
Chair of Mechanics

Master's Thesis

Computerassisted Thermodynamics - From
Gibbs energy minimizers to neural

networks

Daniel Schatzl, BSc
June 2022

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute
wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten
wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 08.06.2022

Unterschrift Verfasser/in
Daniel Schatzl

danielschatzl16@gmail.com
Signature

 I

Acknowledgment

First and foremost, I would like to thank my main advisor assoz.Prof. Dipl.-Ing. Dr.mont. Ernst

Gamsjäger who always supported the work on this thesis with his inputs and ideas. I am however

even more grateful that he supported my plans to conduct a research stay at the Colorado School

of Mines in the United States of America, which led to numerous online meetings with a time shift

of eight hours at both ends of the meeting.

I am also very thankful for the participation of O.Univ.-Prof. Dipl.-Ing. Dr.techn. Paul O’Leary who

provided very interesting ideas on how the results and approaches could be enhanced.

Lastly, my thanks also go to the Austrian Marshall Plan Foundation, the Colorado School of Mines,

and there especially to Dr. Hua Wang and Mary Cook. The Austrian Marshall Plan Foundation sup-

ported my aim to conduct research in the United States with a scholarship. I am very grateful to

Dr. Wang who accepted to collaborate with me after only seeing my research proposal. He pro-

vided many valuable ideas on how the neural network implementations can be improved. Mary

Cook of the International Office of the Colorado School of Mines was the one person that helped

me most with my plan to come to Golden. She helped with all the formalities that occur when

someone moves to a foreign country, connected me to Dr. Wang, and helped me find housing.

Without her help, I probably could not have come to Mines.

 II

Abstract

In several real-world scenarios (e.g., in steel production), fast decisions about phases that may

occur at certain temperatures and compositions in chemical systems are required. The classical

approach of minimizing the Gibbs energy of the system numerically can be slow, wherefore this

work aims to train and use neural networks to calculate phase equilibria for a given system. It is

assumed that once trained, a neural network can provide answers quicker than the classical ap-

proach.

It is the goal of this work to approximate phase equilibria in unary and binary systems with neural

networks. For this aim, Gibbs energies, entropies, enthalpies, and heat capacities of unary systems

are approximated. The network for predicting binary equilibria directly uses analytical Gibbs en-

ergy functions to determine the equilibrium compositions.

Even though the approach for the unary system can be applied to approximate the Gibbs energy,

entropy, enthalpy, and heat capacity functions of a unary system, it does not provide faster results

for calculating phase equilibria when compared to classical methods. However, the presented ap-

proach for the binary equilibrium calculation is faster using neural networks than numerical

methods. The approach using neural networks is an approximation and does not allow for exact

calculations of the equilibrium compositions. It works best when applied to systems where the

Gibbs energy curves do not have inflection points. This fact can be limiting for real-world applica-

tions. Therefore, an additional method to categorize phases is presented, which can classify meas-

urements (e.g., for the heat capacity) into the phases the measurements are taken from. The pre-

sented network is trained on 78 pure elements. It can however easily be adapted to classify phases

of binary systems by training it on the data of the desired systems.

Whilst the calculation of binary phase equilibria using neural networks is faster than using nu-

merical methods, the approach has restrictions. To make fast decisions about the phases present

in a system, the approach to classifying measurements rather than calculating equilibrium condi-

tions directly is more reliable.

 III

Kurzfassung

In vielen realen Szenarien wie z. B. in der Stahlproduktion sind schnelle Entscheidungen darüber,

welche Phasen bei bestimmten Temperaturen und Zusammensetzungen in chemischen Systemen

auftreten können, erforderlich. Der klassische Ansatz, die Gibbsenergie des Systems numerisch zu

minimieren, ist oft langsam. Daher ist es das Ziel dieser Arbeit, neuronale Netze zu trainieren,

welche verwendet werden, um Phasengleichgewichte für ein bestimmtes System zu berechnen.

Es wird davon ausgegangen, dass ein trainiertes neuronales Netz schneller Antworten liefern

kann als der klassische Ansatz.

Das Ziel dieser Arbeit ist es, Phasengleichgewichte in unären und binären Systemen mit neurona-

len Netzen vorherzusagen. Zu diesem Zweck werden Gibbsenergien, Entropien, Enthalpien und

Wärmekapazitäten von unären Systemen approximiert. Das Netzwerk zur Vorhersage binärer

Gleichgewichte verwendet direkt analytische Gibbs-Energie-Funktionen zur Bestimmung der

Gleichgewichtszusammensetzungen.

Obwohl der Ansatz für das unäre System zur Annäherung an die Gibbs-Energie-, Entropie-, Ent-

halpie- und Wärmekapazitätsfunktionen eines unären Systems angewendet werden kann, liefert

er im Vergleich zu klassischen Methoden keine schnelleren Ergebnisse für die Berechnung von

Phasengleichgewichten. Der vorgeschlagene Ansatz für die Berechnung des binären Gleichge-

wichts mit neuronalen Netzen ist jedoch schneller als mit numerischen Methoden. Der Ansatz mit

neuronalen Netzen ist allerdings eine Annäherung und ermöglicht keine exakte Berechnung der

Gleichgewichtszusammensetzungen. Er funktioniert am besten, wenn er auf Systeme, bei denen

die Gibbs-Energiekurven keine Wendepunkte aufweisen, angewandt wird. Dies kann für reale An-

wendungen einschränkend sein. Daher wird eine zusätzliche Methode zur Kategorisierung von

Phasen vorgestellt, mit der Messwerte (z. B. für die Wärmekapazität) jenen Phasen zugeordnet

werden können, aus denen die Messungen entnommen wurden. Das vorgestellte Netz wurde auf

78 reine Elemente trainiert. Es kann jedoch leicht angepasst werden, um Phasen von binären Sys-

temen zu klassifizieren, indem es mit den Daten der gewünschten binären Systeme trainiert wird.

Die Berechnung binärer Phasengleichgewichte mit Hilfe neuronaler Netze ist zwar schneller als

mit numerischen Methoden, der Ansatz hat aber Grenzen. Um schnelle Entscheidungen über die

in einem System vorhandenen Phasen zu treffen ist es zuverlässiger, Messungen zu klassifizieren,

anstatt die Gleichgewichtsbedingungen direkt zu berechnen.

 IV

Table of Contents

1 Introduction ... 1

2 Problem definition .. 2

3 Theoretical background and literature survey ... 3

3.1 Thermodynamics – a brief overview ... 3

3.1.1 Laws of thermodynamics .. 3

3.1.2 Thermodynamic properties ... 4

3.1.3 Thermodynamic functions derived from the Gibbs energy ... 7

3.1.4 Phase equilibria ... 8

3.1.5 Thermodynamic Databases ... 12

3.2 Basics of neural networks and machine learning ... 13

3.2.1 Types of machine learning ... 13

3.2.2 General idea and types of neural networks .. 14

3.2.3 Training a neural network ... 18

3.2.4 Generalization and dataset splits .. 19

3.2.5 Neural networks in Python .. 19

3.3 Applications of neural networks to thermodynamics .. 19

3.3.1 Neural networks applied to unary systems ... 20

3.3.2 Neural networks applied to binary systems .. 21

4 Methods and implementations ... 23

4.1 SGTE data handling – sgte ... 23

4.1.1 Data extraction and ordering .. 23

4.1.2 Dataset creation .. 24

4.1.3 Stable properties .. 25

4.2 Adaption of the Länge network – laenge .. 26

4.2.1 Goal and workflow .. 26

4.2.2 Dataset logic ... 26

4.2.3 Network architecture ... 27

4.2.4 Results ... 27

4.2.5 Discussion & Conclusions ... 30

4.3 Function approximation for unary systems – thermonet ... 31

4.3.1 Goal and workflow .. 31

4.3.2 Dataset logic ... 32

4.3.3 Network architecture ... 32

4.3.4 Results ... 33

4.3.5 Discussion & Conclusions ... 39

 V

4.4 Equilibrium prediction for binary systems – binary predictor .. 40

4.4.1 Goal and workflow .. 40

4.4.2 Dataset logic ... 42

4.4.3 Network architecture ... 43

4.4.4 Description of the algorithm ... 44

4.4.5 Results ... 48

4.4.6 Discussion & Conclusions ... 54

4.5 Measurement data classification – thermoclassifier ... 55

4.5.1 Goal and workflow .. 55

4.5.2 Dataset logic ... 56

4.5.3 Network architectures ... 58

4.5.4 Results ... 60

4.5.5 Discussion & Conclusions ... 65

5 General discussion, conclusions & outlook ... 66

6 Appendix ... 68

6.1 Predicted phase diagrams for Lukas-Petzow-Mager functions .. 68

6.2 Code ... 88

7 Literatur .. 89

 VI

List of Figures

Figure 3.1: Phase diagram for a unary system [8] .. 10
Figure 3.2: Phase diagram of a mixture of two liquids [8] .. 11
Figure 3.3: Solid-liquid mixture with eutectic [8] ... 11
Figure 3.4: A node in a neural network [4] .. 15
Figure 3.5: Feed forward neural network [18] .. 15
Figure 3.6: Network architecture [4] .. 20
Figure 4.1: Excel table for the SGTE coefficients of iron (Fe) ... 23
Figure 4.2: Basic workflow of the SGTEHandler.. 24

Figure 4.3: Gibbs energy of iron over the temperature.. 25
Figure 4.4: Basic workflow of the rebuild of Länge’s network ... 26
Figure 4.5: top-left: approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation

of heat capacity, bottom-right: approximation of entropy ... 28
Figure 4.6: Basic workflow of the ThermoNet .. 32
Figure 4.7: Network architecture of the ThermoNet ... 33
Figure 4.8: approximation of the properties for the BCC phase of iron; top-left: approximation of enthalpy, top-right:

approximation of Gibbs energy, bottom-left: approximation of heat capacity, bottom-right: approximation of entropy

