dimensions between the input and the computed feature maps. To still be able to
get a dense connectivity pattern within the convolutional part of the network an adaptive
pooling method was developed, which can reduce the dimensions of any feature map to
a desired number. In this work the just described adaptation of dense connectivity was
applied to small sized convolutional neural networks, ranging from 3 to 7 convolutional
layers. Furthermore, Flat-Skips, which were described in the section 3.1, were added to
the network architecture. So every convolutional layer had an direct connection to the
flatten layer, resulting in a maximum information flow within the network. That way the
modified DenseNet with L convolutional layers consists of L(L+1)

2 ≠ (L≠1) from the dense
connectivity pattern and additional L≠1 connections from the Flat-Skips. In comparison,
a standard convolutional layer with L layers just has L connections, one between every
convolutional layer and just one connection to the flatten layer.
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3.3.1 Adaptive pooling

In order to be able to concat feature-maps of di�erent dimensions a simple adaptive
pooling operation was developed. The idea is to reduce the dimension of bigger sized
feature-maps to the desired dimension using a pooling operation. This can be done with
a max or average-pooling operation. During the tests max-pooling performed slightly
better. The adaptive pooling operation works as follows:
Let d1 be the the desired dimension and d2 the dimensions of the feature-maps that should
be shrunk (d1 Æ d2). First, the required pooling window size is calculated by the rounded
dividend between d1 and d2. Next it is required to calculate the number of times this
pooling window is applied on the feature map in order to get the desired format. In order
to clarify this, the procedure gets explained by an example. Let the input to an adaptive
pooling operation have the dimensions 8 ◊ 8. The goal is to get a output matrix with the
dimensions 3 ◊ 3. Therefore the window size Ê is calculated as followed: Ê = Á8/3Ë = 3.
So the pooling window size that has to be used is 3 ◊ 3. The idea is to use this window
size as often as possible starting from the upper left corner of the matrix and then switch
to a smaller window size when needed. In the case described above the window size 3 ◊ 3
would be used 2 times, before switching to a pooling window size of 2. Then the same
process would apply for the next row. Of course padding has to be considered when doing
so. The output matrix of an adaptive max-pooling operation would look like this:

5 3 2 4 0 2 1 6
0 2 5 0 1 1 0 0
2 0 1 1 2 0 1 1
2 3 2 3 3 2 2 3
3 0 2 6 0 1 3 5
2 1 0 0 0 3 3 2
0 1 0 1 2 2 1 3
1 3 0 4 4 2 0 1

5 4 6
3 6 5
3 4 3

æ

Figure 3.3: 8 ◊ 8 input matrix for adaptive pooling

The advantage of adaptive pooling is, that any output dimension can be achieved. It is
still important to note, that in some cases the information in the top right corner gets
compressed more then the information in the lower left corner. Backpropagation works
similarly when using a normal pooling operation, however, it is necessary to consider
the changing pooling window size. Since the output of an adaptive pooling operation is
defined by the dimensions of the input feature maps and the desired output dimensions,
the result is unambiguous. Therefore assigning the gradient to the correct values during
backpropagation is unambiguous too.
The Java code for an adaptive pooling algorithm would look like this:
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Algorithm 1 Adaptive max-pooling
Function: adaptive max pooling( matrix, n )
Input:

matrix . . . input matrix with dimensions m ◊ m

n . . . desired output dimension
Output:

result . . . output matrix with the desired dimensions n ◊ n

1:
2: int m = matrix.length;
3: double step size = (double) m / (double) n;
4: int transition counter = m - (int) step size * n;
5: int sec step size = (int) step size;
6: if (step size - (int) step size > 0) step size = (int) step size + 1;
7: double[][] result = new double[n][n];
8: int step row = (int) step size;
9: int row = 0;

10: for(int i=0; i<m; i=i+step row) {
11: if (row == transition counter) {
12: step row = sec step size;
13: }
14: int step column = step size;
15: int column = 0;
16: for(int j=0; j<m; j=j+step column){
17: if (column == transition counter) {
18: step column = sec step size;
19: }
20: double max = Double.NEGATIVE INFINITY;
21: for(int l=0; l<step row; l++) {
22: for(int k=0; k<step column; k++) {
23: max = Math.max(max, matrix[i+l][j+k]);
24: }
25: }
26: result[row][column] = max;
27: column = column + 1;
28: }
29: row = row + 1;
30: }
31: return result;

University of Leoben 18 Peter Niederl



Chapter 3. Introduction to own work

3.4 LoopyDenseNet
LoopyDenseNets (LDN) are the result of combining many di�erent concepts, which have
shown to be very capable on its own. The base of a LoopyDenseNet is a standard feedfor-
ward convolutional neural network. The unique characteristic of the LoopyDenseNet lies
in its implementation of the dense connectivity pattern and the implementation of the
loops within the convolutional part of the network. Important to node here is, that all the
convolutional operations which are processed in the LDN do not use any form of padding,
because the dimension reducing property of convolutions should be utilized. Because of
that the feature-map size decreases by each layer. Nevertheless, similarly to the original
DenseNet a dense connectivity pattern via feature-map concatenation should be achieved
[26]. To accomplish this, the feature-map sizes have to be the same. In the modified
DenseNet architecture, described in the section 3.3, this was done via an adaptive pooling
operation. LoopyDenseNets in contrast achieve this by looping convolutional operations
multiple times until the desired feature-map size is reached. Then the feature-maps can
be concatenated. Compared to the loops which were described in the paper ”Loopy Neu-
ral Nets: Imitating Feedback Loops in the Human Brain” [29] and was covered in section
2.2, where several convolutional layers are looped (in fact the whole convolutional part),
LDNs only loop a single layer a specific amount of times. This means, that the output of
a layer directly gets fed to the same layer again and the same convolutional operation of
this layer gets applied, resulting in the same number of feature-maps as with the original
output of that layer. However, the size of the feature-maps gets smaller. That way these
feature-maps can be concatenated with feature-maps of di�erent layers. Considering a
CNN with L convolutional layers, the feature-maps, of the second layer, can be concate-
nated to the feature maps that have gone through the first convolutional layer twice. For
this to work, the filters of all convolutional layers must have the same size. Similarly the
feature-maps of the third convolutional layer have the same size as the feature-maps that
were looped three times through the first convolutional layer and the feature-maps that
come from the second convolutional layer, which were looped through the second layer
again. In order to clarify this the forward propagation of a LoopyDenseNet is looked at
more closely in the following section.

3.4.1 Forward propagation in LoopyDenseNet

As described in the introduction of the LoopyDenseNet architecture, the functionality of
the LDN is to perform convolution operations in a loop to reduce the size of the feature-
maps so that the feature-maps of di�erent layers can be concatenated. That way a dense
connectivity pattern should be achieved which is similar to the one of a DenseNet [26]. In
this section the interaction between loops and additional connections between layers will
be examined.
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During feedforward propagation, a distinction is made between normal layers and looped
layers. The forward propagation of a non-looped layer (normal convolutional layer) is the
same as in a traditional CNN and can be described with the following equation:

hl = ‡(xlwl + bl) (3.1)

In this equation hl is the output of the l-th convolutional layer with the input xl. The
l-th convolutional layer has the weight wl and the bias bl. The activation function is
represented by ‡. The forward propagation of a looped layer looks di�erently and can be
described as follows:

h
t
l = ‡(ht≠1

l wl + bl) (3.2)

In this equation h
t≠1
l stands for the output of the (t ≠ 1)-th loop of the l-th layer. So the

state h
t
l is dependent on the previous state h

t≠1
l of the same hidden unit. In comparison to

a Recurrent Neural Network the looped convolution of a LDN does not receive a second
input.
The forward propagation will be shown in more detail in the following section. For this
let Il be the input feature-maps of the l-th layer and Ol the output of the l-th layer. The
activation function at the l-th layer is represented by ‡l. That means, that in order to
get the output of the i-th layer, the input has to go through the convolutional operations
of this layer: Ol = ‡l(Il). Considering a input with the size n ◊ n, the output of this
layer would have a format of n ≠ m + 1 ◊ n ≠ m + 1 when using a m ◊ m convolution.
For the following example a 5 layered LoopyDenseNet is looked at. The input to the
first convolutional layer has the size 28 ◊ 28 and only 3 ◊ 3 convolutions were used
through out the network. After the first convolutional layer the feature-maps have a
size of 26 ◊ 26. The input to the second convolutional layer is the output of the first:
I2 = ‡1(I1) = O1. This is of course a simplification since usually normalization layers or
other types of layers are used in between. However, the dimensions of the feature-maps
do not change. The input to the third convolutional layer consist of all the feature-maps
which have the size 24 ◊ 24. In the case of the example these feature-maps are the output
of the second layer plus the feature-maps which result from looping the output of the first
layer: I3 = ‡2(I2) ü ‡1(‡1(I1)) = O2 ü ‡1(O1). The ü is used to indicate the feature-
map concatenation. Continuing with the input for the fourth layer, which consists of the
output of the third layer plus the results of the three times looped first convolution layer
plus the looped output from the second layer: I4 = ‡3(I3) ü ‡2(‡2(I2)) ü ‡1(‡1(‡1(I1))) =
O3 ü ‡2(O2) ü ‡1(‡1(O1)). In order to simplify the following terms an expression like
‡l(‡l(‡l(Il))) will be written as ‡l(Il)3. For completion the input to the fifth layer looks
like this: I5 = ‡4(I4) ü ‡3(I3)2 ü ‡2(I2)3 ü ‡1(I1)4. In general, the following applies to the
input of the l-th layer:
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Il = ül≠1
j=1‡j(Ij)l≠j

with l > 1 (3.3)

In this equation the ül≠1
j=1 stands for the feature map concatenation and should be read

like a q sign. The table below shows the input of the l-th layer in relation to the input
of the network I1.

Layer Input of the l-th layer in relation to I1

1 I1

2 I2 = ‡1(I1)
3 I3 = ‡2(‡1(I1)) ü ‡1(I1)2

4 I4 = ‡3(‡2(‡1(I1)) ü ‡1(I1)2) ü ‡2(‡1(I1))2 ü ‡1(I1)3

5 I5 = ‡4(‡3(‡2(‡1(I1)) ü ‡1(I1)2) ü ‡2(‡1(I1))2 ü ‡1(I1)3) ü ‡3(‡2(‡1(I1)))2 ü
‡2(‡1(I1))3 ü ‡1(I1)4

6 I6 = ‡5(‡4(‡3(‡2(‡1(I1)) ü ‡1(I1)2) ü ‡2(‡1(I1))2 ü ‡1(I1)3) ü ‡3(‡2(‡1(I1))2 ü
‡2(‡1(I1))3 ü ‡1(I1)4)) ü ‡4(‡3(‡2(‡1(I1)) ü ‡1(I1)2) ü ‡2(‡1(I1))2 ü ‡1(I1)3)2 ü
‡3(‡2(‡1(I1))3 ü ‡2(‡1(I1))4 ü ‡1(I1)5

7 I7 = . . .

Table 3.1: Input of the l-th layer in relation to the input I1 of a LoopyDenseNet

As can be seen in the table 3.1 the input of a layer gets more complex as the network gets
deeper. In comparison, a table of the input of an ordinary CNN follows:

Layer Input of the l-th layer in relation to I1

1 I1

2 I2 = ‡1(I1)
3 I3 = ‡2(‡1(I1))
4 I4 = ‡3(‡2(‡1(I1))
5 I5 = ‡4(‡3(‡2(‡1(I1))
6 I6 = ‡5(‡4(‡3(‡2(‡1(I1))
7 I7 = . . .

Table 3.2: Input of the l-th layer in relation to the input I1 of a CNN

When taking a closer look, the feature-maps that were generated in the CNN are in-
cluded in the LoopyDenseNet. The feature-map depth of the LDN grows faster then the
feature-map depth of the CNN. This is especially true, when network consist of many
convolutional layers. The feature-map depth of the input to a layer results from the sum
of filters used in order to generate the feature-maps. Let Fl be the number of filters of the
l-th layer. So the feature-map depth of the l-th layer gets calculated like this: qj=l≠1

j=1 Fl.
Since the feature-map depth of the input of a convolutional layer grows, also the depth
of the filters has to increase, resulting in more computational e�ort. In order to be able
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to use the LoopyDenseNet architecture for very deep neural networks, in section 3.4.5
and 3.4.4 some methods were described in order to deal with the increasing depth of the
feature-maps.
The next question that arises is how to incorporate pooling layers into a LDN. As men-
tioned in the introduction of the LoopyDenseNet, the base of this network architecture
is the traditional convolutional neural network. Since CNNs often times also include
pooling layers, the LoopyDenseNet also has to be able to apply them. Although the
LoopyDenseNet utilizes the dimension reducing properties of convolutions, pooling still
might be required. Pooling layers have the ability to greatly reduce the dimensional-
ity of the feature-maps and therefore reduce the computational costs. A 2 ◊ 2 pooling
operations reduces the size of the feature-maps to 25%, which greatly e�ects the compu-
tation time. Max-pooling and average-pooling are the most common pooling operations.
With max-pooling the strongest activation in each pooling window gets captured, while
average-pooling looks at the average activation in the pooling window [48] [76] [30]. Since
pooling operations e�ect the dimensions of the feature-maps they have to be considered
when looping the convolutions so that the resulting feature-maps can be concatenated.
Basically the feature-maps that were looped go through the same convolution and pooling
schedule as the feature-maps of the corresponding CNN. To explain this, the following
neural network, which consists of 2 3◊3 convolutional layers, a 2◊2 pooling layer followed
by 2 more convolutional layers, another 2◊2 pooling layer and a fifth convolutional layer,
will be looked at. The first convolutional layer has 16 filters, the second convolutional
layer 32 filters, the third layer 64, the fourth 96 filters and the fifth layer 128 filters. For
this example a input with the format 28 ◊ 28 ◊ 3 gets used. In the following table the
progression of the feature-map dimensions were given.
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Main Conv 1 (Loops) Conv 2 (Loops) Conv 3 (Loops)
Input 28 ◊ 28 ◊ 3 - - -
Conv 1 3 ◊ 3 ◊ 3 ◊ 16 - - -
Output 26 ◊ 26 ◊ 16 - - -
Input 26 ◊ 26 ◊ 16 26 ◊ 26 ◊ 16 - -
Conv 2 3 ◊ 3 ◊ 16 ◊ 32 3 ◊ 3 ◊ 3 ◊ 16 - -
Output 24 ◊ 24 ◊ 32 24 ◊ 24 ◊ 16 - -
Pooling 12 ◊ 12 ◊ 32 12 ◊ 12 ◊ 16 - -
Input 12 ◊ 12 ◊ 48 12 ◊ 12 ◊ 16 12 ◊ 12 ◊ 32 -
Conv 3 3 ◊ 3 ◊ 48 ◊ 64 3 ◊ 3 ◊ 3 ◊ 16 3 ◊ 3 ◊ 16 ◊ 32 -
Output 10 ◊ 10 ◊ 64 10 ◊ 10 ◊ 16 10 ◊ 10 ◊ 32 -
Input 10 ◊ 10 ◊ 112 10 ◊ 10 ◊ 16 10 ◊ 10 ◊ 32 10 ◊ 10 ◊ 64
Conv 4 3 ◊ 3 ◊ 112 ◊ 96 3 ◊ 3 ◊ 3 ◊ 16 3 ◊ 3 ◊ 16 ◊ 32 3 ◊ 3 ◊ 48 ◊ 64
Output 8 ◊ 8 ◊ 96 8 ◊ 8 ◊ 16 8 ◊ 8 ◊ 32 8 ◊ 8 ◊ 64
Pooling 4 ◊ 4 ◊ 96 4 ◊ 4 ◊ 16 4 ◊ 4 ◊ 32 4 ◊ 4 ◊ 64
Input 4 ◊ 4 ◊ 208 - - -
Conv 5 3 ◊ 3 ◊ 208 ◊ 128 - - -
Output 2 ◊ 2 ◊ 128

Table 3.3: Feature-map generation of a 5 layered LoopyDenseNet.