 ... 34
Figure 4.9: approximation of the properties for the FCC phase of iron; top-left: approximation of enthalpy, top-right:

approximation of Gibbs energy, bottom-left: approximation of heat capacity, bottom-right: approximation of entropy

 ... 35
Figure 4.10: approximation of the properties for the BCC phase of iron when trained on iron and carbon data; top-left:

approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation of heat capacity,

bottom-right: approximation of entropy .. 37
Figure 4.11: approximation of the properties for the graphite phase of carbon when trained on iron and carbon data;

top-left: approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation of heat

capacity, bottom-right: approximation of entropy .. 38
Figure 4.12: Basic workflow of the binary predictor .. 42
Figure 4.13: Examples for function pairs compiled using the Mager-Lukas-Petzow rules; left: 𝐴diff = 0, 𝐴sum = 0,

right: 𝐴diff = 1, 𝐴sum = 3 ... 43
Figure 4.14: Network architecture of the binary predictor (‘ refers to a and ‘’ refers to b in previous equations) 44
Figure 4.15: Gibbs energy curves for an arbitrary system, where the solid phase is stable everywhere 45
Figure 4.16: Scaled Gibbs energy curves ... 45
Figure 4.17: Outputs of both networks .. 46
Figure 4.18: Difference between the network outputs to find the intersection points .. 46
Figure 4.19: Common tangent found for the example system .. 48

Figure 4.20: Training losses of each epoch; left: network 1 (trained to find function 𝑥𝑎 = 𝑥𝑎𝑥𝑏 s.t. the slopes are equal),

right: network 2 (trained to find function 𝑥𝑎 = 𝑥𝑎𝑥𝑏 s.t. the chemical potentials are equal) ... 50
Figure 4.21: Predicted and true phase diagrams of the Au-Ag system .. 50
Figure 4.22: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 0 .. 52
Figure 4.23: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 0 .. 52
Figure 4.24: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 2 .. 53

Figure 4.25: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 1 .. 53
Figure 4.26: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 6 .. 54
Figure 4.27: Phase diagrams that can be predicted by the algorithm: green: can be predicted well, yellow: can be

predicted roughly, red: cannot be predicted well, no symbol: invalid combination ... 54
Figure 4.28: Basic workflow of the measurement data classification .. 56
Figure 4.29: Packing of data .. 57

 VII

Figure 4.30: Network architecture of the element classification .. 58
Figure 4.31: Network architecture of the phase classification ... 59

Figure 4.32: Left: Mean loss per epoch over all epochs, right: Training accuracies over all epochs .. 62
Figure 6.1: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = −2 ... 68
Figure 6.2: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 0 ... 68
Figure 6.3: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 2 ... 69
Figure 6.4: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 3 ... 69
Figure 6.5: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 4 ... 69

Figure 6.6: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 5 ... 70
Figure 6.7: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 6 ... 70
Figure 6.8: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 8 ... 70
Figure 6.9: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 10 .. 71

Figure 6.10: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 12 ... 71
Figure 6.11: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 0 .. 71
Figure 6.12: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 1 .. 72
Figure 6.13: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 2 .. 72
Figure 6.14: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 3 .. 72
Figure 6.15: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 4 .. 73

Figure 6.16: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 5 .. 73
Figure 6.17: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 6 .. 73
Figure 6.18: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = −2 .. 74
Figure 6.19: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 0 .. 74

Figure 6.20: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 1 .. 74
Figure 6.21: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 2 .. 75
Figure 6.22: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 3 .. 75
Figure 6.23: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 4 .. 75
Figure 6.24: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 5 .. 76
Figure 6.25: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 6 .. 76
Figure 6.26: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 8 .. 76
Figure 6.27: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 10 ... 77
Figure 6.28: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 12 ... 77
Figure 6.29: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 0 .. 77
Figure 6.30: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 1 .. 78
Figure 6.31: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 2 .. 78
Figure 6.32: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 3 .. 78
Figure 6.33: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 4 .. 79
Figure 6.34: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 5 .. 79
Figure 6.35: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 6 .. 79
Figure 6.36: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = −2 .. 80
Figure 6.37: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 1 .. 80
Figure 6.38: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 2 .. 80
Figure 6.39: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 3 .. 81
Figure 6.40: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 4 .. 81
Figure 6.41: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 5 .. 81
Figure 6.42: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 6 .. 82
Figure 6.43: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 8 .. 82
Figure 6.44: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 10 ... 82
Figure 6.45: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 12 ... 83

Figure 6.46: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 1 .. 83

 VIII

Figure 6.47: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 2 .. 83
Figure 6.48: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 3 .. 84

Figure 6.49: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 4 .. 84
Figure 6.50: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 5 .. 84
Figure 6.51: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = −2 ... 85
Figure 6.52: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 0 .. 85
Figure 6.53: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 1 .. 85
Figure 6.54: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 3 .. 86

Figure 6.55: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 4 .. 86
Figure 6.56: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 5 .. 86
Figure 6.57: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 6 .. 87
Figure 6.58: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 8 .. 87

Figure 6.59: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 10.. 87
Figure 6.60: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 12.. 88

 IX

List of Tables

Table 3.1: Common activation functions [21] ... 16
Table 4.1: LaengeDataset parameters .. 28
Table 4.2: LaengeNet network hyperparameters ... 29
Table 4.3: Results of the learned parameters in the ChenSundman function .. 29
Table 4.4: Training routine hyperparameters for the LaengeNet ... 30
Table 4.5: ThermoDatasetNew parameters for training on pure iron data .. 35
Table 4.6: ThermoNet network hyperparameters .. 36
Table 4.7: Training routine hyperparameters for the ThermoNet .. 36

Table 4.8: ThermoDatasetNew parameters for training on iron and carbon data .. 38
Table 4.9: Tangent candidates .. 47
Table 4.10: Rounded composition values with the minimum slope differences ... 47
Table 4.11: FunctionPairDataset parameters for training .. 49
Table 4.12: Neural network hyperparameters .. 49
Table 4.13: Training hyperparameters .. 49
Table 4.14: Statistics of the comparison between predicted and real phase diagram for the Au-Ag system...................... 51

Table 4.15: DatasetCreator hyperparameters .. 60
Table 4.16: Neural network hyperparameters (see also Figure 4.30) .. 61
Table 4.17: Hyperparameters for the training routine .. 61

Table 4.18: DatasetCreator hyperparameters .. 63
Table 4.19: Neural network hyperparameters (see also Figure 4.30) .. 63
Table 4.20: Hyperparameters for the training routine .. 63
Table 4.21: DatasetCreator hyperparameters .. 64

 X

Notation

In general, this work tries to stick to the common notation used in both thermodynamics and ma-

chine learning/neural networks literature. Some variable names are used in both sciences.

Types of variables

The following notation convention is valid for both the thermodynamics and machine learning

part of this work.

Normal faced text – both upper- and lower-

case letters
Scalar values

Bold-faced text – lower-case letters Vectors

Bold-faced text – upper-case letters Matrices

Thermodynamics

𝑄 amount of heat

𝑈 internal energy

𝑊 mechanical energy

𝐻 enthalpy

𝐺 Gibbs energy

𝑆 entropy

𝐶𝑝 heat capacity at constant pressure

𝑇 temperature

𝑝 pressure

𝑉 volume

𝑛 mole number

𝑥 mole fraction

Machine learning and neural networks

W Neural network weight matrix

b Neural network bias vector

 XI

x Neural network (layer) input

�̂�(𝒙) Neural network output given the input x

s Neural network pre-activation

a Neural network activation

L Neural network loss

 Introduction 1

1 Introduction

In recent years, the terms Artificial Intelligence (AI) and Machine Learning gained immense pop-

ularity. The reason for this is simple: AI-driven solutions are changing our world and the way we

live and will do so even more in the future. Banking and retail [1], applications in the life sciences,

where drugs are developed, diagnostics are made or clinical trials are enhanced using AI technol-

ogies [2] or gaming like AlphaGo, developed by the company DeepMind [3], are just a few exam-

ples, where AI and Machine Learning already influence our lives.

Also in the field of thermodynamics, attempts were made to investigate the possible enhance-

ments machine learning techniques could make. For example, Länge ([4]) approximated the ther-

modynamic functions of Gibbs energy, entropy, enthalpy, and heat capacity of different phases of

pure iron using an artificial neural network. Other works (e.g., [5–7]) used neural networks to

predict phase equilibria in binary systems (in form of the equilibrium composition) directly.

In this work, thermodynamic problems are investigated by means of neural networks and ma-

chine learning techniques. The main goal is to determine which phases occur at certain tempera-

tures and compositions in a chemical system. To do so, phase equilibria must be calculated. How-

ever, calculating phase equilibria numerically can be slow. It is assumed that once trained, neural

networks can make fast predictions on which phases are present.

 Problem definition 2

2 Problem definition

The diffusion and phase transformation processes in materials are driven by the tendency to

minimize a thermodynamic potential. In this case, the thermodynamic potential to be minimized

is the Gibbs energy 𝐺 for a certain temperature 𝑇 at constant pressure 𝑝. Gibbs energy minimizers

are commonly used to predict phase equilibria and chemical compositions of the equilibrated

phases. These Gibbs energy minimizers have to be designed in such a way that they provide the

local equilibrium conditions in each elemental cell with respect to time to describe dissipative

processes like heat transfer, diffusion of components, or phase transformations. It is expected that

strategies involving machine learning may help to decrease the time to compute phase equilibria.

To check this assumption, equilibria are calculated in both ways, based on classical methods and

using a neural network. In particular, the temperature-dependent thermodynamic functions (𝐺,

𝑆, 𝐻, 𝐶𝑝) of pure substances (e.g., Fe) should be approximated based on a neural network. As a

prerequisite to this task, thermodynamic data have to be compiled from the literature. These data

will serve as training and testing data for the neural network. Eventually, comprehensive tests

have to demonstrate that the network works well within its range of application.

Furthermore, it is planned to apply machine learning methods to calculate equilibria in binary

systems, e.g., the solidus and liquidus curves in the Au-Ag system as well as in other systems.

Again, the Gibbs energy has to be minimized, resulting in the equilibrium compositions that fulfill

the condition of equality of the chemical potentials of the phases with respect to each component.

In addition, it is planned to classify elements and phases based on thermodynamic data.

 Theoretical background and literature survey 3

3 Theoretical background and literature survey

3.1 Thermodynamics – a brief overview

3.1.1 Laws of thermodynamics

The laws of thermodynamics are essential to understanding and deriving the most important

thermodynamic properties. But beyond that, the definition of temperature, the energy conserva-

tion, the introduction of entropy, and the inability to reach zero Kelvin within a finite number of

steps are the foundations for a scientific description of processes occurring in our universe. For

further reference, the zeroth, first, second, and third laws of thermodynamics are listed briefly in

the following.

Zeroth law of thermodynamics

The state of thermodynamic equilibrium is characterized by uniform temperature in an isolated

system. Whilst the system is not in equilibrium, there exist irreversible processes that drive the

system towards equilibrium. At the equilibrium, those irreversible processes vanish and no fur-

ther changes, neither physical nor chemical, occur in the system. The zeroth law of thermodynam-

ics says, that if there exists a system A that is in equilibrium with a system B and system B is in

equilibrium with a system C, then also system A is in equilibrium with system C. [8]

First law of thermodynamics

In [9], Planck formulated the first law of thermodynamics as follows [8]:

“It is in no way possible, either by mechanical, thermal, chemical, or other devices, to obtain perpet-

ual motion, i.e. it is impossible to construct an engine which will work in a cycle and produce contin-

uous work, or kinetic energy, from nothing.” [9]

Considering closed systems, the first law of thermodynamics can be formulated as [10]:

𝑈2 − 𝑈1 = 𝑄12 + 𝑊12 (3.1)

Whereas indices 1 and 2 denote the transition from an initial state 1 to a final state 2.

This equation can also be written in the differential form [8]:

d𝑈 = d𝑄 + d𝑊 (3.2)

The right side of the equation depends on sign conventions. Moran et al [11] for example formu-

late equation (3.2) using a – sign instead of the + sign. For consistency, this work will use the sign

convention used in equations (3.1) and (3.2).

In a closed system, d𝑊 is equal to the mechanical work due to volume change and can be written

as:

d𝑊 = −𝑝d𝑉 (3.3)

 Theoretical background and literature survey 4

Second law of thermodynamics

Clausius formulated the second law of thermodynamics as follows:

“It is impossible for any system to operate in such a way that the sole result would be an energy

transfer by heat from a cooler to a hotter body.” [11]

For a full cycle in a closed system and reversible processes, the second law of thermodynamics

can be formulated by introducing the entropy 𝑆 [8]:

d𝑆 =
d𝑄

𝑇
, ∮ d𝑆 = ∮

d𝑄

𝑇
= 0 (3.4.1)

For irreversible processes, the equal sign is replaced by an inequality [8]:

d𝑆 >
d𝑄

𝑇
, ∮ d𝑆 = 0, ∮

d𝑄

𝑇
< 0 (3.4.2)

Using the Clausius inequality, these equations can be formulated in a very general way [11]:

∮ (
∂𝑄

𝑇
)

𝑏
= −σ𝑐𝑦𝑐𝑙𝑒 (3.5)

Whereas the index b denotes that the integrand is evaluated on the boundary of the system. Σ𝑐𝑦𝑐𝑙𝑒

can take the values [11]:

σ𝑐𝑦𝑐𝑙𝑒 = 0 reversible process

σ𝑐𝑦𝑐𝑙𝑒 > 0 irreversible process

σ𝑐𝑦𝑐𝑙𝑒 < 0 impossible

Third law of thermodynamics

The third law of thermodynamics is often also referred to as Nernst heat theorem. Nernst formu-

lated the law as:

“At the absolute zero of temperature the entropy of every chemically homogeneous solid or liquid

body has a zero value.” [8]

Mathematically formulated, the third law is [8]:

𝑆 → 0 𝑎𝑠 𝑇 → 0𝐾 (3.6)

3.1.2 Thermodynamic properties

Entropy

The term entropy was already introduced in 3.1.1. The change of the entropy d𝑆 can be formulated

by distinguishing between two different increments in the change of entropy d𝑒𝑆 and d𝑖𝑆 as:

d𝑆 = d𝑒𝑆 + d𝑖𝑆 (3.7)

 Theoretical background and literature survey 5

Therein, d𝑒𝑆 is the system’s change of entropy due to the exchange of energy and matter, and d𝑖𝑆

the change of entropy due to irreversible processes within the system. d𝑒𝑆 can take positive as

well as negative values, d𝑖𝑆 on the other hand must always be equal to or greater than 0. [8]

Using equation (3.7) in equation (3.4.1) yields:

∮ d𝑆 = ∮ d𝑒𝑆 + ∮ d𝑖𝑆 = 0

From the condition that d𝑖𝑆 ≥ 0 follows:

∮ d𝑒 𝑆 = ∮
d𝑄

𝑇
≤ 0 (3.8)

This equation says that any real system that runs through a cycle of operations cannot return to

its initial state without increasing the entropy of its surroundings (often referred to as the “uni-

verse”). [8]

Enthalpy

The thermodynamic quantity 𝑈 + 𝑝𝑉 is a state function, specified by the state variables

𝑈, 𝑝, and 𝑉, that often occurs in this form in thermodynamic equations. Therefore, this property

was given a name: the enthalpy. [8, 11]

𝐻 = 𝑈 + 𝑝𝑉 (3.9)

The enthalpy is associated with an extremum principle and reaches its minimum at the equilib-

rium when the entropy 𝑆 and the pressure 𝑝 are kept constant. To find the minimum, the change

of enthalpy must be taken into consideration:

d𝐻 = d𝑈 + 𝑉d𝑝 + 𝑝d𝑉

As the pressure 𝑝 is constant when the enthalpy reaches its minimum, this term simplifies to:

d𝐻 = d𝑈 + 𝑝d𝑉

According to equations (3.2) and (3.3), the right-hand side of the above equation is the change of

heat 𝑑𝑄.

d𝐻 = d𝑈 + 𝑝d𝑉 = d𝑄

From equation (3.8) follows, that d𝑄 = 𝑇d𝑒𝑆, which, making furtherly use of equation (3.7) yields:

d𝑄 = 𝑇(d𝑆 − d𝑖𝑆). For the enthalpy therefore follows:

d𝐻 = 𝑇d𝑆 − 𝑇d𝑖𝑆

As for the enthalpy to reach its minimum, the total entropy 𝑆 is fixed (d𝑆 = 0). Therefore, the

change of enthalpy is:

d𝐻 = −𝑇d𝑖𝑆 ≤ 0 (3.10)

 Theoretical background and literature survey 6

More details can be found in the textbook by Kondepudi and Prigogine [8].

Gibbs energy

The Gibbs energy is a thermodynamic potential, which evolves to a minimum at constant pressure

𝑝 and temperature 𝑇. It is defined as follows: [8, 10, 11]

𝐺 = 𝐻 − 𝑇𝑆 (3.11)

Considering the change of the Gibbs energy, its minimum can be found using the definition of the

enthalpy (equation (3.9)):

d𝐺 = d𝑈 + 𝑝d𝑉 + 𝑉d𝑝 − 𝑇d𝑆 − 𝑆d𝑇

As the pressure 𝑝 and temperature 𝑇 need to be constant for the Gibbs energy to reach its mini-

mum, the above equation simplifies to:

d𝐺 = d𝑈 + 𝑝d𝑉 − 𝑇d𝑆

Using equations (3.2), (3.3), and (3.7), this becomes:

d𝐺 = d𝑄 − 𝑝d𝑉 + 𝑝d𝑉 − 𝑇d𝑒𝑆 − 𝑇d𝑖𝑆

As d𝑒𝑆 =
d𝑄

𝑇
, the change of the Gibbs energy can finally be written as:

d𝐺 = −𝑇d𝑖𝑆 ≤ 0 (3.12)

The Gibbs energy 𝐺 is a minimum at equilibrium, as the irreversible processes that always de-

crease the Gibbs energy of the system, vanish. Details can be found in the textbook of Kondepudi

and Prigogine [8].

Heat capacity

The heat capacity is defined as the ratio of the heat absorbed by the increase in temperature:

𝐶 =
d𝑄

d𝑇
(3.13)

At constant volume respectively constant pressure, the heat capacities are called 𝐶𝑉 and 𝐶𝑝, re-

spectively. [8]

Following equations (3.1), (3.3), and (3.9), the change of enthalpy is equal to the change of heat,

wherefore 𝐶𝑝 can be defined as [11]:

𝐶𝑝 = (
d𝐻

d𝑇
)

𝑝
(3.14)

Chemical potential

In the general case of a multi-component system, the Gibbs energy is not only a function of the

temperature and pressure but also of the number of moles of each component [11]:

 Theoretical background and literature survey 7

𝐺 = 𝐺(𝑇, 𝑝, 𝑛1, 𝑛2, … , 𝑛𝑗) (3.15)

The Gibbs energy can then also be written as [11]:

𝐺 = ∑ 𝑛𝑖 (
∂𝐺

∂𝑛𝑖
)

𝑇,𝑝,𝑛𝑙

𝑗

𝑖=1

(3.16)

The partial derivative (
∂𝐺

∂𝑛𝑖
)

𝑇,𝑝,𝑛𝑙

 is given the name chemical potential μ𝑖 with respect to compo-

nent 𝑖 and is defined as follows [11]:

μ𝑖 = (
∂𝐺

∂𝑛𝑖
)

𝑇,𝑝,𝑛𝑙

(3.17)

Alternatively, this equation can be written using the activity 𝑎𝑖 of a compound 𝑖, which was first

introduced by Lewis [8]:

μ𝑖(𝑝, 𝑇) = μ𝑖(𝑝0, 𝑇) + 𝑅𝑇 𝑙𝑛(𝑎𝑖) (3.18)

There, 𝑝0 is a known pressure value.