As can be seen in the table 3.3 above, the feature-maps which were used as the input for
the third layer have to have the dimensions 12 ◊ 12. When looping the first convolutional
layer twice the resulting feature-maps would just have the size 24◊24. In order to reduce
it to 12 ◊ 12 a pooling operation has to be used. Similarly it works for the feature-maps
which were used as the input for the fifth convolutional layer. After looping the first
convolutional layer three times, a pooling operation has to be applied before the feature-
maps can be concatenated with the feature-maps resulting from the fourth layer.
In this work two versions of LoopyDenseNets will be tested. On the one hand the LDN
which was already described and at the other hand the LDN with Flat-Skips. When using
Flat-Skips in the LoopyDenseNet architecture the flatten layer is more complex then the
flatten layer of a traditional CNN. As discussed in the section 3.1 Flat-Skips connect each
convolutional layer directly with the flatten layer. That way the flatten layer consists
of the sum of the feature-maps which were generated during the convolutional part of
the network making the whole information of the network available in the flatten layer.
Because of that the flatten layer can get very large. Therefore it might be su�cient to
use additional pooling layers before adding the flattened feature-maps to the flatten layer.
This is especially true for the feature-maps which were generated in early layers, because
their dimensions might be bigger.
To summarize the forward propagation of the LoopyDenseNet a figure is given, which
illustrates how looping convolutions creates a dense connectivity pattern. In particular
the looping process and the e�ects of Flat-Skips were shown. In the figure every arrow
pointing to new feature-maps represents a convolutional operation and the arrows at the
bottom illustrate the Flat-Skips, which transfer the feature-maps of the convolutional
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layers to the flatten layer. Therefore the flatten layer is extended. Furthermore, the color
of the arrow, indicates which convolutional operation of which layer gets applied. When
multiple arrows point on the same convolutional operation, they get concatenated before.
With each layer more loops were executed and as a result the depth of the concatenated
feature-maps increases.

Figure 3.4: Convolutional part of a LoopyDenseNet with Flat-Skips

3.4.2 Backpropagation of a LoopyDenseNet

Since the forward propagation of the network includes loops the traditional backpropa-
gation algorithm can not be applied for the whole network without making some adapta-
tions. As described in the section 3.4.1, the convolutional operations of individual layers
are used repeatedly. Since just one layer gets looped the output of one layer is also the
input to the same exact layer. Consequently there have to be multiple updates to the
weights of one layer, since they are used multiple times during the forward propagation.
During backpropagation a distinction is made between a ”normal” convolutional layer
and a looped layer. A ”normal” convolutional layer is every layer, which is used for the
first time. This means, that during the standard backpropagation each layer receives an
update coming from the standard backpropagation. However, every time a layer is looped,
Backpropagation Through Time (BPTT) is used. In the case of a LoopyDenseNet this
would look as follows. In the following consideration only a single looped layer is looked
at. The output of the l-th layer at loop t, h

t
l , looks as follows:

h
t
l = ‡(ht≠1

l wl + bl) (3.4)
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To compute ˆL
ˆwl

the following equation is used:

ˆL

ˆwl
= ˆL

ˆht
l

ˆh
t
l

ˆwl
(3.5)

The term ˆht
l

ˆwl
can then be written as:

ˆh
t
l

ˆwl
= ‡

Õ(ht≠1
l wl + bl)(ht≠1

l + wl
ˆh

t≠1
l

ˆwl
) (3.6)

The term ˆht≠1
l

ˆwl
is very familiar and is basically the same as the term ˆht

l
ˆwl

, however, it is
considering one less time step. The equation 3.6 expands recursively until it reaches h

1
l

which is not dependent of wl.
Depending on the number of layers, a layer receives several updates, which are added up.
This is done similarly as in the paper ”Loopy Neural Nets: Imitating Feedback Loops in
the Human Brain” [29]. Let dWl be the gradient for the l-th layer, which is equivalent
to ˆL

ˆwl
. dWl consists of the sum of the gradients from all the loops of the l-th layer.

Considering that the l-th layer gets looped T times, the following therm applies:

dWl =
Tÿ

t=1
dW

t
l (3.7)

From the equation above, it can be seen that earlier layers receive more contributions to
the gradient than later layers, since they are looped more often. This might be beneficial
when dealing with the vanishing gradient problem. Additionally there is the option to
also use Flat-Skips in the LDN, which also have to be considered during backpropagation,
which is described in the section 3.2. All in all, the gradient has many di�erent paths to
propagate back, which hopefully enhances learning.

3.4.3 E�ects of loops in the LoopyDenseNet

In the previous section the LoopyDenseNet architecture was introduced. Furthermore, the
forward and backward propagation were explained. In this section the possible benefits
and e�ects of looping convolutions are discussed. The loops of the LoopyDenseNet bring
information from the a�ected layer to later layers by concatenating the looped feature-
maps with feature-maps of later layers. That way a dense connectivity pattern is created.
While the neural network described in the paper ”Loopy Neural Nets: Imitating Feed-
back Loops in the Human Brain” loops multiple convolutional layers during a loop, the
LoopyDenseNet only loops a single convolutional layer. By doing so the authors hope,
that lower-level layers make a more refined choice of their weights, since they know the
weights of higher-level features [29]. With the LoopyDenseNet this is not the case, since
it is just looping a single layer. The LoopyDenseNet tries to pick up on the idea of the
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original DenseNet, which is to encourage feature reuse and strengthen feature propaga-
tion. DenseNets create a collection of the generated feature-maps and therefore has a
”collective knowledge”, which gets increased after each convolutional layer [26]. Since
LoopyDenseNets use Flat-Skips which combine all the feature-maps, which were gener-
ated during the convolutional part, in the flatten layer and therefore creates a di�erent
form of ”collective knowledge”, the loops should take over a di�erent role. The goal of the
loops is to detect more complex features, which should improve the performance of the
network. Furthermore, there is less redundancy in feature-maps inside the convolutional
part of the network. Looping convolutions makes networks very parameter e�cient. Even
a small LoopyDenseNet is capable to generate many di�erent feature-maps and therefore
detect many di�erent features.
In order to understand the e�ects of convolutional loops more clearly, tests were made
on a grayscale image of the digit five, which is one example of the MNIST dataset. In
these tests convolutional operations were looped by using specific filters. Additionally
no padding gets used during the convolution just like in the LoopyDenseNet architec-
ture. Because of that the dimensions of the input and the resulting feature-maps di�er.
The convolutional operation gets applied seven times and the result of each loop gets
visualized. For illustration, the results of the following filters are shown:

F1 =

S

WWWU

2 2 2
0 ≠2 2
0 0 2

T

XXXV (3.8) F2 =

S

WWWU

≠1 0 0
2 ≠1 0
2 2 ≠1

T

XXXV (3.9)

F3 =

S

WWWU

0 2 ≠1
0 2 ≠1
0 2 ≠1

T

XXXV (3.10) F4 =

S

WWWU

2 ≠1 0
0 2 ≠1

≠1 0 2

T

XXXV (3.11)

The first filter 3.8 detects upper right corners. With each loop the resulting feature-map
seems to shift its focus to the upper right corner, which suggests that looping convolutions
might have a shifting e�ect on the feature-maps. This means, that when looping certain
filters the focus of the image might shift to a di�erent region. Paired with the zooming
e�ect, that results from not using any form of padding during convolutions, this can be
especially helpful to find more detailed features in specific regions of the image. In the
following representation the first image in the upper left corner represents the input image.
Every following image stands for the output of another convolutional loop.
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Figure 3.5: Feature-maps of the looped filter 3.8.

In order to show, that the shifting e�ect is not unique to one specific type of filter, filter
3.9 shows similar characteristics. In this case filter 3.9 detects lower left corners in the
input and consequently the focus of the feature-maps shifts to the lower left corner. This
e�ect seems to be even stronger then with the filter before.

Figure 3.6: Feature-maps of the looped filter 3.9.

Filter 3.10 detects horizontal edges. This can clearly be seen in the feature-maps of
the first and second convolution. When looping this filter no significant shifting can be
observed, however, a zooming e�ect is visible. This can especially be seen in the transition
from the the fifth to the sixth convolutional loop. While the resulting feature-map of the
fifth convolution include a horizontal bar at the upper left edge, the feature-map of the
sixth layer does not include this bar anymore. Furthermore, since not only horizontal
edges of the input image get detected, but also from the resulting feature-maps, much
more complex features can be detected by only using one filter.

University of Leoben 27 Peter Niederl



Chapter 3. Introduction to own work

Figure 3.7: Feature-maps of the looped filter 3.10.

The last filter that will be examined, detects diagonal edges. Again the focus of the
resulting feature-maps does not shift, only the zoom gets bigger with each convolutional
loop.

Figure 3.8: Feature-maps of the looped filter 3.11.

Those visualization were just examples in order to show case the observation on a lot of
testing on convolutional loops. The main findings on looping convolutional operations is
that depending on the filter, the focus of the feature-maps might shift with each loop.
This is especially interesting since paired with the zooming e�ect that is a result of the
convolution, some areas of the image can be looked at in more detail. This shifting e�ect
is not only true for those handcrafted filters mentioned above. Also randomly initialized
filters tend to shift their focus to areas with high activations in the input feature-map.
In order to show case this randomly initialized filters were looped on the same example
as in the figures before. The values of the filters were randomly selected from an equal
distribution between -1 and 1. In order to show, that the focus of the feature-maps is
shifting to regions with higher activations, the input image gets shifted to the left before
applying the convolutions.
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Figure 3.9: Feature-maps of the randomly initialized filter applied on the image of the
digit five which was shifted 6 pixels to the left.

Despite the image being shifted the computed feature-maps tend to focus on the region
with high activations, which is certainly an interesting and advantageous behavior. While
the object, in this case the digit five, is o� center in the input image, with each convolution
the activations are more centered. To show case, that this is not an incident the feature-
map progression of a second randomly initialized filter is given.

Figure 3.10: Feature-maps of the randomly initialized filter applied on the image of the
digit five which was shifted 8 pixels to the left.

All in all, looping convolutions can dynamically change the focus of the feature-maps to
more interesting regions with higher activations. Furthermore, looping convolutions might
result in the detection of more complex features, despite using the same parameters.
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3.4.4 Looping limit

LoopyDenseNets get a dense connectivity pattern by concatenating the output of convo-
lutional loops with later layers. By doing so the feature-map depth increases each layer
and with every layer the computation time gets longer too. For shallow networks the
increasing feature-map depth might not be a problem, however, in very deep networks
with many layers the feature-map depth would grow extremely fast. The authors of the
original DenseNet architecture had the same problem, which they resolved by using dense
blocks. The dense connectivity pattern is used only in these blocks to keep the feature-
map depth under control. Between those blocks transition layers were used which consist
of a 1 ◊ 1 convolution, which reduced the depth of the feature-map, followed by a pooling
layer [26]. Theoretically LoopyDenseNets could also use dense blocks, however, the need
for dense blocks in DenseNets does not come from the need to reduce the feature-map
depth. Dense blocks were introduced in order to incorporate pooling layers, which oth-
erwise would not be possible, since pooling layers would change the dimensions of the
feature-maps and feature-map concatenation would not be possible [26]. Because of that
LoopyDenseNets do not relay on dense blocks since using pooling layers do not face a
problem for the LoopyDenseNet architecture.
In order to control the feature-map depth of deep LoopyDenseNets a new parameter ·

is defined, which is called looping limit. This number indicates the maximum number
of times a layer can be looped. To see the e�ects of introducing such a parameter, an
example will be looked at. Considering a 8 layered LoopyDenseNet with the following
filter numbers: 16 - 16 - 32 - 64 - 128 - 128 - 128 - 128. The input has the dimensions
28 ◊ 28 ◊ 3. First a feature-map progression without a looping limit is shown.
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Layer Input Filter Output
Conv 1 28 ◊ 28 ◊ 3 3 ◊ 3 ◊ 3 ◊ 16 26 ◊ 26 ◊ 16
Conv 2 26 ◊ 26 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 24 ◊ 24 ◊ 16
Conv 1 (Loop) 26 ◊ 26 ◊ 16 3 ◊ 3 ◊ 3 ◊ 16 24 ◊ 24 ◊ 16
Conv 3 24 ◊ 24 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 22 ◊ 22 ◊ 32
Conv 1 (Loop) 24 ◊ 24 ◊ 16 3 ◊ 3 ◊ 3 ◊ 16 22 ◊ 22 ◊ 16
Conv 2 (Loop) 24 ◊ 24 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 22 ◊ 22 ◊ 16
Conv 4 22 ◊ 22 ◊ 64 3 ◊ 3 ◊ 64 ◊ 64 20 ◊ 20 ◊ 64
Conv 1 (Loop) 22 ◊ 22 ◊ 16 3 ◊ 3 ◊ 3 ◊ 16 20 ◊ 20 ◊ 16
Conv 2 (Loop) 22 ◊ 22 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 20 ◊ 20 ◊ 16
Conv 3 (Loop) 22 ◊ 22 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 20 ◊ 20 ◊ 32
Conv 5 20 ◊ 20 ◊ 128 3 ◊ 3 ◊ 128 ◊ 128 18 ◊ 18 ◊ 128
Conv 1 (Loop) 20 ◊ 20 ◊ 16 3 ◊ 3 ◊ 3 ◊ 16 18 ◊ 18 ◊ 16
Conv 2 (Loop) 20 ◊ 20 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 18 ◊ 18 ◊ 16
Conv 3 (Loop) 20 ◊ 20 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 18 ◊ 18 ◊ 32
Conv 4 (Loop) 20 ◊ 20 ◊ 64 3 ◊ 3 ◊ 64 ◊ 64 18 ◊ 18 ◊ 64
Conv 6 18 ◊ 18 ◊ 256 3 ◊ 3 ◊ 256 ◊ 128 16 ◊ 16 ◊ 128
Conv 1 (Loop) 18 ◊ 18 ◊ 16 3 ◊ 3 ◊ 3 ◊ 16 16 ◊ 16 ◊ 16
Conv 2 (Loop) 18 ◊ 18 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 16 ◊ 16 ◊ 16
Conv 3 (Loop) 18 ◊ 18 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 16 ◊ 16 ◊ 32
Conv 4 (Loop) 18 ◊ 18 ◊ 64 3 ◊ 3 ◊ 64 ◊ 64 16 ◊ 16 ◊ 64
Conv 5 (Loop) 18 ◊ 18 ◊ 128 3 ◊ 3 ◊ 128 ◊ 128 16 ◊ 16 ◊ 128
Conv 7 16 ◊ 16 ◊ 384 3 ◊ 3 ◊ 384 ◊ 128 14 ◊ 14 ◊ 128
Conv 1 (Loop) 16 ◊ 16 ◊ 16 3 ◊ 3 ◊ 3 ◊ 16 14 ◊ 14 ◊ 16
Conv 2 (Loop) 16 ◊ 16 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 14 ◊ 14 ◊ 16
Conv 3 (Loop) 16 ◊ 16 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 14 ◊ 14 ◊ 32
Conv 4 (Loop) 16 ◊ 16 ◊ 64 3 ◊ 3 ◊ 64 ◊ 64 14 ◊ 14 ◊ 64
Conv 5 (Loop) 16 ◊ 16 ◊ 128 3 ◊ 3 ◊ 128 ◊ 128 14 ◊ 14 ◊ 128
Conv 6 (Loop) 16 ◊ 16 ◊ 128 3 ◊ 3 ◊ 256 ◊ 128 14 ◊ 14 ◊ 128
Conv 8 14 ◊ 14 ◊ 512 3 ◊ 3 ◊ 512 ◊ 128 12 ◊ 12 ◊ 128

Table 3.4: Feature-map progression without looping limit.