3.1.3 Thermodynamic functions derived from the Gibbs energy

Entropy

Substituting equation (3.9) into equation (3.11) gives:

𝐺 = 𝑈 + 𝑝𝑉 − 𝑇𝑆

The total differential d𝐺 results in

d𝐺 = d𝑈 + 𝑉d𝑝 + 𝑝d𝑉 − 𝑇d𝑆 − 𝑆d𝑇

Using equation (3.7), this can also be written as:

d𝐺 = d𝑈 + 𝑉d𝑝 + 𝑝d𝑉 − 𝑇d𝑒𝑆 − 𝑇d𝑖𝑆 − 𝑆d𝑇

when considering the change of the Gibbs energy. Making use of the first law of thermodynamics

and specifically equations (3.2) and (3.3), d𝑈 + 𝑝d𝑉 = d𝑄. According to the second law of ther-

modynamics, also 𝑇d𝑒𝑆 = d𝑄. For reversible processes, d𝑖𝑆 = 0 [8]. What therefore remains is:

d𝐺 = 𝑉d𝑝 − 𝑆d𝑇

Taking the derivative of the above equation with respect to temperature at constant pressure

gives the negative entropy, which, according to the second law of thermodynamics, is always neg-

ative (see e.g., [11]):

(
∂𝐺

∂𝑇
)

𝑝
= −𝑆 < 0 (3.19)

 Theoretical background and literature survey 8

Enthalpy

The Gibbs-Helmholtz equation, where the enthalpy 𝐻 is related to Gibbs energy 𝐺, is derived by

substituting equation (3.19) for the entropy in equation (3.11),

𝐺 = 𝐻 + (
∂𝐺

∂𝑇
)

𝑝
𝑇

and arriving at:

∂

∂𝑇
(

𝐺

𝑇
) = −

𝐻

𝑇2
(3.20)

Details can e.g. be found in the textbook of Kondepudi and Prigogine [8].

Heat capacity

The heat capacity 𝐶𝑝 at constant pressure relates to the Gibbs energy through the following equa-

tion [10]:

𝐶𝑝 = −𝑇 (
𝜕2𝐺

∂𝑇2)
𝑝

(3.21)

This can be derived from equation (3.14) and the Gibbs-Helmholtz equation (3.20):

𝐶𝑝 = (
d𝐻

d𝑇
)

𝑝
, 𝐻 = −𝑇2

∂

∂𝑇
(

𝐺

𝑇
)

𝐶𝑝 = [−2𝑇
∂

∂𝑇
(

𝐺

𝑇
) − 𝑇2

∂2

∂𝑇2
(

𝐺

𝑇
)]|

𝑝

=

= [−2𝑇 (
𝜕𝐺 ∂𝑇⁄

𝑇
−

𝐺

𝑇2) − 𝑇2
∂

∂𝑇
(

𝜕𝐺 ∂𝑇⁄

𝑇
−

𝐺

𝑇2)]|
𝑝

=

= [2
𝐺

𝑇
− 2

∂𝐺

∂𝑇
− 𝑇2 (

𝜕2𝐺 𝜕𝑇2⁄

𝑇
−

𝜕𝐺 𝜕𝑇⁄

𝑇2
−

𝜕𝐺 𝜕𝑇⁄

𝑇2
+ 2

𝐺

𝑇3)]|
𝑝

=

= −𝑇 (
∂2𝐺

∂𝑇2)
𝑝

3.1.4 Phase equilibria

Definition of a phase

In general, thermodynamics knows three states of matter, namely solid, liquid, and gas, which are

often referred to as phases. In addition, several distinct solid, liquid, or gaseous phases can occur

in a thermodynamic system. [8] A precise definition of a phase can be found in [11]:

 Theoretical background and literature survey 9

“The term phase refers to a quantity of matter that is homogeneous throughout in both chemical

composition and physical structure. Homogeneity in physical structure means that the matter is all

solid, or all liquid, or all vapor (or equivalently all gas). A system can contain one or more phases.”

Equilibria and equilibrium conditions

A physical system can either be in the state of equilibrium or non-equilibrium. If the system is not

in equilibrium, there exist irreversible processes which evolve the system towards the state of

equilibrium. These processes can be internal if the system is isolated and therefore not able to

react with its surroundings or in addition also externally if the system is not isolated. Internal

changes include the change of intensive properties as the temperature and the pressure toward

uniform values, which occur in the state of equilibrium. Once these uniform values are reached

(e.g., in the state of equilibrium, the system has uniform temperature), the system is in equilibrium

and the irreversible processes driving the system towards equilibrium vanish. [8, 11]

In the state of equilibrium with constant temperature and pressure, the following must hold [11]:

d𝐺|𝑇,𝑝 = 0 (3.22)

This means the Gibbs energy has an extremum at the point of equilibrium. Using the first and

second laws of thermodynamics as well as the definitions for the enthalpy and the Gibbs energy,

it can be shown that this extremum is a minimum in all cases. [11]

Using the chemical potential, the equilibrium condition can also be written as ([11]):

d𝐺|𝑇,𝑝 = ∑ μ𝑖d𝑛𝑖

𝑗

𝑖=1

= 0 (3.23)

Phase equilibria in unary systems

Depending on the temperature and the pressure, different phases can be stable in a system,

whereas for a phase to be stable, its Gibbs energy must be the minimum of all Gibbs energies of all

phases at the conditions given. At the coexistence line p(T), two phases are present in the unary

system, three phases exist at the triple point. The stability ranges of the phases are often presented

in phase diagrams (see e.g., Figure 3.1), where the pressure is plotted against the temperature and

the lines mark equilibria between two phases. Three phases coexist at the triple point. [8]

 Theoretical background and literature survey 10

Figure 3.1: Phase diagram for a unary system [8]

In an equilibrium of two phases, the chemical potential of the two phases must be the same [8,

11]:

μα = μβ (3.24)

There, the superscripts α and β denote two different phases. Equation (3.24) can be derived from

equation (3.23):

μ𝛼d𝑛𝛼 + μ𝛽d𝑛𝛽 = 0

As the number of moles in a phase can change but not the total amount of moles in the system, the

following must hold [11]:

d𝑛𝛼 = −d𝑛𝛽

Combining the last two equations leads to equation (3.24).

In case there are multiple phases of the same compound at one point, the chemical potentials of

all phases must be the same as well because equation (3.24) must hold for any combination of two

phases in the system. For 𝑝 phases, the equilibrium condition becomes, whereas in compliance

with Gibbs’ phase rule (number of phases + degrees of freedom = components + 2), in this case, p

cannot be greater than 3: [8]

μ𝛼 = μ𝛽 = ⋯ = μ𝑝 (3.25)

Phase equilibria in binary systems

The term mole fraction, which is generally used to describe the thermodynamics of systems of

more than one component, is introduced. The mole fraction 𝑥𝑖 is the number of moles 𝑛𝑖 of com-

ponent 𝑖 relative to the total amount of moles 𝑛 in the system [11]:

𝑥𝑖 =
𝑛𝑖

𝑛
(3.26)

 Theoretical background and literature survey 11

A phase diagram of a binary system can, for example, plot the temperature over the mole fraction

of one component. Figure 3.2 shows a phase diagram of a mixture of two similar liquids a and b

which are in equilibrium with their vapor.

Figure 3.2: Phase diagram of a mixture of two liquids [8]

The phase diagram for a mixture of two solids a and b which are miscible in the liquid phase but

not in the solid can be seen in Figure 3.3. Point E is called the eutectic point. [8]

Figure 3.3: Solid-liquid mixture with eutectic [8]

Similar to the unary system, an equilibrium condition for the chemical potential can be defined

for the binary system [11]:

μa
𝛼 = μa

𝛽
, μb

𝛼 = μb
𝛽 (3.27)

There, the superscripts 𝛼 and 𝛽 denote again two different phases, and the subscripts 𝑎 and 𝑏

denote two different components. This condition can, like in the unary case, be derived from the

fact that the Gibbs energy of the system takes on a minimum in the equilibrium. Also, the total

number of moles in the system cannot change, whereas the number of moles of different phases

of a component can. [11]

The chemical potentials for a binary system can be written as [12]:

 Theoretical background and literature survey 12

μa
𝛼 = 𝐺𝛼 − 𝑥𝛼

𝜕𝐺𝛼

𝜕𝑥𝛼
(3.28.1)

μb
𝛼 = 𝐺𝛼 + (1 − 𝑥𝛼)

∂𝐺𝛼

∂𝑥𝛼
(3.28.2)

μa
𝛽

= 𝐺𝛽 − 𝑥𝛽
∂𝐺𝛽

∂𝑥𝛽
(3.28.3)

μb
𝛽

= 𝐺𝛽 + (1 − 𝑥𝛽)
∂𝐺𝛽

∂𝑥𝛽
(3.28.4)

𝐺𝛼 and 𝐺𝛽 are the Gibbs energies of the respective phases. Using the fact that the chemical poten-

tials of both components must be equal for both phases (equation (3.27)), equations (3.28) be

simplified to:

𝐺𝛼 − 𝑥𝛼
𝜕𝐺𝛼

𝜕𝑥𝛼
= 𝐺𝛽 − 𝑥𝛽

∂𝐺𝛽

∂𝑥𝛽
(3.29.1)

∂𝐺𝛼

∂𝑥𝛼
=

∂𝐺𝛽

∂𝑥𝛽
(3.29.2)

Equation (3.29.2) can be derived from the equilibrium condition for component b. From equation

(3.27) follows:

μb
𝛼 = μb

𝛽

Using equations (3.28.2) and (3.28.4), this can be written as:

𝐺𝛼 + (1 − 𝑥𝛼)
∂𝐺𝛼

∂𝑥𝛼
= 𝐺𝛽 + (1 − 𝑥𝛽)

∂𝐺𝛽

∂𝑥𝛽

This can be reformatted to (using equations (3.28.1) and (3.28.3)):

𝜇𝑎
𝛼 +

𝜕𝐺𝛼

𝜕𝑥𝛼
= 𝜇𝑎

𝛽
+

𝜕𝐺𝛽

𝜕𝑥𝛽

Following equation (3.27) also μa
𝛼 = μa

𝛽
 most hold and therefore equation (3.29.2) can be derived.

3.1.5 Thermodynamic Databases

For this work, different thermodynamic databases are of importance. On the one hand, this is the

FactSage software presented in [13], and on the other hand also the SGTE data for pure elements

of [14]. Given the data of each of the two databases, the minimum Gibbs energy for a certain tem-

perature and pressure can be calculated. Following this, phase equilibria and phase transitions

can be determined.

The FactSage software provides extensive amounts of data not only for pure elements but also for

compounds. For pure elements and compounds, the Gibbs energy, entropy, enthalpy, and heat

capacity over a user-specified temperature range can be retrieved. The data comes in tabular form

 Theoretical background and literature survey 13

and its source for pure elements is the aforementioned SGTE data for pure elements [13]. The

sources for other data in the FactSage software can also be found in chapter 3 of [13].

The SGTE data for pure elements represents the Gibbs energy, entropy, enthalpy, and heat capacity

for 78 elements in the form of functions with constant coefficients in certain temperature ranges.

As the enthalpy and therefore the Gibbs energy have no absolute value, a reference state of

298.15K and a pressure of 1 bar is used for the tabulation of the enthalpy of formation. The Gibbs

energy functions are tabulated using the enthalpy at the reference state and the absolute values

for the entropy. [14]

The functions for the Gibbs energy, entropy, enthalpy, and heat capacity are the following [14]:

𝐺 = 𝑎 + 𝑏 ⋅ 𝑇 + 𝑐 ⋅ 𝑇 ⋅ ln(𝑇) + ∑ 𝑑 ⋅ 𝑇𝑛

𝑆 = −𝑏 − 𝑐 − 𝑐 ⋅ ln(𝑇) − ∑ 𝑛 ⋅ 𝑑 ⋅ 𝑇𝑛−1

𝐻 = 𝑎 − 𝑐 ⋅ 𝑇 − ∑(𝑛 − 1) ⋅ 𝑑 ⋅ 𝑇𝑛

𝐶𝑝 = −𝑐 − ∑ 𝑛 ⋅ (𝑛 − 1) ⋅ 𝑑 ⋅ 𝑇𝑛−1

In these equations, 𝑇 stands for the temperature, 𝑛 are integer values (often 2, 3, or -1, but also

other values are possible and occur). The coefficients 𝑎, 𝑏, 𝑐, and 𝑑 (one 𝑑 value for every unique

𝑛) are listed in the data for different temperature ranges. For elements with magnetic properties

like Fe, an additional magnetic term is added to each of the functions. Also, pressure-dependent

terms are added to the functions of some elements. [14]

Barin [15] presents thermodynamic tables not only for pure elements but also for compounds. For

pure elements, the values slightly differ from the ones obtained from evaluating the SGTE equa-

tions. Therefore, these tables are used to simulate real measurement data and therefore test the

performance of the classification network on data that does not come from the SGTE database.

Phase equilibria (e.g., solidus/liquidus curve in the Ag/Au-system) are calculated by using ther-

modynamic data and the resulting coexistence curves are compared to those obtained by the soft-

ware ThermoCalc [16].

3.2 Basics of neural networks and machine learning

3.2.1 Types of machine learning

Machine Learning is a technology that over the past two decades has become an important field

in computer science [17]. In general, it is a computer system that is programmed to learn the the-

oretical laws of any learning system automatically [18]. It has a very broad spectrum of applica-

tions, including web page ranking for search engines, automatic translations, classification of face

 Theoretical background and literature survey 14

images, speech recognition, and many more [17]. Machine Learning is often divided into three

subcategories: supervised, unsupervised, and reinforcement learning [19].

This work will mostly use supervised learning techniques.

Supervised learning

Supervised machine learning focuses on labeled data. This means, that for every data point, a cor-

rect label exists, which is often assigned to it by humans. The machine learning model’s task is to

correctly learn and predict the label for a data point when only given its features. [19]

Common supervised learning tasks are classification and regression. In classification, the model

learns to classify the input into finite many classes. Regression handles continuous data, whereas

the goal often is to approximate functions from the given data points. [20]

Unsupervised learning

As opposed to supervised learning, which needs labeled data, unsupervised learning does not

work with labeled data. It tries to find a good model by just knowing the structure of the data, but

nothing else. [19]

Common unsupervised learning tasks are clustering, density estimation, or down-projection. In

clustering, as the name suggests, the goal is to divide the data into clusters where data points are

similar. Density estimation tries to determine the data distribution in the input space. Down-pro-

jection aims to reduce the dimensionality of multi-dimensional data into a space, where the data

can be visualized. [20]

Reinforcement learning

Like in unsupervised learning, also in reinforcement learning there are no labels or target values

given. It rather has a so-called agent in a defined environment which can perform certain actions

which change its state. Based on the agent’s current state, it tries to learn the best possible action

for this state. Usually, a reward signal is used to reward or punish the agent for good or bad actions

and tries to use these learnings to make good predictions in the future. [19]

Reinforcement learning is used to learn to play games, for example, Backgammon [20] or the Chi-

nese board game Go, as the company DeepMind showed with AlphaGo which was able to beat the

best Go players in the world [3]. Also, autonomous driving often relies on reinforcement learning

[19].

3.2.2 General idea and types of neural networks

Gurney gives a good definition of neural networks:

“A neural network is an interconnected assembly of simple processing elements, units or nodes,

whose functionality is loosely based on the animal neuron. The processing ability of the network is

stored in the interunit connection strengths, or weights, obtained by a process of adaptation to, or

learning from, a set of training patterns.” [21]

 Theoretical background and literature survey 15

This definition is very general and therefore allows for different kinds of neural networks. There

are many different types of neural network architectures in existence, whereas for this work,

(deep) feed-forward networks will be most important. Therefore, only the idea and theory behind

(deep) feed-forward networks are presented in this chapter.

Basic structure of feed-forward neural networks

In easier words, the definition of neural networks in [21] from above says that a neural network

can take an input and give an output that is adapted to the desired task. The network is made up

of elements called either units, nodes, or also neurons (this work uses the term node(s)), which

are structured in layers. Each node’s input vector is multiplied with a weight matrix before being

added up. Adding a bias term ([20]) to this sum gives the pre-activation, which is passed through

a so-called activation function 𝑓 to build the node’s output. This output can either be the output

of the network or serve as an input for the next layer. Figure 3.4 shows a visualization of an arbi-

trary node. [21]

Figure 3.4: A node in a neural network [4]

Figure 3.5 shows an arbitrary network where each circle marks a node in the network. It consists

of three layers: the input, one hidden, and the output layer. Whilst every network has an input and

an output layer, it can have an arbitrary number of hidden layers. Networks with more than 10

hidden layers are often referred to as deep networks [19]. Also, the number of nodes in a layer is

not restricted and can be as small as one node per layer but also be a large collection of nodes [21].

Figure 3.5: Feed forward neural network [19]

 Theoretical background and literature survey 16

Mathematical representation of neural networks

The above chapter gives a very abstract idea of how neural networks are built. Mathematically,

neural networks can be formulated similarly to [20]. For an arbitrary node 𝑗 in an arbitrary layer

of a neural network with an input vector 𝒙 of length 𝐷, the pre-activation 𝑠𝑗 can be formulated as:

𝑠𝑗 = ∑ 𝑤𝑗𝑖

𝐷

𝑖=1

𝑥𝑖 + 𝑏𝑖 (3.30)

Where 𝑠𝑗 is the entry in the 𝑗th row of the pre-activation vector 𝒔, 𝑤𝑗𝑖 is the entry in the 𝑗th row and

𝑖th column of the weight matrix 𝑾, 𝑥𝑖 the entry in the 𝑖th row of the input vector 𝒙 and 𝑏𝑖 the entry

in the 𝑖th row of the bias vector 𝒃. 𝒔 is called pre-activation because, in the next step, the output of

this matrix-vector multiplication is passed through a (typically non-linear) function called activa-

tion function so that it can represent an extremely large number of prediction mappings [19].

Without a non-linear activation function, a neural network just represents a linear transformation

and would not be able to learn complex tasks [22]. In general, an activation function can be any

function. If the layer is the output layer, depending on the task, different activation functions are

used: for regression problems, the output activation is typically the linear function, for binary

classification, it is the logistic sigmoid function and for multi-class classification, a softmax activa-

tion is used [20]. In hidden layers, also other functions are common as activation functions. Table

3.1 gives an overview of the most used activation functions.