As can be seen the feature-map depth at the end of the 8 layered LoopyDenseNet is
512. Furthermore, the average feature-map depth per convolutional layer is 176. Now the
same network will be shown, however, this time · with 2 will be used. That means, a
convolutional layer can be looped 2 times.
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Layer Input Filter Output
Conv 1 28 ◊ 28 ◊ 3 3 ◊ 3 ◊ 3 ◊ 16 26 ◊ 26 ◊ 16
Conv 2 26 ◊ 26 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 24 ◊ 24 ◊ 16
Conv 1 (Loop) 26 ◊ 26 ◊ 16 3 ◊ 3 ◊ 3 ◊ 16 24 ◊ 24 ◊ 16
Conv 3 24 ◊ 24 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 22 ◊ 22 ◊ 32
Conv 1 (Loop) 24 ◊ 24 ◊ 16 3 ◊ 3 ◊ 3 ◊ 16 22 ◊ 22 ◊ 16
Conv 2 (Loop) 24 ◊ 24 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 22 ◊ 22 ◊ 16
Conv 4 22 ◊ 22 ◊ 64 3 ◊ 3 ◊ 64 ◊ 64 20 ◊ 20 ◊ 64
Conv 2 (Loop) 22 ◊ 22 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 20 ◊ 20 ◊ 16
Conv 3 (Loop) 22 ◊ 22 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 20 ◊ 20 ◊ 32
Conv 5 20 ◊ 20 ◊ 112 3 ◊ 3 ◊ 112 ◊ 128 18 ◊ 18 ◊ 128
Conv 3 (Loop) 20 ◊ 20 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 18 ◊ 18 ◊ 32
Conv 4 (Loop) 20 ◊ 20 ◊ 64 3 ◊ 3 ◊ 64 ◊ 64 18 ◊ 18 ◊ 64
Conv 6 18 ◊ 18 ◊ 224 3 ◊ 3 ◊ 224 ◊ 128 16 ◊ 16 ◊ 128
Conv 4 (Loop) 18 ◊ 18 ◊ 64 3 ◊ 3 ◊ 64 ◊ 64 16 ◊ 16 ◊ 64
Conv 5 (Loop) 18 ◊ 18 ◊ 128 3 ◊ 3 ◊ 112 ◊ 128 16 ◊ 16 ◊ 128
Conv 7 16 ◊ 16 ◊ 320 3 ◊ 3 ◊ 320 ◊ 128 14 ◊ 14 ◊ 128
Conv 5 (Loop) 16 ◊ 16 ◊ 128 3 ◊ 3 ◊ 112 ◊ 128 14 ◊ 14 ◊ 128
Conv 6 (Loop) 16 ◊ 16 ◊ 128 3 ◊ 3 ◊ 224 ◊ 128 14 ◊ 14 ◊ 128
Conv 8 14 ◊ 14 ◊ 384 3 ◊ 3 ◊ 384 ◊ 128 12 ◊ 12 ◊ 128

Table 3.5: Feature-map progression with looping limit of 2.

With · of 2 the feature-map depth of the input to the eight layer of the LoopyDenseNet
is just 384, which is 25% smaller then without a looping limit. The average feature-map
depth is 146 per layer. The e�ect of a looping limit gets bigger with increasing network
size.
As can be seen in both tables above there is the scenario where the filter depth is bigger
than the depth of the looped feature-maps of the respective layer. This can be seen in
the looped feature-maps which were generated by the sixth convolutional layer in the
table 3.4 and the table 3.5. In the table with no looping limit the feature-maps have the
dimensions 16 ◊ 16 ◊ 128. When looping the sixth convolutional layer the filters have the
dimensions 3 ◊ 3 ◊ 256 ◊ 128. The filters are much deeper then the feature-maps. In this
case a normal convolutional operation is applied, however, only half of the depth of the
filter (3 ◊ 3 ◊ 128) gets used. This results in the desired output of 14 ◊ 14 ◊ 128.

3.4.5 Bottleneck layer

Although using a looping limit can reduce the number of the feature-maps as the network
gets deeper, it does not o�er a lot of control over the feature-map depth. The second
method to reduce the size and the computation time of the network would be to use
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bottleneck layers in the form of a 1 ◊ 1 convolution followed by a non-linearity before
every convolutional layer. Since the feature-map depth of the input to a convolutional
layer continuously increases with each layer, a 1◊1 convolution presents a straightforward
way to reduce the depth of the input feature-maps to a desired number. This can reduce
computation without changing the network architecture. So before doing the normal
convolution of a layer, a 1 ◊ 1 convolution is processed. This way to reduce computation
is also used in the original DenseNet, in the Inception module and many other network
architectures [26] [70] [21] [69] [40] [10]. Another advantage of applying 1◊1 convolutions
is, that more non-linearities are added to the network, which might increase the expressive
power of such network [69] [10]. In order to have more control over the depth of the
feature-maps, bottleneck layers and a looping limit can be combined.
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4. Datasets
In the following section all the datasets that were used for the experiments are described.
Furthermore, in order to generate more images for training and to avoid overfitting data
augmentation was used which gets adapted to each dataset so that the model is not
overfitting on the evaluation data [23] [54]. The datasets were chosen, because they
have relatively small dimensions and therefore can also be used when having limited
computational resources.

4.1 MNIST
The original MNIST dataset consists of 60.000 training examples and 10.000 test exam-
ples. Each example has a format of 28 by 28 pixels and represents a grayscale image of
a digit from 0 to 9. That means that each of the 784 pixels can have a value between 0
and 255. It is possible to download the MNIST dataset on [12] in a CSV format, as well
as on [37] [39]. The MNIST dataset is a highly competitive dataset. The state of the
art performance on MNIST at the date of publication of this work is 99.91% when using
an ensemble of networks and 99.87% by a single network. According to [5] the highest
reported accuracies on MNIST were the following:

Model and source Accuracy Parameters
Homogeneous ensemble with
Simple CNN [7] 99.91% -
Branching/Merging CNN +
Homogeneous Filter Capsules [9] 99.87% 1,514,187
EnsNet [24] 99.84% -
E�cient-CapsNet [43] 99.84% 161,824

4.1.1 Data Augmentation and preparation on MNIST

In order to evaluate the models during the experiments the training dataset was split
up. That way the training dataset contains 50.000 images and the evaluation dataset
10.000 images. During training an example gets augmented with a probability of 67%. In
the case of an augmentation the following operations were applied to modify the original
instance and to get a new image:

• Zoom: With a gaussian distribution with mean 0 and variance 1 which gets scaled
by a factor of 0.06 the image gets zoomed in or out. That way the size of the
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digit inside the image can be changed. Because of the scaling of the image it can
be expected that with a probability of about 63.5% the final example is up to 6%
zoomed in or out, compared to the original image.

• Shear: Shearing gets applied with a gaussian distribution with mean 0 and variance
1 and a scaling factor of 0.03.

• Rotation: Next a rotation operation is used. This is also gaussian distributed with
mean 0 and variance 1 and a scaling of 4. That way the image can be rotated about
4 degrees clockwise respectively counterclockwise.

• Shift: In the end the image gets shifted along the x and the y coordinates with a
gaussian distribution with mean 0 and variance 1 and a scaling factor of 0.06.

By applying those operations a new image of a digit will be derived from the original
image. After the augmentation the instance is made mean free, by subtracting the aver-
age pixel intensity from each pixel. Now the second augmentation step comes to place,
which consists of Random Erasing [77]. In comparison to the first data augmentation
step, Random Erasing is applied on every training example. Compared to the operations
described above, Random Erasing does not change the position of pixels, however, ran-
domly selects a rectangle area in the image and erases its pixels. In the paper [77] the
authors recommend to randomly initialize the pixel values of the selected region, however,
since the background of the MNIST digit is black, the pixels intensity are simply set to 0.
The erasing of pixels is similar to dropout, where neurons are randomly dropped during
training. While dropout drops neurons inside the network, Random Erasing drops infor-
mation already at the input layer [66]. The height and the width of the rectangle area is
randomly set via a uniform distribution that can be between 0 and 30% of the height or
the width of the image. Since the images of the MNIST dataset have a format of 28 by
28, the maximum size of this region is 8 by 8. That way up to 64 pixels can be erased.
This process of randomly selecting a rectangle and erasing its values can be repeated up
to 5 times. The amount of data augmentation used and the scaling of the individual
operations were adapted so that the base CNN model for the MNIST dataset, which is
discussed in section 5.1, slightly underfits on the evaluation data. In general the following
procedure was followed when adjusting the individual scaling factors of the augmentation
operations. This does not only apply for this dataset, however, for all following datasets
which use data augmentation.

1. Initialize the augmentation rate to 50% and the scaling factors of the zooming, shear-
ing, shifting operations to 0.2 and the scaling factor of the rotation operation to 2.0.

2. Train the base model (further description in section 5.1) for 10 epochs on the training
data and evaluate on the evaluation data. Use a learning rate decay of 40% to account
for the small amount of epochs.
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3. Check if the error and the loss on the training data is smaller or equal to the error and
the loss on the evaluation data.

a.) If the loss and the error is smaller on the training data, increase the scaling
factors of the operations and the augmentation rate. In general the scaling of the
shifting and the zooming operations were increased more frequently, because too
much shearing and rotation seem to hurt performance. Afterwards go back to
step 2 and repeat.

b.) If the error and the loss on the the training data is higher (more then 5%)
then on the evaluation data, decrease the scaling of operations. The scaling
of the shearing and the rotation operation is more likely to be reduced. The
augmentation rate should stay the same. Go back to step 2 and repeat.

c.) If the error and the loss on the training data is slightly bigger or equal to the
error and the loss on the evaluation data stop and save the values.

4.2 Fashion-MNIST
Fashion-MNIST, which is a dataset from Zalando, is similar to the original MNIST dataset
and consists of 60.000 training examples and 10.000 test examples. Similar to MNIST the
images in Fashion-MNIST are grayscale images with a format of 28 by 28 pixels [63]. The
dataset contains images of 10 di�erent articles of clothing and it is possible to download
the dataset on [58] as a CSV file and on [63]. Identical to the MNIST dataset, the training
dataset of Fashion-MNIST gets split up as well, to have 50.000 images for training and
the remaining 10.000 images for evaluation [75]. During training of the models the same
data augmentation procedure were applied as for the MNIST dataset (4.1.1). The only
di�erence is, that 50% of the images get augmented, since the base CNN model does not
overfit as easily on the Fashion-MNIST dataset as compared to the MNIST dataset.
The state of the art performance according to [4] on Fashion-MNIST is 96.91%:

Model and source Accuracy Parameters
Fine-Tuning DARTS [73] 96.91% 3.2 M
Shake-Shake [17] 96.41% -
Random Erasing [77] 96.36% -
VGG8B (2x) [46] 95.86% 28 M

As can be seen in the state of the art performance on the Fashion-MNIST dataset, this
dataset is much more challenging then the MNIST dataset. In comparison to MNIST,
Fashion-MNIST represents clothing, which contains much more complex structures then
digits. Furthermore, some clothing types have similar structures and because of the small
resolution are di�cult to distinguish.
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4.3 Fruits-360
The Fruits-360 dataset contains over 90.000 images of 131 fruits and vegetables. 67.692
images are available for training and additional 22.688 for testing. Each image has a
resolution of 100 by 100 and is a colored image. In the dataset di�erent varieties of
the same fruits were distinguished as separate classes. Therefore the dataset contains
13 di�erent apple varieties and 18 di�erent pear and tomato varieties. The dataset was
created by filming each fruit or vegetable while rotating it. The fruit or vegetable was
then extracted from the background. From these videos several 100 by 100 colored images
were generated. The dataset is available at [49] and [50].
For the Fruits-360 dataset no data augmentation was used, since the CNN model was not
overfitting on the evaluation data.
In the following table the best results based on [1] and own research were listed:

Model and source Accuracy Parameters
Wide ResNet-101 2 (Spinal FC) [31] 100.0% 125.5 M
VGG-19 bn (Spinal FC) [31] 99.96% 198.75 M

From each class about 80 images were used for evaluation. The rest was used for training.
Since the computational resources in this work are limited, using the original 100 by 100
image was not su�cient. In order to reduce computational costs the format of the input
image was shrunk to 32 by 32 pixels. First a margin of 2 pixels was cropped of the image,
which in most cases was just white background, resulting in a 96 ◊ 96 image. Next a
3 ◊ 3 average-pooling operation was applied on the cropped image to get the final image
of 32 ◊ 32.