Table 3.1: Common activation functions [22]

Name Function Graph

Linear 𝑓(𝑠) = 𝑠

Sigmoid or Logistic 𝑓(𝑠) =
1

1 + 𝑒−𝑠

 Theoretical background and literature survey 17

Tanh 𝑓(𝑠) = tanh(𝑠) =
𝑒𝑠 − 𝑒−𝑠

𝑒𝑠 + 𝑒−𝑠

ReLU 𝑓(𝑠) = max(0, 𝑠)

Leaky ReLU 𝑓(𝑠) = max(0.1 ⋅ 𝑠, 𝑠)

ELU 𝑓(𝑠) = {
𝑠, 𝑠 ≥ 0
α(𝑒𝑠 − 1), 𝑠 < 0

Softmax 𝑓(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝑗

Applying an activation function 𝑓 to the pre-activation 𝒔 gives the activations 𝒂:

𝑎𝑗 = 𝑓(𝑠𝑗) = 𝑓 (∑ 𝑤𝑗𝑖

𝐷

𝑖=1

𝑥𝑖 + 𝑏𝑖) (3.31)

 Theoretical background and literature survey 18

Where 𝑎𝑗 is the entry in the 𝑗-th row of the activation vector 𝒂. The activation can now be either a

network output or an input to the next layer. In case it is the input to the next layer, the next layer’s

activation looks as follows when the superscripts 1 and 2 denote the number of the layer and 𝑀

is the length of the activation vector of the first layer [20]:

𝑎𝑘
(2) = 𝑓(2) (∑ 𝑤𝑘𝑗

(2)

𝑀

𝑗=1

𝑎𝑗
(1)

+ 𝑏𝑘
(2)

) = 𝑓(2) (∑ 𝑤𝑘𝑗
(2)

𝑀

𝑗=1

𝑓(1) (∑ 𝑤𝑗𝑖
(1)

𝐷

𝑖=1

𝑥𝑖 + 𝑏𝑖
(1)

) + 𝑏𝑘
(2)

) (3.32)

There, 𝑎𝑘 is the entry in the 𝑘-th row of the activation vector 𝒂 of the second layer. This procedure

is continued for every layer there is in the network.

3.2.3 Training a neural network

The goal of a neural network is to find weight matrices 𝑾 and bias vectors 𝒃 that allow the net-

work to approximate the given target with its output as well as possible. To measure how well the

network can do this, loss functions or also called cost functions are used. The loss function gives a

scalar value that is small when the network can approximate the target data well and big when

not. To adjust the network parameters so that this loss is minimized, an algorithm called gradient

descent is used. [23]

It depends on the task, which loss function is used. Even for one task, multiple loss functions can

be applied. For regression tasks, it is common to use the mean squared error loss, where 𝒚𝒊 de-

notes the target vector:

𝐿(𝑾, 𝒃, 𝒙) =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖(𝑥𝑖))

2
𝑛

𝑖=1

(3.33)

In the case of classification, the cross-entropy loss is usually used:

𝐿(𝑾, 𝒃, 𝒙) = − ∑ 𝑦𝑖

𝐶

𝑖=1

log(�̂�𝑖(𝑥𝑖)) (3.34)

There are also other loss functions, these two are however the most commonly used. [24]

To now update the network parameters 𝑾 and 𝒃, the afore-mentioned gradient descent algorithm

is used. It calculates the partial derivatives of the network’s loss with respect to every single net-

work parameter (i.e., every entry in every weight matrix and every bias vector in the network).

The partial derivatives are multiplied with a hyperparameter called learning rate 𝜂 and subtracted

from the original parameter. For an arbitrary weight vector 𝒘𝒌 part of a weight matrix, the update

looks as follows when the updated weight vector is 𝒘𝒌
′ :

𝒘𝒌
′ = 𝒘𝒌 − η

∂𝐿

∂𝒘𝒌

(3.35)

For the bias vector, this works analogously. [23]

 Theoretical background and literature survey 19

This is the most basic update rule, but there are also more sophisticated methods to update neural

network parameters. The update rules, which are often also referred to as optimizers, that are

used in this work and deviate from this basic rule will be introduced in the description of the re-

spective implementation.

The update of the parameters is an iterative process. This means every input is used multiple

times. Between seeing the same input, at least one update (often multiple updates) is made to the

network, leading in the best case to a minimum loss [20]. In this work, one iteration through all

inputs is called an epoch. The number of times the network receives the same input is therefore

called the number of epochs, which is a parameter to be chosen optimally for each training rou-

tine.

To speed up the training process, the inputs are often passed to the network in batches. Such a

batch can contain all input values, whereas the network is evaluated on all input values at once.

More commonly used are batches that contain only parts of the input values at once. [20] For this

work, the number of values in one batch will be referred to as the batch size.

3.2.4 Generalization and dataset splits

The main goal when training a neural network is to be able to generalize the predictions it makes.

This means the network should also be able to make accurate predictions for input data it has not

been trained on. To test the generalization abilities, the dataset is split into a training and a test

set, whereas both sets are generated using the same procedure. During the training phase, the

network is trained using the training set whereas after that its generalization abilities are tested

using the test set. In some cases, also a second split and a so-called validation set are used. The

validation set is used to compare different sets of network parameters and to choose the set which

gives the best performance. [20]

3.2.5 Neural networks in Python

The programming language Python is one of the most used languages to implement neural net-

works. Standard libraries for this purpose are Tensorflow [25] and Pytorch [26]. Both allow the

programmer to easily and efficiently implement the concepts presented above. For the implemen-

tation of this work, Pytorch is used to build neural networks and training routines.

3.3 Applications of neural networks to thermodynamics

As neural networks and machine learning gained popularity over the last years, experiments in

all kinds of fields were made to apply those technologies. Also in thermodynamics, work was done

to discover possible applications. In the following, recent publications regarding the topic of neu-

ral networks and machine learning in thermodynamics are presented.

 Theoretical background and literature survey 20

3.3.1 Neural networks applied to unary systems

In [4], Länge presented an approximation of the thermodynamic functions 𝐺(𝑇), 𝑆(𝑇), 𝐻(𝑇) −

𝐻(𝑇𝑟𝑒𝑓) & 𝐶𝑝(𝑇) of unary systems in a temperature range from 0𝐾 − 6000𝐾 using an artificial

neural network. The paper presents the results of the specific application of the approximation of

above-mentioned functions for pure iron. [4]

Länge used a network consisting of two subnetworks, where each has one hidden layer (Figure

3.6). Whilst the hidden layer of subnetwork 1 (purple in the figure) has only one node, no specifi-

cations are made about the number of nodes in the second subnetwork (orange in the figure). The

networks take as input (𝑥𝑡) temperature values (which can be different for the four functions)

and output an approximation for the Gibbs energy 𝐺(𝑇). For the other functions, Länge made use

of the partial differential equations presented in 3.1.3, which link the entropy, enthalpy, and heat

capacity to the Gibbs energy. Using equations 3.31 and 3.32, the network’s parameters can be re-

used to approximate the derivatives of the Gibbs energy. As the network’s input 𝑥𝑡 are tempera-

ture values and the networks output are Gibbs energy values, the partial derivative of the output

(e.g., equation 3.32) with respect to the input 𝑥𝑡 can be taken. Taking the derivatives according to

the equations presented in 3.1.3 gives the entropy, enthalpy, and heat capacity values as functions

of the network parameters. This can be interpreted as having one network per property but with

shared parameters. Therefore, it would be possible to train a network only on the data of one

function and receive the network for the others at the same time. [4]

Figure 3.6: Network architecture [4]

Both subnetworks use different activation functions. For the first subnetwork, a function that aims

to introduce laws of physics into the network is used [4]:

𝑓𝑎(𝑠) = 𝐸0 +
3

2
𝑅θ𝐸 + 3𝑅𝑠 log(1 − 𝑒−θ𝐸/𝑠) −

1

2
𝑎𝑠2 −

1

6
𝑏𝑠3 (3.36)

There, 𝑅 is the universal gas constant, 𝑠 are the pre-activations and all the other variables are

network parameters that are learned by the network. The second subnetwork uses the softplus

function as its activation function [4]:

𝑓𝑏(𝑠) = log(𝑒𝑠 + 1) (3.37)

 Theoretical background and literature survey 21

As a loss function, Länge used the mean squared error for each of the four thermodynamic func-

tions and summed them up. The magnitudes of the functions’ values vary, therefore the contribu-

tion of each function to the total loss is weighted by undisclosed factors 𝑞 :

𝐿total = 𝑞G𝐿G + 𝑞S𝐿S + 𝑞H𝐿H + 𝑞C𝐿C (3.38)

Where 𝐿G, 𝐿S, 𝐿H and 𝐿C are the mean squared errors for the respective functions. [4]

The work led to good results. E.g., the heat capacity of the bcc phase of pure iron could be approx-

imated well in the range from 0𝐾 to 3000𝐾. Further results can be found in the original paper.

Based on Länge’s network, the present work investigates the advantages and disadvantages of a

different network architecture for approximating the Gibbs energy, entropy, enthalpy, and heat

capacity in unary systems.

3.3.2 Neural networks applied to binary systems

While the paper ([4]) presented above tried to approximate thermodynamic functions in unary

systems, also several papers were published on the prediction of phase equilibria in binary sys-

tems using neural networks. Many of the networks for phase equilibria prediction found in the

literature are restricted to certain systems or elements: The network presented by Kan et al [5]

can predict phase equilibria in aqueous two-phase systems, and Farzi et al [7] estimated the phase

equilibria of eleven binary systems containing acetone. Bilgin et al predicted the vapor-liquid

equilibria of six systems of different chemical structures in [6].

Goals, approaches, and network architectures

All the above-mentioned works [5–7, 27] used feed-forward neural networks. As the networks

are applied to different chemical systems, both the number of input and output nodes are differ-

ent. However, all of them predict a fixed number of equilibria composition values.

Farzi et al [7] used literature data for the vapor-liquid equilibria of eleven binary systems contai-

ning acetone in the temperature range from 298.15-391.25K and the pressure range from 2.640-

101.33kPa. Amongst the eleven binary systems were e.g., benzene, ethanol, or ethyl acetate. The

network used in this paper consists of one hidden layer, an input layer with five nodes, and an

output layer with 2 nodes. The predictions made are the mole fractions in the equilibrium of ace-

tone in liquid and vapor phases. As input, the network receives critical temperature, critical pres-

sure, acentric factor, temperature, and pressure values. The best results were achieved with a net-

work consisting of 19 nodes in the hidden layers and a logarithmic sigmoid function as the activa-

tion function of the hidden layer and a linear activation in the output layer. The dataset was split

so that 70% of the data was used for training, 20% for validation, and 10% for testing. For the

majority of the eleven systems used, the phase equilibria and as a result, the phase diagrams could

be predicted well and with only small deviations from the true values. [7] For the present work,

the network presented in [7] cannot be applied directly because it only has two output nodes and

 Theoretical background and literature survey 22

can therefore only predict one equilibrium (i.e., two equilibrium composition values). For a net-

work to be able to predict equilibria also for other systems, where there can occur multiple equi-

libria at a given temperature, more than two output nodes are required.

The work by Kan et al [5] aimed to predict equilibria in aqueous two-phase systems. It compared

two different network architectures. Both networks have three input and four output nodes. The

difference is that one network is fully connected, whereas the other network is made up of four

subnetworks. For both networks, the inputs are physical properties (weight proportions and mo-

lecular weights of the components) which are the base for predicting the equilibrium composi-

tions in the 4 nodes of the output layer. The layers are activated by the sigmoid function. [5] Sim-

ilar to the work by Farzi et al [7], also these networks cannot be directly applied in the present

work as both networks have 4 output nodes and are therefore restricted in the number of equi-

libria that can be predicted at once.

In [6], the goal of Bilgin et al was to predict both equilibrium compositions as well as activity co-

efficients for six different systems. It used a fully connected feed-forward neural network with

two hidden layers and the logarithmic sigmoid function as activation. The predictions were made

given the low boiling component concentrations in the liquid phase, whereas the network’s out-

puts are the concentrations in the vapor phase as well as the activity coefficients of the liquid

phase. For this aim, the network has three nodes in the output layer and can therefore only predict

the composition values of one equilibrium. [6] This fact is again limiting when trying to predict a

variable number of equilibria in different chemical systems, wherefore also this approach cannot

be applied directly in the present work.

 Methods and implementations 23

4 Methods and implementations

For this work, multiple Python packages are implemented. Each of the tasks is structured in a sin-

gle package and additionally, a handler for the SGTE data, which is used to create the training,

testing, and validation datasets, is also structured in a package. In total, this leads to five packages

which are explained in this chapter:

- sgte: data handler to create the training, testing, and validation datasets

- laenge: rebuild of the network proposed by Länge (see 3.3.1)

- thermonet: a different approach to what was presented in the paper by Länge

- binarypredictor: neural networks that predict phase equilibria in binary systems

- thermoclassifier: a classifier that, given measurement data for the heat capacity of any

of 78 elements, predicts both the element and the phase(s) of the measurements

4.1 SGTE data handling – sgte

4.1.1 Data extraction and ordering

As described in 3.1.5, the SGTE data is listed in [14] as coefficients of functions. Using a Python

script, these coefficients and in the case of the polynomial terms, also the corresponding expo-

nents, are extracted from the SGTE PDF file and stored in one Excel file per element. The Excel files

are stored inside the package so that the package can be used on any computer. Figure 4.1 shows

for the example of iron, how these files are structured.

Figure 4.1: Excel table for the SGTE coefficients of iron (Fe)

The column “Phase” stores the name of the phase for which the coefficients are listed in the cor-

responding row. Following this, columns B to I and column S list coefficients for the magnetic and

pressure-dependent terms. These coefficients are only stored for those elements, where either a

magnetic or pressure-dependent term or both are used in the SGTE equations. The columns with

numeric values as column names refer to the polynomial terms, whereas the column name, in this

case, is the exponent of the respective polynomial term. In column L, the 𝑐 value is listed, which

refers to the coefficient of the logarithmic term in the SGTE equation of the Gibbs energy. The

columns “Start temperature” and “End temperature” define the temperature ranges in Kelvin in

which the coefficients of the respective rows are valid.

As the coefficients are extracted from a PDF file automatically using a Python script, the ordering

of the columns is made based on the first occurrence of the column name in the PDF file. Figure

4.1 therefore only gives an example of how these files are structured. For other elements, the table

 Methods and implementations 24

orderings can look different. When using the tables to create the training, testing, and validation

datasets, the columns are referenced by the column name, which is why a certain ordering is not

required.

4.1.2 Dataset creation

Using the class SGTEHandler, the Gibbs energy, entropy, enthalpy, or heat capacity values of any

element and any phase in the SGTE data can be calculated for any temperature in the defined

ranges.

Figure 4.2: Basic workflow of the SGTEHandler

An SGTEHandler is always defined for one element which can either be provided as an argument

when defining the class or as a command-line input. For the given element, the corresponding

Excel file (see 4.1.1) is loaded as a pandas DataFrame. To evaluate the equations, the correspond-

ing class method must be called, whereas the following arguments must be passed:

- Temperature range and temperature step: A start and end value for the temperature

range as well as the size of the steps made in this range need to be defined in Kelvin. For

the input, the ranges in which the coefficients are defined in the SGTE data do not need to

be known. The class handles transitions between the defined ranges automatically and

returns smooth functions. Also, the minimum and maximum values of the defined ranges

do not necessarily have to be known as the method only considers temperatures for which

the coefficients are defined.

- Pressure: A pressure value needs to be passed as an argument as a float value. For most

of the elements, the SGTE equations are only defined for a pressure of 1𝑏𝑎𝑟. Therefore, for

these elements entering different pressure values will not affect the results.

- Phases: The phases for which the evaluation should be made need to be defined and

passed as a list of strings, whereas these strings can either be the phase names as defined

in the Excel coefficient data sheet or “all”. In the first case, only the phases provided are

considered, in the second case all phases for which coefficients are defined are taken into

account.

- Functions: For each of Gibbs energy, entropy, enthalpy, and heat capacity, a Boolean value

has to be passed to determine which functions to evaluate.

For the equation evaluation, the coefficients from the Excel file are used to solve the equations.

The values of the polynomial terms are calculated by using the column names as the exponents of

 Methods and implementations 25

the temperature (for the equations see 3.1.5) and multiplying them with the respective coeffi-

cients. If magnetic and pressure-dependent terms are defined for an element, also these equations

are solved for every temperature in the range as well as the logarithmic term. For the output, the

three results are added to each other. As a result of the evaluation process, a pandas DataFrame

containing all the values is stored as a class attribute.

4.1.3 Stable properties

The process mentioned in 4.1.2 does not consider whether the phase considered is stable at a

temperature and pressure or not. As in some cases, it is necessary to only get the values for any of

the functions for only stable phases, a class method is introduced to return those values. For a

stable phase, its Gibbs energy must be the minimum Gibbs energy of all possible phases at the

given conditions (see 3.1.4). Therefore, to get the values of the stable phases, only the function

values of a phase for which the Gibbs energy is smaller than the Gibbs energy of all the other

phases are returned.

For visualization purposes, it is possible to plot any of the four functions over the temperature

only for stable phases. The phase information can be included in the plot so that it can be seen

which phase is stable at a given temperature. Figure 4.3 shows as an example the Gibbs energy

function of iron over the temperature in the range from 300𝐾 to 6000𝐾, whereas the different

coloring shows the stable phases at a temperature.

Figure 4.3: Gibbs energy of iron over the temperature

 Methods and implementations 26

4.2 Adaption of the Länge network – laenge

4.2.1 Goal and workflow

In this package, the network presented by Länge in [4] is implemented and trained to check how

well and easy the network can be trained so that it can serve as a basis for other networks in this

work. Länge uses experimental data to approximate the thermodynamic functions of Gibbs en-

ergy, entropy, enthalpy, and heat capacity using a neural network as described in 3.3.1. As exper-

imental data is not available freely and in abundance, for the training of this network, the data

from the SGTE database is used. Whilst it would be possible to apply this network to any element,

it is trained only on data from the element iron and its BCC phase. Länge’s paper also presents the

results for iron, thus the results from both networks can be compared well.

As described in Figure 3.6, the network’s direct output is the Gibbs energy as a function of the

temperature, which is the input to the network. Using the equations described in 3.1.3 the net-

work’s parameters can be reused to also calculate the entropy, enthalpy, and heat capacity. Figure

4.4 shows the basic workflow of the network. The Python class, in which the network is imple-

mented, is however designed in such a way that all four functions can be calculated at once.

Figure 4.4: Basic workflow of the rebuild of Länge’s network

4.2.2 Dataset logic

As shortly described above, the experimental data used in [4] is not easily available, although the

SGTE database provides similar data in abundance. Therefore, for the training of this network, the

SGTE data is used by utilizing the data handler described in 4.1. The Python library PyTorch pro-

vides extensive tools for creating and loading datasets. A PyTorch dataset called LaengeDataset is

created and takes the following arguments for its creation:

- Temperature range and step size: the temperature range which the SGTE data is loaded

for, and the size of steps taken in this range. For further reference, see 4.1.2.

- Element: which element to load the data for

 Methods and implementations 27

- Phase: which phase to load the data for

- Scaling: whether to scale the data to the interval from -1 to 1

Using these arguments, the SGTE functions are evaluated. The resulting data is then accessible as

a combination of a temperature value and the values of the respective functions at this tempera-

ture. In case the scaling flag is activated (i.e., the value set to True), the temperature and the Gibbs

energy values of the total temperature range are scaled by the respective maximum values to the

interval from -1 to 1.