4.4 Hand gesture
On Kaggle you can download a popular hand gesture dataset [41]. It consists of 20.000
images of 10 di�erent hand gestures. Those hand gestures were performed by 5 men and
5 women, where for each person and gesture 200 images were taken. The examples are
grayscale images with a format of 240 by 640 pixels [20] [41].
The same data augmentation operations were applied on 75% of the hand gesture images
during training as on the MNIST datasets, only the scaling factors di�er: Zoom with 0.06,
shear with 0.05, rotation with 6.0 and shifting with 0.06. Those values were the results
from the exact same parameter search as described in section 4.1.1. With the hand gesture
dataset overfitting was a much harder problem then with the other datasets described
above, resulting in a higher augmentation rate and in general higher scaling factors.
Especially the rotation and shearing operation were helpful to reduce the validation loss.
Additionally Random Erasing is used in the same way as in the MNIST dataset.
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4.4.1 Preprocessing of the images

While the original images of the hand gesture have a format of 240 by 640, the actual
gesture covers a small area in the image. In most cases the hand gesture does not exceed
an area of 240 by 320 pixels. Because of that the image gets cropped to this format, so
that the hand gesture is roughly centered. To reduce computational costs this centering
process is not very accurate, however, this is not very important considering the data
augmentation and the following steps. In order to give it a square shape, it gets a black
frame on the top and on the bottom to make it 320 to 320. After this the image gets
scaled down to 32 by 32 pixels using average-pooling. That way it comes more in line with
the other datasets used. Important to note is, that besides reducing the computational
costs, reducing the resolution of the input image makes learning more di�cult [72].

4.4.2 Splitting the data

On Kaggle there are a lot of submission where they merge all the available data and
make random data splits with the merged data. However, since the images are generated
as a video, there are not big di�erences between successive images. Therefore merging
and shu�ing the images makes for an easy classification problem. When the model is
capable to learn the training dataset, it should not be di�cult to get a good performance
on the evaluation and the test dataset, since the images are so similar. That is probably
the reason why there are a lot of submissions on Kaggle with up to 100% accuracy [20].
However, in the experiments performed for this work also the generalizability of the model
should be important. To test this, cross-validation gets used. The testing procedure was
done as follows. The data was split up in ten parts. Each part contains the images of
one person (2.000 images). The images of the first person were used for evaluation. After
defining the hyperparameters of the base model (a more detailed description will follow
in section 5.2) cross-validation will be done on the data of the 9 remaining persons. The
images from each of the nine persons were used once for testing, while the images of the
remaining eight persons were used for training.

4.5 CIFAR-10
The CIFAR-10 dataset consists of 50.000 training images and 10.000 test images. Each
example is a 32 by 32 colored image and belongs to one of 10 classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck) [33]. From all the datasets used in this work
the CIFAR-10 is the most complex dataset for a small network. Compared to all other
datasets, the object to be classified in the CIFAR-10 dataset is not highlighted from the
background. While in the MNIST, Fashion-MNIST, Fruits-360 and the hand gesture
dataset the object and the background can be clearly distinguished from each other, this
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is not true for instances of the CIFAR-10 dataset. Furthermore, the objects to be classified
consist of more complex structures than a number or a single garment.
For the experiments the training dataset gets split up. In the end the model gets trained
with 40.000 images and evaluated with 10.000 images. During training the same data
augmentation operations were used as for the MNIST dataset (4.1.1). Additionally the
image can be flipped vertically with a probability of 50%. The results of the parameter
search for the CIFAR-10 dataset follows. In general the scaling factors of the augmentation
operations were slightly smaller compared to the dataset before. The zoom operation gets
scaled with a factor of 0.04, shearing with 0.02, rotation with 3.0 and shifting with 0.05.
The scaling factors are smaller since the CIFAR-10 dataset is a far more complex dataset
with more sophisticated shapes and structures. Because of the low resolution of 32 ◊ 32
even small changes have a large e�ect on the augmented images. When those changes are
to big classification might be to di�cult. In order to compensate for the small scaling
factors for the augmentation operations, the augmentation rate was increased to 80%. In
the second data augmentation step Random Erasing is used as described in 4.1.1.
CIFAR-10 is highly competitive dataset for image classification tasks and according to [3]
the state of the art performance at the date of publication of this work is 99.50 ± 0.06%
and was achieved by a ViT-H/14 [14].
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5. Experiment
In the following experiment the performance of the 5 di�erent models, which are the
ordinary CNN, the CNN with Flat-Skips, the modified DenseNet, the LoopyDenseNet and
the LoopyDenseNet with Flat-Skips, are evaluated on the MNIST, the Fashion-MNIST,
the Fruits-360, the hand gesture and the CIFAR-10 datasets. Since the examples of the
datasets represent an image of a object the models have to solve a classification task.
Those datasets were chosen because the images have small dimensions and therefore
training is not very computational expensive. Furthermore, MNIST, Fashion-MNIST
and CIFAR-10 are popular benchmarking datasets. The hand gesture and Fruits-360 are
chosen in order to compare the generalizing abilities of the networks. By doing so the
research question, whether additional connections, loops and a dense connectivity pattern
increase the performance of the model, should be answered.

5.1 Base model
In the following section the di�erent network settings that apply for all tests are described.
Since the goal of this work is to show whether or not including loops, a dense connectiv-
ity pattern and additional connections within a convolutional neural network improve the
accuracy of a neural network, a base model for each dataset was designed, which was used
for all the following tests. This was done in order to not have to search for the optimal set
of parameters for all these 5 di�erent architectures. The base model was designed in order
to maximize the performance of a 4 layered CNN with just one fully-connected layer on
the MNIST dataset. This was also the only time when searching for hyperparameters. All
following models share the exact same parameters in terms of learning rate, learning rate
decay, batch size, optimizer, normalization, activation function, loss function and pooling
operation. The only di�erence lies in their architecture, their number of layers and the
number of filters per layer. Furthermore, the amount and the type of data augmentation,
as well as the implementation of early stopping is adjusted for each dataset according to
the base model. However, these settings apply for all models of the same dataset. No
parameter search was done for other models or other architectures. Important to note is
that the model size is small. This is because of computational restrictions.
The following parameters resulted from the parameter search of the 4-layered CNN on
MNIST. First of which the mini-batch size was set to 256, which seems to make the per-
formance of the network very consistent, since the gradient over the mini-batch is very
close to the gradient of the whole training dataset. Usually a smaller mini-batch size is
recommended, however, since data augmentation was heavily used the larger mini-batch
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size works well [42] [57]. Furthermore, layer normalization gets used, which computes the
mean and the variance for the input to a layer and makes the input feature-maps mean
free [8]. It comes into use in the convolutional layers, as well as in the flatten layer. Layer
normalization is very easy to implement and in comparison to the original batch normal-
ization it works the same during training and testing. Similar to batch normalization
layer normalization reduces the required training time and speeds up convergence [8] [28]
[61].
For the optimizer of the network ADAM was chosen, with the standard settings —1 = 0.9,
—2 = 0.999 and ‘ = 10≠7. ADAM is used for stochastic gradient-based objective functions
and computes individual learning rates for every parameter. It is doing this by estimating
the first and second moments of the gradients [32]. Also tests with solely using momen-
tum were made, however, when using ADAM the model converged much faster and higher
accuracies could be achieved [55] [56]. ADAM was also tested with di�erent parameter
choices of —1, —2 and ‘. For —1 the following values were tested: 0.85, 0.9, 0.95, 0.975,
where 0.9 and 0.95 achieved similar results. In the end 0.9 was chosen, which was also
suggested by the original paper [32]. Furthermore, —2 was set to 0.99, 0.999 and 0.9999,
however, 0.999 was clearly better then all other settings. When selecting the value ‘

slightly better results could be achieved when setting ‘ to 10≠7 instead of 10≠8 as the au-
thor of the original paper suggest. Although combining ADAM and learning rate decay is
uncommon, since the learning rates of the parameters get adapted individually [32], big
performance improvements could be achieved when using a small amount of learning rate
decay. The initial learning rate was set to 0.001 and gets decreased by 15% after each
epoch. When selecting the decay rate the following properties could be observed. On the
one hand when the decay rate is too small, the model tends to converge slowly and since
early stopping is used training might stop very early because no new global optimum can
be found in time. On the other hand when the decay rate is big and the learning rate
gets reduced very quickly, the model converges very fast, however, later during training
the parameter updates are very small due to the small learning rate and the model has
di�culties escaping local minima. With a learning rate decay of 15% the overall best
results could be achieved.
In order to prevent the CNN from overfitting data augmentation gets used. The mag-
nitude and the type of data augmentation is dependent on the dataset used and was
described in the section 4 in more detail. Besides data augmentation, early stopping
was used, which stops training of the model after a specific amount of epochs without
achieving a new global maximum in accuracy. The patience for the MNIST and the
Fashion-MNIST dataset was set to 8 epochs and for the CIFAR-10 dataset to 10 epochs.
Both these datasets seem to get stuck in local minima more frequently and therefore a
bigger patience was required. For the Fruits-360 dataset and the hand gesture dataset
the patience was set to 6 epochs. The base model had no problems to achieve 100%
accuracy on the evaluation data of the Fruits-360 dataset and therefore a bigger patience
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was not necessary. In the case of the hand gesture dataset the base model achieved its
peak performance on the evaluation data in most cases within the first 10 epochs and
therefore a high patience was not needed. Of course in general enlarging the number of
epochs the model searches for a new global maximum in performance would be beneficial,
however, this was not possible due to computational restrictions.
As mentioned before, the model only possesses one fully-connected layer, which connects
the flatten layer with the output layer of the network. This was done in order to keep
the number of parameters low, since fully-connected layers are often times parameter
heavy. This is especially true when the flatten layer is large. Another reason for only
using one fully-connected layer is to minimize the e�ects of the fully-connected part of
the network on the performance of the model, as the goal of this work is to investigate
if adding additional connections, applying a dense connectivity pattern and using loops
within the convolutional part of the network increases the performance of a CNN. Ad-
ditionally, only 3 ◊ 3 convolutions were used, since they show superior results compared
to larger filter sizes, like 5 ◊ 5 during evaluation. Using 3 ◊ 3 convolutions is also more
parameter e�cient then bigger filters. Two 3 ◊ 3 filters cover the same receptive field as
one 5 ◊ 5 convolution, however, have less parameters. For example a single 5 ◊ 5 filter
consists of 52 parameters, while two 3 ◊ 3 filters have 2 ú 32 parameters. Considering a
feature-map of 5◊5, using a 5◊5 or two 3◊3 convolutions have the same a�ect regarding
the resulting feature-map format. When applying the first 3 ◊ 3 convolution, the 5 ◊ 5
feature-map becomes a 3 ◊ 3 feature-map. Applying the second 3 ◊ 3 convolution results
in a 1 ◊ 1 feature-map, which is also the result when applying a 5 ◊ 5 convolution on a
5 ◊ 5 feature-map. Furthermore, more non-linear rectification layers can be added this
way [65]. When using convolutions no form of padding was applied, which means, that
the output feature-maps have a di�erent dimension than the input. ReLU was chosen to
be the activation function, since it achieved far better accuracies compared to sigmoid or
softsign [22] [53] [30] [59] [51] [45] [18] [19]. For the classification function softmax was
chosen and cross-entropy is the loss function that gets used [47] [64]. Furthermore, for
the pooling operation max-pooling showed better results than average-pooling.
The base model (4-layered CNN) on the MNIST dataset had the following architecture
and consists of about 140k parameters and needs about 16.4M FLOPs for a single feed-
forward pass:
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Layer Input Dimensions Output
Conv 1 28 ◊ 28 ◊ 1 3 ◊ 3 ◊ 1 ◊ 16 26 ◊ 26 ◊ 16
Conv 2 26 ◊ 26 ◊ 16 3 ◊ 3 ◊ 16 ◊ 32 24 ◊ 24 ◊ 32
Max-Pooling 24 ◊ 24 ◊ 32 2 ◊ 2 12 ◊ 12 ◊ 32
Conv 3 12 ◊ 12 ◊ 32 3 ◊ 3 ◊ 32 ◊ 64 10 ◊ 10 ◊ 64
Conv 4 10 ◊ 10 ◊ 64 3 ◊ 3 ◊ 64 ◊ 96 8 ◊ 8 ◊ 96
Flatten 6144 ◊ 1 - -
Fully-connected 6144 6144 ◊ 10 10
Output - - 10 ◊ 1

Table 5.1: Base model: 4-layered CNN

5.2 Model setup and model selection
In section 5.1 a base model was designed, which maximizes the accuracy on the MNIST
dataset. The parameters which were defined during the design phase of the base model
apply for all following models and architectures. No further parameter search was done.
Since the models should be tested on 5 di�erent datasets, for each dataset a base CNN
model with 4 convolutional layers was defined. For datasets where the input data has
the same dimensions the exact same model gets used. This is the case for the MNIST
and Fashion-MNIST, which both have a format of 28 ◊ 28. The model can be seen in
section 5.1 and consist of two convolutional layers with 16 and 32 filters, followed by a
2 ◊ 2 max-pooling layer, followed by two more convolutions with 64 and 96 filters. The
images of the CIFAR-10 and the processed images of the hand gesture dataset, as well
as the Fruits-360 images, have the same format of 32 ◊ 32. The base model for these
datasets consists of two convolutional layers with 16 and 40 filters, followed by a max-
pooling layer and two more convolutional layers with 64 and 96 layers. The number of
filters per layer were chosen so that the computation time of the module does not get to
long. This was necessary since the whole implementation of the architectures was done
in Java without the use of public libraries and was not programmed for the GPU, but
for the CPU, which is significantly slower. The models were tested on an Apple M1 chip
[27] and the computation for an epoch of the base model on the MNIST dataset takes
about 45 minutes. Because of these computational restrictions only small models could
be tested.
All other models independent of the architecture were derived from these 4 layered CNNs.
In order to guarantee, that the proposed methods do not have an unfair advantage over
the base CNN models, the following aspect was considered. LoopyDenseNets, modified
DenseNets and CNNs with Flat-Skips are more computational expensive, than a CNN,
when the same number of filters and layers were used. To make valid comparisons between
di�erent architectures the training time for an epoch should be about equal for all models.
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To accomplish a similar computation time for each model per epoch independent of their
number of layers and their architecture, there is one parameter which can be adjusted.
This is the number of filters per layer. All other parameters stay the same. In order to
clarify this, the corresponding 7 layered LoopyDenseNet to the 4 layered CNN would have
the following architecture:

Layer Input Dimensions Output
Conv 1 28 ◊ 28 ◊ 1 3 ◊ 3 ◊ 1 ◊ 6 26 ◊ 26 ◊ 6
Conv 2 26 ◊ 26 ◊ 6 3 ◊ 3 ◊ 6 ◊ 10 24 ◊ 24 ◊ 10
Max-Pooling 24 ◊ 24 ◊ 16 2 ◊ 2 12 ◊ 12 ◊ 16
Conv 3 12 ◊ 12 ◊ 16 3 ◊ 3 ◊ 16 ◊ 16 10 ◊ 10 ◊ 16
Conv 4 10 ◊ 10 ◊ 32 3 ◊ 3 ◊ 32 ◊ 32 8 ◊ 8 ◊ 32
Conv 5 8 ◊ 8 ◊ 64 3 ◊ 3 ◊ 64 ◊ 64 6 ◊ 6 ◊ 64
Conv 6 6 ◊ 6 ◊ 128 3 ◊ 3 ◊ 128 ◊ 64 4 ◊ 4 ◊ 64
Conv 7 4 ◊ 4 ◊ 192 3 ◊ 3 ◊ 192 ◊ 96 2 ◊ 2 ◊ 96
Flatten 384 ◊ 1 - -
Fully-connected 384 384 ◊ 10 10
Output - - 10 ◊ 1

Table 5.2: 7 layered LoopyDenseNet for the MNIST and Fashion-MNIST dataset.

Although the 7 layered LoopyDenseNet has three additional convolutional layers, it just
needs about 11.7M FLOPs and consists of 158k parameters, compared to the base model,
which needs 16.4M FLOPs and has 140k parameters. More detailed information of all
models tested can be seen in the tables which come at the end of this section (table 5.4,
table 5.5, table 5.6, table 5.7). Since the LoopyDenseNet is more computational expensive,
the 7 layered CNN with Flat-Skips looks as follows:

Layer Input Dimensions Output
Conv 1 28 ◊ 28 ◊ 1 3 ◊ 3 ◊ 1 ◊ 10 26 ◊ 26 ◊ 10
Conv 2 26 ◊ 26 ◊ 10 3 ◊ 3 ◊ 10 ◊ 20 24 ◊ 24 ◊ 20
Max-Pooling 24 ◊ 24 ◊ 20 2 ◊ 2 12 ◊ 12 ◊ 20
Conv 3 12 ◊ 12 ◊ 20 3 ◊ 3 ◊ 20 ◊ 30 10 ◊ 10 ◊ 30
Conv 4 10 ◊ 10 ◊ 30 3 ◊ 3 ◊ 30 ◊ 40 8 ◊ 8 ◊ 40
Conv 5 8 ◊ 8 ◊ 40 3 ◊ 3 ◊ 40 ◊ 40 6 ◊ 6 ◊ 40
Conv 6 6 ◊ 6 ◊ 40 3 ◊ 3 ◊ 40 ◊ 60 4 ◊ 4 ◊ 60
Conv 7 4 ◊ 4 ◊ 60 3 ◊ 3 ◊ 60 ◊ 100 2 ◊ 2 ◊ 100
Flatten 10450 ◊ 1 - -
Fully-connected 10450 10450 ◊ 10 10
Output - - 10 ◊ 1

Table 5.3: 7 layered CNN with Flat-Skips
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The 7 layered Flat-Skips consist of 213k parameters and requires 7.0M FLOPs and is
therefore bigger then the 4 layered CNN, however, needs much fewer FLOPs per epoch.
The flatten layer which consists of 10.450 neurons is the result of the concatenated feature-
maps which come from the Flat-Skips. For the feature-maps which come from the first
and second layer a 3 ◊ 3 max-pooling operation was applied before passing them to the
flatten layer. The computation time on the CPU of the M1 chip are about the same for
both models, however, this is probably because of a bad implementation of the Flat-Skips
and with better programming the computation of the 7 layered CNN with Flat-Skips can
be significantly reduced, which is indicated by the smaller number of FLOPs. However,
to get the same computation time on the CPU of the M1 chip the number of filters per
layer is reduced.
The following table gives an overview over all the models which were used on the MNIST
and the Fashion-MNIST dataset. The input images have a format of 28 ◊ 28. All models
use one 2◊2 max-pooling layer after the second convolutional layer. The second column in
the table displays the number of filters used per layer. Furthermore, in the third column
the size of the flatten layer is shown. The following two columns show the number of
parameters, as well as the FLOPs needed for a single feedforward pass of the respective
model. In order to find the appropriate depth for each network architecture, each of these
models were evaluated on the evaluation dataset. In the table the models which achieved
the highest accuracy on the evaluation data of the MNIST and Fashion-MNIST dataset
are highlighted. These models were then used to test them on the test set and make the
final comparison between the network archietctures.
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Model Convolutional part Flatten layer Params. FLOPs
CNN
3-layered 24 - 46 - 64 6400 101k 17.1M
4-layered 16 - 32 - 64 - 96 6144 140k 16.4M
5-layered 12 - 24 - 40 - 64 - 128 4608 154k 13.2M
6-layered 12 - 24 - 32 - 64 - 64 - 128 2048 195k 11.9M
7-layered 12 - 24 - 32 - 32 - 48 - 64 - 128 512 140k 8.2M
CNN with Flat-Skips
3-layered 22 - 44 - 60 10598 139k 15.3M
4-layered** 14 - 28 - 56 - 80 13646 195k 12.5M
5-layered 10 - 20 - 40 - 60 - 100 13530 220k 10.6M
6-layered* 10 - 20 - 30 - 50 - 60 - 100 12050 223k 8.9M
7-layered 10 - 20 - 30 - 40 - 40 - 60 - 100 10450 213k 7.0M
Modified DenseNet
3-layered 20 - 40 - 64 10580 136k 13.4M
4-layered 14 - 26 - 48 - 80 12718 211k 15.8M
5-layered 10 - 16 - 26 - 54 - 96 11346 238k 13.1M
6-layered 8 - 12 - 24 - 48 - 64 - 96 10728 320k 12.7M
7-layered 6 - 10 - 16 - 32 - 64 - 64 - 96 8486 374k 8.8M
LDN
3-layered** 20 - 40 - 64 6400 106k 15.8M
4-layered 14 - 28 - 54 - 72 4608 132k 17.2M
5-layered* 12 - 18 - 30 - 60 - 100 3600 187k 17.8M
6-layered 10 - 14 - 24 - 48 - 64 - 96 1536 156k 16.9M
7-layered 6 - 10 - 16 - 32 - 64 - 64 - 96 384 158k 11.7M
LDN with Flat-Skips
3-layered** 20 - 40 - 64 10580 148k 15.9M
4-layered 12 - 24 - 48 - 72 11916 192k 14.0M
5-layered* 10 - 16 - 26 - 54 - 96 11346 238k 14.4M
6-layered 8 - 12 - 24 - 48 - 64 - 96 10728 320k 16.0M
7-layered 6 - 8 - 16 - 32 - 64 - 64 - 96 8358 367k 11.2M

* highest accuracy on the evaluation data of the MNIST dataset
** highest accuracy on the evaluation data of the Fashion-MNIST dataset

Table 5.4: Models for the MNIST and Fashion-MNIST dataset.

In general non-CNN models have slightly more parameters. This is because of the larger
flatten layer which comes from the use of Flat-Skips. Nevertheless, non-CNN models
tend to require fewer FLOPs for a feedforward pass. This comes from the reduction of
the number of filters, which is needed to align the computation time on the hardware
used.
For the hand gesture dataset and the CIFAR-10 dataset also 2 ◊ 2 max-pooling was used
after the second convolutional layer. The next two tables show the models tested for the
hand gesture dataset which has an input format of 32 ◊ 32 ◊ 1 and the CIFAR-10 dataset
which has an input format of 32 ◊ 32 ◊ 3. In general they are very similar, however, since
the images in CIFAR-10 have 3 input channels the models are slightly more computational
expensive.
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Model Convolutional part Flatten layer Params. FLOPs
3-layered 24 - 48 - 96 13824 191k 29.6M
4-layered 16 - 40 - 64 - 96 9600 181k 27.7M
5-layered 12 - 32 - 48 - 64 - 128 8192 201k 25.1M
6-layered 12 - 24 - 32 - 64 - 96 - 128 4608 241k 25.5M
7-layered 12 - 24 - 32 - 48 - 64 - 96 - 128 2048 238k 20.5M
CNN with Flat-Skips
3-layered 24 - 46 - 88 16462 212k 27.6M
4-layered 16 - 36 - 60 - 80 19428 263k 23.5M
5-layered 12 - 28 - 40 - 54 - 96 19444 274k 18.5M
6-layered 10 - 20 - 30 - 60 - 80 - 100 20660 346k 19.2M
7-layered 10 - 20 - 30 - 40 - 60 - 80 - 100 18260 338k 15.7M
Modified DenseNet
3-layered 22 - 40 - 80 14888 202k 26.6M
4-layered 16 - 32 - 48 - 72 16704 255k 26.8M
5-layered 10 - 24 - 32 - 48 - 72 15832 273k 22.2M
6-layered 8 - 14 - 22 - 38 - 64 - 72 14854 353k 19.4M
7-layered 8 - 12 - 24 - 32 - 48 - 48 - 72 13708 198k 17.4M
LDN
3-layered 20 - 40 - 80 11520 166k 25.2M
4-layered 18 - 36 - 54 - 72 7200 175k 33.2M
5-layered 12 - 24 - 36 - 48 - 72 4608 170k 28.1M
6-layered 8 - 12 - 20 - 40 - 54 - 72 2592 171k 20.7M
7-layered 3 - 6 - 9 - 18 - 36 - 72 - 72 1152 168k 10.9M
LDN with Flat-Skips
3-layered 20 - 40 - 80 14760 199k 25.3M
4-layered 16 - 32 - 48 - 72 16704 255k 28.3M
5-layered 10 - 22 - 32 - 48 - 72 15734 269k 24.4M
6-layered 6 - 10 - 16 - 32 - 40 - 72 11530 218k 14.1M
7-layered 3 - 6 - 9 - 18 - 36 - 72 - 72 9630 252k 11.1M

Table 5.5: Models for the hand gesture dataset.
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Model Convolutional part Flatten layer Params. FLOPs
CNN
3-layered 24 - 48 - 96 13824 191k 29.6M
4-layered 16 - 40 - 64 - 96 9600 181k 27.7M
5-layered 12 - 32 - 48 - 64 - 128 8192 201k 25.1M
6-layered 12 - 24 - 32 - 64 - 96 - 128 4608 241k 25.5M
7-layered 12 - 24 - 32 - 48 - 64 - 96 - 128 2048 238k 20.5M
CNN with Flat-Skips
3-layered 24 - 46 - 88 16462 212k 27.6M
4-layered 16 - 36 - 60 - 80 19428 263k 23.5M
5-layered 12 - 28 - 40 - 54 - 96 19444 274k 18.5M
6-layered 10 - 20 - 30 - 60 - 80 - 100 20660 346k 19.2M
7-layered 10 - 20 - 30 - 40 - 60 - 80 - 100 18260 338k 15.7M
Modified DenseNet
3-layered 22 - 40 - 80 14888 202k 26.6M
4-layered 16 - 32 - 48 - 72 16704 255k 26.8M
5-layered 10 - 24 - 32 - 48 - 72 15832 273k 22.2M
6-layered 8 - 14 - 22 - 38 - 64 - 72 14854 353k 19.4M
7-layered 8 - 12 - 24 - 32 - 48 - 48 - 72 13708 198k 17.4M
LDN
3-layered 20 - 40 - 80 11520 166k 25.8M
4-layered 18 - 36 - 54 - 72 7200 175k 33.8M
5-layered 12 - 24 - 36 - 48 - 72 4608 170k 28.5M
6-layered 8 - 12 - 20 - 40 - 54 - 72 2592 171k 21.0M
7-layered 3 - 6 - 9 - 18 - 36 - 72 - 72 1152 168k 11.1M
LDN with Flat-Skips
3-layered 20 - 40 - 80 14760 199k 25.8M
4-layered 16 - 32 - 48 - 72 16704 255k 28.9M
5-layered 10 - 22 - 32 - 48 - 72 15734 269k 24.7M
6-layered 6 - 10 - 16 - 32 - 40 - 72 11530 218k 14.3M
7-layered 3 - 6 - 9 - 18 - 36 - 72 - 72 9630 252k 11.2M

Table 5.6: Models for the CIFAR-10 dataset.

With the Fruits-360 dataset the number of parameters increase significantly compared to
the models used for the other datasets. This is mainly because of the 131 classes. Because
of that the fully-connected layer which connects the flatten layer and the output layer is
more parameter heavy and computational expensive compared to the other datasets,
which only have 10 classes. Since most non-CNN models use Flat-Skips, which usually
increases the size of the flatten layer, those models also have significantly more parameters,
however, the FLOPs required are usually lower.
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Model Convolutional part Flatten layer Params. FLOPs
CNN
3-layered 24 - 48 - 96 13824 1863k 33.0M
4-layered 16 - 40 - 64 - 96 9600 1342k 30.0M
5-layered 12 - 32 - 48 - 64 - 128 8192 1193k 27.1M
6-layered 12 - 24 - 32 - 64 - 96 - 128 4608 798k 26.6M
7-layered 12 - 24 - 32 - 48 - 64 - 96 - 128 2048 486k 21.0M
CNN with Flat-Skips
3-layered 24 - 46 - 88 16462 2204k 31.6M
4-layered 16 - 36 - 60 - 80 19428 2614k 28.2M
5-layered 12 - 28 - 40 - 54 - 96 19444 2627k 23.2M
6-layered 10 - 20 - 30 - 60 - 80 - 100 20660 2846k 24.2M
7-layered 10 - 20 - 30 - 40 - 60 - 80 - 100 18260 2548k 20.0M
Modified DenseNet
3-layered 22 - 40 - 80 14888 2004k 30.2M
4-layered 16 - 32 - 48 - 72 16704 2277k 30.8M
5-layered 10 - 24 - 32 - 48 - 72 15832 2189k 26.0M
6-layered 8 - 14 - 22 - 38 - 64 - 72 14854 2109k 23.0M
7-layered 8 - 12 - 24 - 32 - 48 - 48 - 72 13708 2012k 20.7M
LDN
3-layered 20 - 40 - 80 11520 1560k 28.0M
4-layered 18 - 36 - 54 - 72 7200 1046k 34.9M
5-layered 12 - 24 - 36 - 48 - 72 4608 727k 29.2M
6-layered 8 - 12 - 20 - 40 - 54 - 72 2592 485k 21.3M
7-layered 3 - 6 - 9 - 18 - 36 - 72 - 72 1152 307k 11.2M
LDN with Flat-Skips
3-layered 20 - 40 - 80 14760 1985k 28.9M
4-layered 16 - 32 - 48 - 72 16704 2277k 32.4M
5-layered 10 - 22 - 32 - 48 - 72 15734 2173k 28.2M
6-layered 6 - 10 - 16 - 32 - 40 - 72 11530 1613k 16.9M
7-layered 3 - 6 - 9 - 18 - 36 - 72 - 72 9630 1418k 13.4M

Table 5.7: Models for the Fruits-360 dataset.
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6. Results
In the following chapter the results of the experiments are discussed. Since all archi-
tectures were implemented in Java without the use of public libraries, the models are
certainly not runtime optimal. This is especially true for the CNN with Flat-Skips, Mod-
ified DenseNet and LoopyDenseNet, as they require more data management than the
normal CNN. To find the best model for the hardware at hand, the models are evaluated
based on their accuracy according to the time required. Since the models were designed
so that an epoch takes approximately the same amount of time, the di�erent models can
be compared based on their accuracy under the parameter settings described above. How-
ever, to account for runtime and non-optimal implementation of the networks, accuracy
is also measured according to the FLOPs required. This means that only the accuracies
of the non-CNN models achieved within the FLOPs required by the CNN to reach its
maximum accuracy are considered. This can ensure that the non-CNN models do not get
an advantage due to additional required computing power. In the following comparisons,
the accuracy is given considering early-stopping, as well as after considering the required
FLOPs. Since usually the non-CNN models do not need as many FLOPs for a single
feedforward pass the accuracy is often the same for both observations.

6.1 Experiment on the MNIST dataset
The first dataset that will be looked at, is the MNIST dataset. The best accuracies on the
evaluation data which consists of 10.000 images were achieved by the following models.

Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 4 99.53% - 140k 16.4M
CNN (Flat-Skips) 6 99.33% -42.55% 223k 8.9M
Modified DenseNet 4 99.39% -29.79% 211k 15.8M

LDN 5 99.52% -2.13% 187k 17.8M
LDN (Flat-Skips) 5 99.47% -12.77% 238k 14.4M

Table 6.1: Performance of the best models of the respective architecture on the evaluation
data of the MNIST dataset.

As can be seen the 4-layered CNN consisting of 140k parameters reached the overall best
result with an accuracy of 99.53% on the evaluation dataset. The second best model was
the LDN without Flat-Skips. All other models performed noticeably worse then those
two models. Next the models were tested on the test data of the MNIST dataset. Almost
all models achieved a higher accuracy on the test data compared to the evaluation data.
The performance on the test data is shown in the following figures.
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Figure 6.1: Accuracy on the test data of
the MNIST dataset.

Figure 6.2: Loss on the test data of the
MNIST dataset.

Figure 6.3: Accuracy on the test data of
the MNIST dataset beginning from the
10-th epoch.

As can be seen the 5-layered LDN
reaches the highest accuracy on the test
data with an accuracy of 99.62%. The
CNN reaches the second highest accu-
racy with 99.60%. Interestingly the
CNN with Flat-Skips and the modified
DenseNet perform significantly worse
then the standard CNN, indicating that
a more complex structure of the convolu-
tional part does not always improve per-
formance.

The following table summarizes the results on the test data. In addition to the accuracy,
the error bounds are also given to assess the significance of the results. The error bounds
were calculated with ‘ ± (c”

Ò
‘(1 ≠ ‘)/n + c

2
”/n). In this expression ‘ stands for the error

on the test data, while c” is set to 1.96 when having a confidence interval of 95%. Since
the test dataset contains 10.000 examples n is 10.000. The error bounds will always be
calculated with the formula above during this work.

Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 4 99.60 ± 0.162% - 140k 16.4M
CNN (Flat-Skips) 6 99.45 ± 0.183% -37.50% 223k 8.9M
Modified DenseNet 4 99.38 ± 0.192% -55.00% 211k 15.8M

LDN 5 99.62 ± 0.160% 5.26% 187k 17.8M
LDN (Flat-Skips) 5 99.56 ± 0.168% -10.00% 238k 14.4M

Table 6.2: Performance on the test data of the MNIST dataset.

As discussed before, comparing the achieved accuracies over time (over the epochs) does
only make sense when looking for the best model on the given hardware. However, in
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order to make a more general statement about the performance of the models, the achieved
accuracy must be considered under the dependence of the required FLOPs. In order to
take the FLOPs into account the number of FLOPs which the CNN model needs until
it reaches its highest accuracy were counted. For all other models the accuracy will only
be considered which was reached under the given number of FLOPs. For those models
which stopped earlier because of early stopping the same accuracy as in the table above
will be considered. However, accuracies which were achieved after the defined number of
FLOPs will not be considered during the comparison.
The accuracy and the loss progression in respect to the FLOPs needed, looks as follows:

Figure 6.4: Accuracy on the test data
of the MNIST dataset in respect to the
FLOPs required.

Figure 6.5: Loss on the test data of the
MNIST dataset in respect to the FLOPs
required.

As can be seen, the non-CNN models achieve their highest accuracies before the CNN
model does. Due to this, the maximum achieved accuracy of the non-CNN models is not
reduced.
All in all, the accuracy of the LDN is not significantly better then the accuracy of the
CNN. For the MNIST dataset a more complex convolutional part does not always improve
performance.

6.2 Experiment on the Fashion-MNIST dataset
The Fashion-MNIST dataset is very similar to the MNIST dataset, however, the objects
that should be classified consist of more complex structures and shapes. Therefore a lower
accuracy is to be expected. The results on the evaluation data are shown in the table
below.
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Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 4 92.64% - 140k 16.4M
CNN (Flat-Skips) 4 92.02% -8.42% 195k 12.5M
Modified DenseNet 4 91.68% -13.04% 211k 15.8M

LDN 3 92.45% -2.58% 106k 15.8M
LDN (Flat-Skips) 3 92.70% 0.82% 148k 15.9M

Table 6.3: Performance of the best models of the respective architecture on the evaluation
data of the Fashion-MNIST dataset.

All in all, the LDN with Flat-Skip achieves about the highest accuracy on evaluation
data. The best CNN was slightly better then the LDN. After finding the best model of
the respective architecture, the models were then tested on the test dataset. The following
figures show the accuracy and the loss on the test data.

Figure 6.6: Accuracy on the test data of
the Fashion-MNIST dataset.

Figure 6.7: Loss on the test data of the
Fashion-MNIST dataset.

Figure 6.8: Accuracy on the test data of
the Fashion-MNIST dataset beginning
from the 10-th epoch.

All models were capable to achieve a
higher accuracy on the test data com-
pared to the evaluation data. The LDN
without Flat-Skips manages to achieve
the highest overall accuracy of 93.31%,
which is, however, not a significant
improvement over the standard CNN or
the LDN with Flat-Skips, which both
reached 93.23%.
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Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 4 93.23 ± 0.531% - 140k 16.4M
CNN (Flat-Skips) 4 92.73 ± 0.547% -7.39% 195k 12.5M
Modified DenseNet 4 92.31 ± 0.561% -13.59% 211k 15.8M

LDN 3 93.31 ± 0.528% 1.20% 106k 15.8M
LDN (Flat-Skips) 3 93.23 ± 0.531% 0.0% 148k 15.9M

Table 6.4: Performance on the test data of the Fashion-MNIST dataset.

In the following figures, the accuracy and the loss are shown in relation to the required
FLOPs.

Figure 6.9: Accuracy on the test data of
the Fashion-MNIST dataset in respect
to the FLOPs required.

Figure 6.10: Loss on the test data of
the Fashion-MNIST dataset in respect
to the FLOPs required.

In the figure above it is clearly visible, that all non-CNN models need more FLOPs in order
to achieve their maximum accuracy, then the CNN does. Because of that, the accuracies
of the non-CNN models which accounts for the FLOPs required is smaller then from the
table 6.5 above. When considering the FLOPs the CNN has the highest performance over
all models, however, the di�erence to the LDN models is still not significant. The results
were summarized in the following table.

Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 4 93.23 ± 0.531% - 140k 16.4M
CNN (Flat-Skips) 4 92.59 ± 0.552% -9.45% 195k 12.5M
Modified DenseNet 4 92.00 ± 0.570% -18.17% 211k 15.8M

LDN 3 93.12 ± 0.535% -1.62% 106k 15.8M
LDN (Flat-Skips) 3 93.01 ± 0.538% -3.25% 148k 15.9M

Table 6.5: Performance on the test data of the Fashion-MNIST dataset considering the
required FLOPs.

6.3 Experiment on the hand gesture dataset
In order to find the best models for each architecture the hand gesture dataset was split
up in 10 parts. Each of the parts contains the images of one of the ten persons from
which the images were taken (the dataset was described in more detail in section 4.4).
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The images of the first person were used to evaluate the models. The following table
shows the results of the best models of the respective architecture on the evaluation data.

Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 5 97.60% - 201k 25.1M
CNN (Flat-Skips) 5 95.45% -89.58% 274k 18.5M
Modified DenseNet 4 92.39% -217.08% 255k 26.8M

LDN 5 97.60% 0.0% 170k 28.1M
LDN (Flat-Skips) 5 96.85% -31.25% 269k 24.4M

Table 6.6: Performance of the best models of the respective architecture on the evaluation
data of the hand gesture dataset.

The best CNN and the best LDN achieved the same accuracy on the evaluation data
and both consist of 5 convolutional layers. The best CNN with Flat-Skips and the best
modified DenseNet performed much worse then all other models on the evaluation data.
Interestingly, they achieve slightly higher accuracies on the training data compared to
the other models and therefore are heavily overfitting. This indicates, that they are very
expressive, however, the models need more regularization. After finding the best model
of each architecture, cross-validation was done, in order to compare the models properly.
So every model was trained on the data of eight of the nine persons and evaluated on the
data of the one remaining person. This was done nine times, so that the data of each
person is used for evaluation once. The following figure shows the accuracies of each of
the nine folds.

Figure 6.11: Results of the cross-validation on the hand gesture dataset.

In the figure above it is possible to see, that all models but the modified DenseNet tend
to achieve similar results. Correctly classifying the images of person eight seems to be
di�cult for all of the models. The highest accuracy for this person was achieved by the
LDN with 88.75%, which is significantly lower then the accuracies which were achieved
on the images of the other persons. In the following table the average accuracy of all nine
persons were given.
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Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 5 97.59 ± 0.864% - 201k 25.1M
CNN (Flat-Skips) 5 96.56 ± 0.991% -42.74% 274k 18.5M
Modified DenseNet 4 94.03 ± 1.230% -147.72% 255k 26.8M

LDN 5 97.97 ± 0.810% 18.72% 170k 28.1M
LDN (Flat-Skips) 5 97.77 ± 0.839% 8.07% 269k 24.4M

Table 6.7: Results of the cross-validation on the hand gesture dataset.

The standard 5-layered CNN managed to achieve a respectable result of 97.59%, which is
higher then the accuracy of the CNN with Flat-Skips and much higher then the accuracy
of the modified DenseNet. Both LDN models, the one with and the one without Flat-
Skips achieved slightly higher accuracies then the CNN. The LDN manages to reduce the
error of the CNN by about 18%. It is important to note, that because of the small size
of the evaluation dataset, which only consist of 2.000 images per fold, the di�erence in
accuracy is not significant.
Next the accuracies were looked at while considering the required FLOPs. Again, only
the results of the non-CNN models obtained with a lower or equal number of FLOPs
that the CNN model required to achieve its highest accuracy were considered. Because
of that a slightly smaller accuracy was assumed in the first, second, fifth, sixth, seventh
and eighth fold for the LDN and for the LDN with FLat-Skips in the first, second, fifth
and eighth fold. The following figures should illustrate the accuracies in respect to the
FLOPs needed for the sixth person.

Figure 6.12: Accuracy on the test data
of the hand gesture dataset in respect to
the FLOPs required.

Figure 6.13: Accuracy on the training
data of the hand gesture dataset in re-
spect to the FLOPs required.

As can be seen, the LoopyDenseNet requires more FLOPs to achieve its highest accuracy
then the CNN and therefore a smaller accuracy will be considered. The following figures
shows the accuracies of the models after considering the FLOPs.
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Figure 6.14: Results of the cross-validation on the hand gesture dataset in respect to the
FLOPs required.

The results were summarized the following table:

Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 5 97.59 ± 0.864% - 201k 25.1M
CNN (Flat-Skips) 5 96.33 ± 1.016% -52.28% 274k 18.5M
Modified DenseNet 4 93.46 ± 1.276% -171.37% 255k 26.8M

LDN 5 97.46 ± 0.882% -5.39% 170k 28.1M
LDN (Flat-Skips) 5 97.63 ± 0.859% 1.69% 269k 24.4M

Table 6.8: Accuracies of the models after considering the required LOPs on the hand
gesture dataset.

The accuracy of the LDN drops below the accuracy of the CNN, while the LDN with
Flat-Skips still manages to achieve a slightly higher accuracy. All in all, the LDN with
Flat-Skips does not achieve significantly better results compared to the CNN.

6.4 Experiment on the Fruits-360 dataset
The Fruits-360 dataset di�erentiates itself from all other datasets which were used in this
work in the way that for each architecture at least one model achieved an accuracy of
100% on the evaluation dataset. In the case of the CNN and the LDN almost all models
reached 100%. Because of that the model with the fewest amount of layers which achieved
an accuracy of 100% were chosen for each architecture to be evaluated on the test data.
Those models were the 3-layered CNN, the 7-layered CNN with Flat-Skips, the 5-layered
modified DenseNet, the 3-layered LDN and the 3-layered LDN with Flat-Skips. Important
to note is that for the Fruits-360 dataset no data augmentation was used. The results on
the test data which consists of 22.688 images, were the following.
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Figure 6.15: Accuracy on the test data
of the Fruits-360 dataset.

Figure 6.16: Loss on the test data of the
Fruits-360 dataset.

The results were summarized in the following table. It is worth mentioning that all models
achieved an accuracy of 100% on the training data.

Model Layers Accuracy Error Reduction Parameters FLOPs

CNN 3 95.42 ± 0.289% - 1863k 33.0M
CNN (Flat-Skips) 7 94.34 ± 0.318% -23.58% 2548k 20.0M
Modified DenseNet 5 96.57 ± 0.254% 33.53% 2189k 26.0M

LDN 3 95.42 ±0.289% - 1560k 28.0M
LDN (Flat-Skips) 3 95.58 ± 0.284% 3.62% 1985k 28.9M

Table 6.9: Performance of the best models of the respective architecture on the test data
of the Fruits-360 dataset.

On the Fruits-360 dataset the modified DenseNet reached the highest accuracy and re-
duced the error compared to the CNN by about 33%, achieving a significantly better
result. Furthermore, the LDN with Flat-Skips also reached a higher accuracy then the
CNN. When considering the FLOPs the loss and the test accuracy look as follows:

Figure 6.17: Accuracy on the test data
of the Fruits-360 dataset in respect to
the required FLOPs.

Figure 6.18: Loss on the test data of the
Fruits-360 dataset in respect to the re-
quired FLOPs.

Similarly to the datasets before, all non-CNN models achieved its highest accuracy with
fewer FLOPs then the CNN. In the case of the LDN, the CNN needs more then 3 times
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as many FLOPs to reach the same maximum accuracy. The LDN with Flat-Skips reaches
the maximum accuracy of the CNN with just a third of the FLOPs the CNN would need.

6.5 Experiment on the CIFAR-10 dataset
The CIFAR-10 dataset is the most di�cult dataset to classify in this work. This dataset
is a very popular benchmarking dataset and large networks were used to achieve high
accuracies. Since in this work only small networks were used, no competitive results
can be expected. Similarly to the other datasets the best model of each architecture is
determined by evaluating the models on the evaluation data. The following table shows
the best results on the evaluation data obtained by the respective architecture.

Model Layers Accuracy Error Reduction Params. FLOPs

CNN 3 68.72% - 191k 29.6M
CNN (Flat-Skips) 4 70.90% 6.97% 263k 23.5M
Modified DenseNet 4 68.82% 0.32% 255k 26.8M

LDN 3 70.65% 6.17% 166k 25.8M
LDN (Flat-Skips) 3 72.94% 13.49% 199k 25.8M

Table 6.10: Performance of the models of the respective architecture on the evaluation
data of the CIFAR-10 dataset.

As can be seen, the LoopyDenseNet with Flat-Skips achieves the highest accuracy and
reduces the error of the CNN by about 13.5%, while needing fewer FLOPs per epoch and
only having 8 thousand more parameters. Furthermore, the standard LDN without Flat-
Skips also achieves a higher accuracy then the CNN, indicating, that looping convolutions
seem to improve performance. In order to make proper statements about the performance
those models were then tested on the test data. The results were visualized in the following
figures.

Figure 6.19: Accuracy on the test data
of the CIFAR-10 dataset.

Figure 6.20: Loss on the test data of the
CIFAR-10 dataset.
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Figure 6.21: Accuracy of the di�erent
models on the training data of CIFAR-
10.

Looking at the accuracy of the models
on the training data a similar trend
can be seen. The LDN with Flat-Skips
achieves accuracies well above 75% and
the CNN with Flat-Skips around 75%
on the training data. Furthermore,
it has to be said, that all models are
overfitting. By using more data aug-
mentation or a generalization method
like dropout even higher accuracies can
be expected [66].

The following table summarizes the results and also gives the error bounds (confidence
interval of 95%).

Model Layers Accuracy Error Reduction Params. FLOPs

CNN 3 69.98 ± 0.937% - 191k 29.6M
CNN (Flat-Skips) 4 71.85 ± 0.920% 6.64% 263k 23.5M
Modified DenseNet 4 70.43 ± 0.933% 1.52% 255k 26.8M

LDN 3 70.60 ± 0.931% 2.11% 166k 25.8M
LDN (Flat-Skips) 3 72.81 ± 0.910% 10.41% 199k 25.8M

Table 6.11: Performance of the models of the respective architecture on the evaluation
data of the CIFAR-10 dataset.

In the table above it is possible to see, that the LDN with Flat-Skips and the CNN
with Flat-Skips significantly outperform the standard CNN model, which indicates, that
Flat-Skips might be helpful for the CIFAR-10 dataset. Furthermore, also the modified
DenseNet shows better results then the CNN. Compared to the previous datasets the
CIFAR-10 is a much harder classification problem especially when using a small network.
The results on this dataset indicate, that for harder classification problem more complex
structures in the convolutional part of the network seem to be beneficial, since all non-
CNN models achieve higher accuracies then the standard CNN.
In order to make a more general statement about the performance of the models, the
achieved accuracy must be considered under the dependence of the required FLOPs.
This can be seen in the following figures.
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Figure 6.22: Accuracy on the test data
of the CIFAR-10 dataset in respect to
the FLOPs required.

Figure 6.23: Loss on the test data of
the CIFAR-10 dataset in respect to the
FLOPs required.

The LDN, the LDN with Flat-Skips and the CNN with Flat-Skips learn faster then the
CNN when considering the number of FLOPs. The LDN with Flat-Skips requires about
35% less FLOPs to achieve its highest accuracy in comparison to the CNN. Only the
modified DenseNet does reach its highest accuracy after the CNN does. However, its
performance is still above 70% and therefore higher then the accuracy of the CNN.
All in all, incorporating convolutional loops seem to be beneficial for the performance of
the network. However, Flat-Skips improve the accuracy of the models more significantly.
When combining both methods the overall best result can be achieved. The 3-layered
LDN with Flat-Skips is capable of correctly classifying about 72.81% of the images of the
test data of CIFAR-10, despite consisting of only 199k parameters. Considering, that the
state of the art performance on graph classification on CIFAR-10 for models with fewer
then 100k parameters is 72.84% according to [2] this result is considerable [13]. In order
to compare the LDN with other models of this benchmark the 3-layered network was
modified by incorporating an additional max-pooling layer and reducing the number of
filters per layer. By doing so the overall parameters were reduced to 94.3k. The model
consists of three convolutional layers with 20 filters in the first, 40 filters in the second
and 60 filters in the third layer. After the second layer a 2 ◊ 2 max-pooling operation is
done, as well as, after the third layer. Furthermore, for the feature-maps of the first and
the second layer a 4◊4 max-pooling operation was done, before passing the feature-maps
to the flatten layer. Because of that the flatten layer only consists of 5400 neurons and
the model has less then 100k trainable parameters. After the convolutional part there is
only a single fully-connected layer.
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Main Conv 1 (Loops) Max-Pooling Flat-Skips
Input 32 ◊ 32 ◊ 3 - - -
Conv 1 3 ◊ 3 ◊ 3 ◊ 20 - - -
Output 30 ◊ 30 ◊ 20 - 4 ◊ 4 8 ◊ 8 ◊ 20
Input 30 ◊ 30 ◊ 20 30 ◊ 30 ◊ 20 - -
Conv 2 3 ◊ 3 ◊ 20 ◊ 40 3 ◊ 3 ◊ 3 ◊ 20 - -
Output 28 ◊ 28 ◊ 40 28 ◊ 28 ◊ 20 4 ◊ 4 7 ◊ 7 ◊ 40
Max-Pooling 14 ◊ 14 ◊ 40 14 ◊ 14 ◊ 20 - -
Input 14 ◊ 14 ◊ 60 - - -
Conv 3 3 ◊ 3 ◊ 60 ◊ 60 - - -
Output 12 ◊ 12 ◊ 60 - - -
Max-Pooling 6 ◊ 6 ◊ 60 - - 6 ◊ 6 ◊ 60
Flatten - - - 5400 ◊ 1
FC - - - 5400 ◊ 10
Prediction - - - 10 ◊ 1

Table 6.12: LoopyDenseNet with Flat-Skips with 94.3k parameters.

The model described above achieves an accuracy of 69.44%, which is comparable to the
best submits on the CIFAR-10 100k benchmark according to [2].

6.6 Summary of the results
In the following section the results of the di�erent network architectures on all the datasets
get summarized. In order to answer the research question whether skip connections, a
dense connectivity pattern and the use of loops improve the performance of a convolutional
neural network the performance were compared to the results of the ordinary CNN. In the
following table the results on the test data in respect to the required FLOPs were given
for each dataset. Additionally, the number of layers and the number of parameters of the
models were given and the FLOPs which were required to do a feedforward pass. The only
exception here will be the hand gesture dataset. Here the results of the cross-validation
will be given.
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Data Model Layers Accuracy Params. FLOPs

CNN 4 99.60 ± 0.162% 140k 16.4M

CNN (Flat-Skips) 6 99.45 ± 0.183% 223k 8.9M

MNIST Modified DenseNet 4 99.38 ± 0.192% 211k 15.8M

LDN 5 99.62 ± 0.160% 187k 17.8M

LDN (Flat-Skips) 5 99.56 ± 0.168% 238k 14.4M

CNN 4 93.23 ± 0.531% 140k 16.4M

CNN (Flat-Skips) 4 92.59 ± 0.552% 195k 12.5M

Fashion-MNIST Modified DenseNet 4 92.00 ± 0.570% 211k 15.8M

LDN 3 93.12 ± 0.535% 106k 15.8M

LDN (Flat-Skips) 3 93.01 ± 0.538% 148k 15.9M

CNN 5 97.59 ± 0.864% 201k 25.1M

CNN (Flat-Skips) 5 96.33 ± 1.016% 274k 18.5M

Hand gesture Modified DenseNet 4 93.46 ± 1.276% 255k 26.8M

LDN 5 97.46 ± 0.882% 170k 28.1M

LDN (Flat-Skips) 5 97.63 ± 0.859% 269k 24.4M

CNN 3 95.42 ± 0.289% 1863k 33.0M

CNN (Flat-Skips) 7 94.34 ± 0.318% 2548k 20.0M

Fruits-360 Modified DenseNet 5 96.57 ± 0.254% 2189k 26.0M

LDN 3 95.42 ±0.289% 1560k 28.0M

LDN (Flat-Skips) 3 95.58 ± 0.284% 1985k 28.9M

CNN 3 69.98 ± 0.937% 191k 29.6M

CNN (Flat-Skips) 4 71.85 ± 0.920% 263k 23.5M

CIFAR-10 Modified DenseNet 4 70.43 ± 0.933% 255k 26.8M

LDN 3 70.60 ± 0.931% 166k 25.8M

LDN (Flat-Skips) 3 72.81 ± 0.910% 199k 25.8M

Table 6.13: Performance of the models on the di�erent classification datasets considering
the required FLOPs.

As can be seen in the table 6.13, extending the standard CNN architecture with Flat-Skips
does not improve the performance of the network in most cases. Only on the CIFAR-10
dataset Flat-Skips significantly improved the performance of the network. This indicates,
that Flat-Skips on their own only improve performance on more complex datasets. For
simpler datasets with easier structures Flat-Skips on their own do not add any additional
value, however, increase the number of parameters and increases the chances of overfitting.
The combination of Flat-Skips and a dense connectivity pattern such it is realized in the
modified DenseNet also do not boost the performance compared to the CNN. Only on
the Fruits-360 dataset the modified DenseNet manages to outperform all other models.
Nevertheless, on other datasets it often times performed significantly worse.
The LDN and the LDN with Flat-Skips both achieved comparable results to the CNN
on all datasets. On the MNIST dataset the LDN manages to achieve the overall highest
performance. Also on the Fashion-MNIST dataset, when the required FLOPs were not
considered. Since the LDN does not use Flat-Skips and relays on the use of convolutional
loops, this network architecture is extremely parameter e�cient. The LDN with Flat-
Skips on the other hand achieved the highest accuracy on the hand gesture and the
CIFAR-10 dataset. It manages to achieve a significantly better accuracy then the CNN
model while requiring a third less FLOPs. Considering, that the CIFAR-10 dataset is the
most complex dataset, this indicates, that convolutional loops and Flat-Skips might be
especially useful on more complex datasets compared to the CNN.
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7. Prospects of LoopyDenseNets
LoopyDenseNets are the attempt to utilize convolutional layers multiple times in a single
forward run. In comparison to other neural network architectures, which also use some
sort of convolutional loops within the network, like the Loopy Neural Network [29] or
the Recurrent Convolutional Neural Network [44], the LoopyDenseNet does not need an
additional parameter to define the number of loops. The number of loops of each layer
are defined by the number of layers of the convolutional part. Furthermore, convolutional
loops are used to adapt the feature-map size of feature-maps from di�erent origins in order
to be able to concatenate them. However, there are many more rooms to explore with
looping convolutions. In this section some ideas were given which would be interesting to
make further investigations.

7.1 Deep LoopyDenseNets
Because of computational restrictions the models tested in this work were relatively small.
The deepest networks that were tested only had 7 convolutional layers. Furthermore, the
convolutional part of the networks only consist of few 10k parameters. However, it would
be very interesting to use the LoopyDenseNet architecture in bigger models, consisting
of more layers and more parameters. Beside the performance comparison described in
section 5.1, bigger models were tested on the MNIST dataset, as well as on the CIFAR-
10 dataset. The goal was to see if making the model bigger results in an increase of
performance. Indeed higher accuracies could be obtained by simply increasing the number
of filters per layer. For the CIFAR-10 dataset a 3-layered model was defined, which has
32 filters in the first layer, 64 in the second and 96 filters in the third layer. Again max-
pooling was used after the second convolutional layer. This model contains about 293k
parameters and requires 35.5M FLOPs. Despite only having 100k parameters more then
the best model in section 6.5, which achieves an accuracy of 72.81% on the test data and
76.5% on the training data, this model achieves an accuracy of 74.69% on the test data
and an accuracy of 79.3% on the training data, which is significantly better. It is worth
mentioning, that all the other parameters were the same as in the experiment above. A
5 layered LoopyDenseNet with 20 filters in the first, 40 filters in the second, 60 in the
third, 100 in the fourth and 120 filters in the fifth layer achieved an accuracy of 99.69%
on the test data of the MNIST dataset, which is a slight improvement over the 99.62%
achieved with the smaller model. Again the exact same hyperparameters as in section 5.1
were used. The exact model and the feature-map generation looks as follows:
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Main Conv 1 (Loops) Conv 2 (Loops) Conv 3 (Loops)
Input 28 ◊ 28 ◊ 1 - - -
Conv 1 3 ◊ 3 ◊ 1 ◊ 20 - - -
Output 26 ◊ 26 ◊ 20 - - -
Input 26 ◊ 26 ◊ 20 26 ◊ 26 ◊ 20 - -
Conv 2 3 ◊ 3 ◊ 20 ◊ 40 3 ◊ 3 ◊ 1 ◊ 20 - -
Output 24 ◊ 24 ◊ 40 24 ◊ 24 ◊ 20 - -
Pooling 12 ◊ 12 ◊ 40 12 ◊ 12 ◊ 20 - -
Input 12 ◊ 12 ◊ 60 12 ◊ 12 ◊ 20 12 ◊ 12 ◊ 40 -
Conv 3 3 ◊ 3 ◊ 60 ◊ 60 3 ◊ 3 ◊ 1 ◊ 20 3 ◊ 3 ◊ 20 ◊ 40 -
Output 10 ◊ 10 ◊ 60 10 ◊ 10 ◊ 20 10 ◊ 10 ◊ 40 -
Input 10 ◊ 10 ◊ 120 10 ◊ 10 ◊ 20 10 ◊ 10 ◊ 40 10 ◊ 10 ◊ 60
Conv 4 3 ◊ 3 ◊ 120 ◊ 100 3 ◊ 3 ◊ 1 ◊ 20 3 ◊ 3 ◊ 20 ◊ 40 3 ◊ 3 ◊ 60 ◊ 60
Output 8 ◊ 8 ◊ 100 8 ◊ 8 ◊ 20 8 ◊ 8 ◊ 40 8 ◊ 8 ◊ 60
Input 8 ◊ 8 ◊ 220 - - -
Conv 5 3 ◊ 3 ◊ 220 ◊ 120 - - -
Output 6 ◊ 6 ◊ 120
Flatten 4320 ◊ 1 - - -
FC 4320 ◊ 10 - - -
Predicition 10 ◊ 1 - - -

Table 7.1: Bigger 5 layered LoopyDenseNet for MNIST.

In the sections 3.4.4 and 3.4.5 concepts are presented, which can be used to design deeper
LDNs and still be able to reduce the computational costs. The e�ectiveness of bottleneck
layers were also tested on the model described above (20 - 40 - 60 - 100 - 120). When
placing a 1◊1 convolution layer with a depth of 60 before the last layer, which consists of
120 filters and a 1 ◊ 1 convolutional layer with a depth of 40 in front of the fourth layer,
which consists of 100 filters, the computation time could be reduced by about 20% while
reaching almost the same accuracy. When using 1 ◊ 1 convolutions the model looks like
this:
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Main Conv 1 (Loops) Conv 2 (Loops) Conv 3 (Loops)
Input 28 ◊ 28 ◊ 1 - - -
Conv 1 3 ◊ 3 ◊ 1 ◊ 20 - - -
Output 26 ◊ 26 ◊ 20 - - -
Input 26 ◊ 26 ◊ 20 26 ◊ 26 ◊ 20 - -
Conv 2 3 ◊ 3 ◊ 20 ◊ 40 3 ◊ 3 ◊ 1 ◊ 20 - -
Output 24 ◊ 24 ◊ 40 24 ◊ 24 ◊ 20 - -
Pooling 12 ◊ 12 ◊ 40 12 ◊ 12 ◊ 20 - -
Input 12 ◊ 12 ◊ 60 12 ◊ 12 ◊ 20 12 ◊ 12 ◊ 40 -
Conv 3 3 ◊ 3 ◊ 60 ◊ 60 3 ◊ 3 ◊ 1 ◊ 20 3 ◊ 3 ◊ 20 ◊ 40 -
Output 10 ◊ 10 ◊ 60 10 ◊ 10 ◊ 20 10 ◊ 10 ◊ 40 -
Input 10 ◊ 10 ◊ 120 - - -
Bottleneck 1 ◊ 1 ◊ 120 ◊ 40 - - -
Output 10 ◊ 10 ◊ 40 - - -
Input 10 ◊ 10 ◊ 40 10 ◊ 10 ◊ 20 10 ◊ 10 ◊ 40 10 ◊ 10 ◊ 60
Conv 4 3 ◊ 3 ◊ 40 ◊ 100 3 ◊ 3 ◊ 1 ◊ 20 3 ◊ 3 ◊ 20 ◊ 40 3 ◊ 3 ◊ 60 ◊ 60
Output 8 ◊ 8 ◊ 100 8 ◊ 8 ◊ 20 8 ◊ 8 ◊ 40 8 ◊ 8 ◊ 60
Input 8 ◊ 8 ◊ 220 - - -
Bottleneck 1 ◊ 1 ◊ 220 ◊ 60 - - -
Output 8 ◊ 8 ◊ 60 - - -
Input 8 ◊ 8 ◊ 60 - - -
Conv 5 3 ◊ 3 ◊ 60 ◊ 120 - - -
Output 6 ◊ 6 ◊ 120
Flatten 4320 ◊ 1 - - -
FC 4320 ◊ 10 - - -
Predicition 10 ◊ 1 - - -

Table 7.2: Bigger 5 layered LoopyDenseNet with 1 ◊ 1 convolutions for MNIST.

As can be seen in the table the bottleneck layer reduce the depth of the feature-maps
which were the input to the fourth and the fifth convolutional layer. While the fourth
layer previously received a feature-map of depth 120, the feature-map depth can be re-
duced to an arbitrary size by using the 1 ◊ 1 convolution. The same thing applies for
the fifth layer. The bottleneck layers are so computational inexpensive that they reduce
the computation time, since the feature-map depth of the input to the next 3 ◊ 3 con-
volution is smaller. When using bottleneck layers one might experiment with the use
of Flat-Skips. There are several possibilities on how to incorporate Flat-Skips in LDN
with bottleneck layers. Fist of which, it is possible to use Flat-Skips on all convolutional
layers, including the bottleneck layers. The second possibility is to only use Flat-Skips
on the normal convolutions and lastly it is possible to use Flat-Skips only on the output
of the bottleneck layers when it is used. This would be a very parameter e�cient imple-
mentation of Flat-Skips. In the example above Flat-Skips are only applied on the normal
convolutional layers. Because of that the flatten layer has the same size as the network
without bottleneck layers.
Another approach would be to use the equivalent of a dense block, which are used in the
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original DenseNet and are also mentioned in section 2.1 [26]. When adding more layers to
the network the number of loops grow as well, which leads to an massive increase in the
feature-map depth and an increase in computation costs. When splitting up the network
in blocks, the feature-map depth can be controlled. Only feature-maps of layers which
belong to the same block will be concatenated. In a deep LDN with a block size of 5 layers,
the first convolutional layer in this block gets looped 3 more times. The second layer gets
looped two times and the third layer only once. The output of the last convolutional
layer of the block goes to the first convolutional layer of the next block. Another way
to utilize blocks in LDNs and to make the network more parameter e�cient is to only
use Flat-Skips at the end of a block. That means, that not every convolutional layer is
directly connected to the flatten layer, however, just to the last convolutional layer of a
block.

7.2 LDNs without pooling
As mentioned several times in this work no padding was used during a convolutional
operation in a LDN, resulting in a reduction of the dimensions. This was done in order to
minimize the use of pooling operations, since pooling is primarily used for down-sampling.
When using pooling, information about the exact position of a feature gets lost. This
is problematic, since the relative position between features can be very important to
correctly detect and classify objects and therefore pooling layers should be avoided [43]
[9] [60]. The reason why pooling was used during this work was mainly to reduce the
computational costs. However, it would be interesting to build LDNs which only relay on
convolutional operations for down-sampling. Using an ensemble of CNNs which do not
use pooling layers achieved state of the art performance on the MNIST dataset, reaching
an accuracy of 99.91% [7]. By doing so the e�ects of the loops might be reinforced. When
considering, that loops can have a shifting e�ect, which gets stronger with each loop, more
detailed features could be detected.
In LDNs only a single convolutional layer gets looped. In Loopy Neural Networks the
whole convolutional part of the network gets looped [29]. However, what happens when
any number of layers gets looped? When using a neural network which is not using
any pooling layers, looping multiple layers might be easier to implement. Considering
a LDN which consist of 13 layers and is not using any pooling layers, it is possible to
loop the first and the second convolutional layer five times, for example, and still be
able to concatenate all the generated feature-maps with the corresponding layer. This
method could be extended so that any combination of loops are used in a single LDN.
The number of possible loops will be limited to the e�ective depth of the network. It would
be particularly interesting what e�ect this approach would have on the performance of
the network and what e�ects looping multiple convolutional layers have on the generated
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feature-maps. This approach would be extremely parameter e�cient, while still being
able to detect complex features. However, the backpropagation of such network might be
more di�cult to implement, since the standard backpropagation through time cannot be
applied here without doing some adaptations.
Since a ordinary convolutional operation reduces the dimensions of feature-maps just
slightly (in the case of a 3 ◊ 3 convolution, the dimensions get reduced by two), there
is the possibility to use a stride greater then one. This can replace the ordinary pooling
operation. When the stride is selected properly information of the whole feature-map is
considered. Considering a 3◊3 convolution with stride two (depending on the dimensions
of the input feature-maps), the dimensions of the resulting feature-maps could be up to
80% smaller. Using a stride of three up to 89% [48] [30].

æ

Figure 7.1: 3◊3 convolution with stride 2 on an input with the dimensions 7◊7; resulting
in a 3 ◊ 3 matrix

In the figure above an example of a 3 ◊ 3 convolution is given, which uses a stride of
2. That means, that the filter is moved two steps instead of just one, which results in a
bigger reduction of dimensionality and therefore could replace the pooling operation.

7.3 LDNs with bigger filter sizes
Since the AlexNet it is standard to use 3 ◊ 3 convolutions [34]. Because of that in the
experiments in section 5 only 3 ◊ 3 convolutions were used. However, further testing was
done afterwards, where the 3 ◊ 3 convolutions got replaced with 5 ◊ 5 convolutions. This
was done for the 3-layered LDN with Flat-Skips, which with 3 ◊ 3 convolutions achieved
an accuracy of 72.81% on the test data and an accuracy of 76.5% on the training data
of the CIFAR-10 dataset. When using 5 ◊ 5 convolutions an accuracy of 74.64% could
be achieved on the test data and an accuracy 76.7% on the training data using the exact
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same model an the same number of filters per layer (20 - 40 - 80). Again no padding was
used, resulting in a dimension reduction of the feature-maps when applying convolutions.
The exact model looks as follows:

Main Conv 1 (Loops)
Input 32 ◊ 32 ◊ 3 -
Conv 1 5 ◊ 5 ◊ 3 ◊ 20 -
Output 28 ◊ 28 ◊ 20 -
Input 28 ◊ 28 ◊ 20 12 ◊ 12 ◊ 24
Conv 2 5 ◊ 5 ◊ 20 ◊ 40 5 ◊ 5 ◊ 3 ◊ 20
Output 24 ◊ 24 ◊ 40 24 ◊ 24 ◊ 20
Pooling 12 ◊ 12 ◊ 40 12 ◊ 12 ◊ 20
Input 12 ◊ 12 ◊ 60 -
Conv 3 5 ◊ 5 ◊ 60 ◊ 80 -
Output 8 ◊ 8 ◊ 80 -
Flatten 7540 ◊ 1 -
FC 7540 ◊ 10 -
Predicition 10 ◊ 1 -

Table 7.3: 3-layered LoopyDenseNet with Flat-Skips and 5◊5 convolutions for the CIFAR-
10 dataset.

Interestingly the loss is even lower with the 5 ◊ 5 LDN with Flat-Skip, then the loss of
the bigger LDN with Flat-Skips (32 - 64 - 96), which is used in the section 7.1 and uses
3 ◊ 3 convolutions. For completion also the bigger model, which was used in section 7.1,
with 32 filters in the first, 64 in the second and 96 in the third were tested with 5 ◊ 5
convolutions, combining bigger filter sizes with more filters per layer. This results in the
overall best accuracy of 76.62% on the test data and 80.57% on the training data.

Figure 7.2: Accuracy on the test data
of the CIFAR-10 dataset using di�erent
filter sizes and di�erent number of filters
per layer.

Figure 7.3: Loss on the test data of the
CIFAR-10 dataset using di�erent filter
sizes and di�erent number of filters per
layer.
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Figure 7.4: Accuracy on the training
data of the CIFAR-10 dataset using dif-
ferent filter sizes and di�erent number of
filters per layer.

Figure 7.5: Accuracy on the test data
of the CIFAR-10 dataset using di�erent
filter sizes and di�erent number of fil-
ters per layer beginning from the 10-th
epoch.

Because of this high performance of LDNs with 5 ◊ 5 convolutions it would be interesting
to test models with even larger filter sizes. By using bigger filter sizes pooling layers could
be avoided, since they reduce the dimensionality of the feature-maps even more then the
standard 3 ◊ 3 convolution.
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8. Conclusion
In this section the research questions of this thesis will be answered and the most interest-
ing findings will be summarized. All in all, it can be said that simply adding additional
connections does not necessarily make the network better. Depending on the dataset,
more complex structures and operations in the convolutional part of the network can
reduce the accuracy, because the model overfits. This can be seen especially in simpler
classification problems. However, for more complex datasets, additional connections, the
looping of layers and feature-map concatenation seem to increase accuracy and are indeed
beneficial for the performance of the network.

8.1 Research Question 1 - Flat-Skips
Can skip connections, which directly connect each convolutional layer with

the flatten layer improve the performance of CNNs?

Flat-Skips are an easy method to improve the gradient flow of the network. By adding
an additional connection from every convolutional layer to the flatten layer each layer has
a much closer path to the loss. Furthermore, it strengthens feature propagation and it
provides all the feature-maps that get created throughout the convolutional part of the
network to the flatten layer, making more information available for classification. These
properties should be helpful for deeper models which consist of many more layers. How-
ever, since the models tested in this work were all relatively shallow and consisted of few
parameters, Flat-Skips didn’t increase the performance. Only on the CIFAR-10 dataset
it manages to surpass the results of the standard CNN significantly, which indicates, that
additional connections within the network can indeed increase the performance of the
network, however, this depends on the dataset.

8.2 Research Question 2 - Modified DenseNet
Can a dense connectivity pattern combined with Flat-Skips be successfully

applied on small convolutional neural networks and outperform the ordinary

CNN while having comparable computational costs?

In order to be able to create a dense connectivity pattern in a small neural network
similarly to a DenseNet, no padding gets used during convolution, which eliminates the
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need for dense blocks and transition layers [26]. However, in order to still be able to
concatenate feature-maps of di�erent layers an adaptive pooling algorithm was developed.
The adaptive pooling operation can reduce the dimensions of any feature-map to the
desired format. This operation creates a unique solution so that backpropagation can
be applied as with an ordinary pooling operation. Furthermore, adaptive pooling allows
the use of pooling layers within the densely connected convolutional layers, which in
the original DenseNet was not possible [26]. Furthermore, this modified version of the
DenseNet also incorporates Flat-Skips, which should increase the gradient flow.
Despite the success of the DenseNet, applying a dense connectivity pattern on shallow
models does not improve the performance in most cases compared to the standard CNN.
The Fruits-360 dataset is the only dataset, where the modified DenseNet achieved to
significantly outperform the CNN.

8.3 Research Question 3 - LoopyDenseNet
How can convolutional layers be looped in a convolutional neural network

and how does such network perform in comparison to the ordinary CNN?

In this work a new convolutional neural network architecture is proposed which is looping
single convolutional layers in order to create a dense connectivity pattern by concatenat-
ing feature-maps from di�erent layers. The LoopyDenseNet architecture can directly be
applied on any ordinary CNN and no additional parameters were needed. In comparison
to the modified DenseNet which uses adaptive pooling to adjust the feature-map dimen-
sions in order to be able to concatenate them, LDNs achieve the desired feature-map size
by looping convolutions. Because of that LDNs do not have skip connections within the
convolutional part. In order to improve the gradient flow within the LDN Flat-Skips can
be included, which seem to pair well with the loopy architecture. By looping convolu-
tions LDNs are capable of detecting more complex features, while still being extremely
parameter e�cient.
In the empirical part of this work it is shown, that the LDN and the LDN with Flat-Skips
are both capable of achieving higher or similar results as the CNN, while having compa-
rable computational costs. Especially on the CIFAR-10 dataset the LDN with Flat-Skips
outperforms the CNN model significantly, while needing fewer FLOPs in order to achieve
its highest accuracy. Since the classification problem of the CIFAR-10 dataset is much
more di�cult than the other datasets used in this work, this result suggests that convo-
lutional loops could be useful for more complex classification tasks. However, LDNs and
LDNs with Flat-Skips are still capable to achieve similar results as the ordinary CNN on
easier classification task. Furthermore, LDNs can be extremely parameter e�cient.
The LoopyDenseNet architecture was only tested for small networks, due to computa-

University of Leoben 72 Peter Niederl



Chapter 8. Conclusion

tional constraints. When increasing the number of filters per layer it is shown, that the
LDN also achieves higher performance. In future work it would be interesting to build
deep LDNs consisting of many more layers and parameters and test them on more com-
plex datasets. Especially deep LDNs with a looping limit and bottleneck layers could be
a promising network to make further investigations on. Looping limits and 1 ◊ 1 convo-
lutions can both be used to decrease the feature-map depth and make the network more
e�cient. Deep LDNs are particularly interesting since with increasing number of layers
the e�ects of loops should be bigger as well.
With LDNs, Loopy neural networks and Recurrent Convolutional Neural Networks only
a small room of neural networks which utilize convolutional loops in computer vision were
explored. There is still a huge area for further investigations regarding convolutional loops
and feedback mechanics in convolutional neural networks for visual object classification.
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