4.2.3 Network architecture

For this package, the network presented in Figure 3.6 is implemented with the information pro-

vided in [4]. The paper does not provide information on the number of nodes in the hidden layer

of Subnetwork 2, wherefore this number is a variable in the network’s definition. It is also not

described in the paper how the outputs of the two subnetworks are combined. For this, the as-

sumption is that the outputs are simply added to each other without any weighting factors.

In addition to the network itself, the activation functions are also implemented as PyTorch mod-

ules so that the parameters in the activation function can be learned during the training process

as it was done in [4]. Whilst the softplus activation (equation (3.37)) is a standard activation func-

tion and therefore available in the PyTorch library, its first and second derivatives are not availa-

ble there. The derivatives are however needed for the calculation of the entropy, enthalpy, and

heat capacity. Therefore, the softplus activation is implemented inside the laenge package as well

as the activation function for subnetwork 1 (equation (3.36)), called ChenSundman function in the

implementation following the use of a paper by Chen and Sundman [28] in [4] that served as the

basis for the use of this activation function. The ChenSundman function contains four parameters

that are learned throughout the training process (the variables 𝐸0, θ𝐸 , 𝑎 and 𝑏).

4.2.4 Results

The results achieved are not comparable to the results presented in [4]. Especially the approxi-

mation of the heat capacity is far off the true values as can be seen in the bottom-left graph in

Figure 4.5, whereas in [4] it could be approximated well. Also, the prediction of the enthalpy is not

accurate (top-left in Figure 4.5). The graphs on the right show that both the Gibbs energy and the

entropy can be approximated well by the network.

 Methods and implementations 28

Figure 4.5: top-left: approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation

of heat capacity, bottom-right: approximation of entropy

For the training of the network, a dataset as described above with the following parameters is

used:

Table 4.1: LaengeDataset parameters

Parameter Value

Temperature range 200K-2000K

Temperature step size 2K

Scaling False

The subnetworks are created and initialized using the following hyperparameters:

 Methods and implementations 29

Table 4.2: LaengeNet network hyperparameters

Parameter Value

Nodes in hidden layer of subnetwork 2 32

Initialization
Randomly uniform with values between 0.1

and 0.2

For the training of the network itself, several adaptations are made to keep the process numeri-

cally stable. As the values of Gibbs energy, entropy, enthalpy, and heat capacity vary in magnitude,

a scaling is introduced. The true values (to which the network outputs are compared) of the Gibbs

energy and the enthalpy are scaled from J to kJ so that the network also outputs values in kJ, which

are regarding the magnitude of the same order as the entropy and the heat capacity. Although, the

network tends to output small values for entropy and heat capacity, which is why the network’s

outputs for these capacities are multiplied by 1000.

Also, other than suggested in [4], the variable θ𝐸 in the loss function is set to a fixed value and

therefore not learnable. This results from the fact that θ𝐸 is an argument of a logarithm in the

ChenSundman function and is therefore restricted in its possible values. Making this parameter

learnable leads in most cases to negative arguments of the logarithm, which is not defined. As a

result, the loss cannot be evaluated anymore and therefore learning is not possible. In experi-

ments conducted it proved to be better to fix θ𝐸 to a certain value rather than restricting the values

it can take. For choosing the value, θ𝐸 is interpreted as the Einstein temperature, which is defined

as [29]:

θ𝐸 =
ℎν

𝑘𝐵

(4.1)

There, ℎ is Planck’s constant, 𝑘𝐵 is Boltzmann’s constant and ν is the atoms’ oscillator frequency

inside the solid.

Using ν = 1.7 ⋅ 1013Hz [30] results in a value of θ𝐸 = 129.85K. The learned parameters of the

ChenSundman function resulted in:

Table 4.3: Results of the learned parameters in the ChenSundman function

Parameter Value

E0 -1404.8337

a 0.1356

b -0.0018

 Methods and implementations 30

For the training routine, the loss function from equation (3.38) is used. As [4] does not provide

information on the weighting values 𝑞 in the loss functions, a hyperparameter search was con-

ducted to find the optimal values. Alongside the training hyperparameters, the weighting values

can be found in Table 4.4. The choice of the 𝑞 values is based on the ratio of the respective losses

and 𝐿𝐺 .

Table 4.4: Training routine hyperparameters for the LaengeNet

Parameter Value

Learning rate 0.025

Number of epochs 1000

Batch size 64

qG 1

qS 10

qH 1

qC 10

The optimizer used for the training is in accordance with [4] the Rprop optimizer.

4.2.5 Discussion & Conclusions

Discussion

Whilst Gibbs energy and entropy can be approximated well, this is not the case for the enthalpy

and the heat capacity. The exact reasons for this are unclear, whereas probably the network’s de-

sign is the root of the problem. By evaluating the single losses on the respective functions, a back

and forth can be noticed, so that the loss on one function improves whilst the loss on another gets

worse. Not calculating the entropy, enthalpy, and heat capacity from the network parameters but

rather designing the network in such a way that those functions are direct outputs improves the

results. Training this network is however only possible when values for all four functions are

available at a given temperature. It is possible when using the SGTE database as the data source.

The results for this network architecture are presented in 4.3.

In general, the network’s architecture and its loss functions lead to numerical instabilities in many

different cases. One is the previously described issue with the parameter θ𝐸 in the activation func-

tion of subnetwork 1. Also, the Softplus activation function leads to numerical instabilities in its

first and second derivatives. For the first derivative, the problem can be overcome by rewriting

the function using the LogSumExp trick [31]. As of equation (3.37), the Softplus function is defined

as:

𝑓𝑏(𝑠) = log(𝑒𝑠 + 1)

 Methods and implementations 31

Using the LogSumExp trick, this function can also be written as:

𝑓𝑏(𝑠) = max(0, 𝑠) + log(𝑒−|𝑠|+1)

The first derivative 𝑓𝑏
′(𝑠) therefore is:

𝑓𝑏
′(𝑠) = 𝑝(𝑠) −

𝑠

𝑒|𝑠|
⋅ |𝑠| + |𝑠|

Where 𝑝(𝑠) = {
1 ∀ 𝑠 > 0
0 ∀ 𝑠 ≤ 0

.

In the second derivative of the Softplus function, small pre-activations 𝑠 lead to the undefined

property
∞

∞
, which cannot be handled by PyTorch. Therefore, the learning algorithm crashes once

this case occurs. It can although be overcome by replacing those values with 0.

Also, the network initialization can lead to numerical instabilities. Specifically, all parameters

must be initialized with either all positive or all negative values. A very common initialization with

values drawn from a standard normal distribution can therefore not be applied. Learning rates

higher than 0.01 also lead to instabilities in some cases.

Conclusions

It can be concluded that the network architecture and the choice of loss functions are very prone

to numerical instabilities. Also, the results when trained on the SGTE data are poor. The numerical

instabilities can be overcome by introducing certain restrictions which make training possible.

Once the network is trained, the training algorithm is not needed anymore, wherefore the difficult

training routine could be accepted. Although, this is not possible for the poor results. Therefore,

an approach is made in 4.3 to design a network that can be trained without numerical instabilities

and that delivers better results.

4.3 Function approximation for unary systems – thermonet

4.3.1 Goal and workflow

As chapter 4.2 concludes that the network presented in [4] cannot be easily rebuilt, a different

approach to achieve the same approximations is presented in this chapter. The main goals of this

network are to avoid numerical instabilities in the training process as well as to achieve better

and more accurate results. To do so, the approach of deriving the entropy, enthalpy, and heat ca-

pacity from the network parameters using partial differential equations is abandoned. Instead, all

four capacities are direct outputs of the network as can be seen in the basic workflow in Figure

4.6.

 Methods and implementations 32

Figure 4.6: Basic workflow of the ThermoNet

4.3.2 Dataset logic

The basic idea behind the dataset for the ThermoNet is very similar to the one for the LaengeNet,

although it differs from it in some points. The main difference is that the LaengeDataset presented

in 4.2.2 can only contain data from one element. To allow more flexibility, the dataset for the Ther-

moNet, called ThermoDatasetNew, can load and contain data for multiple elements at once. If only

one element’s data is loaded, the phases to be loaded can be specified, otherwise, all phases of all

the desired elements must be loaded. The dataset takes the following arguments for its creation:

- Temperature range and step size: the temperature range which the SGTE data is loaded

for, and the size of steps taken in this range. For further reference, see 4.1.2.

- Elements: which elements to load the data for

- Phase selection: a flag called inp_phases that defines whether all phases or just a selection

are loaded in case only one element’s data is contained in the dataset.

Using these arguments, the SGTE functions are evaluated. The resulting data is then accessible as

a combination of a temperature value and the values of the respective functions at this tempera-

ture. As opposed to the dataset for the LaengeNet, a scaling of the values in the dataset is not pos-

sible.

4.3.3 Network architecture

Unlike the LaengeNet (see Figure 3.6), where the only network output is the Gibbs energy and all

the other capacities are derived from the network parameters, ThermoNet has four outputs, one

for each of Gibbs energy, entropy, enthalpy, and heat capacity. This architecture is chosen as the

design of the LaengeNet with the derivation of the entropy, enthalpy, and heat capacity using de-

rivatives of the network parameters was identified as a possible reason for its poor results. A

schematic of the architecture can be seen in Figure 4.7. All layers are fully connected but for im-

proved clarity, no connections between the nodes are shown. Every hidden layer and the input

layer use the softplus function as their activation function, whereas the output does not use an

activation function.

 Methods and implementations 33

Figure 4.7: Network architecture of the ThermoNet

The network is made up of 𝑁 hidden layers with 𝑀 nodes each. Those two values are hyperpa-

rameters that are optimized in the training process. The numbers of nodes in the input and output

layers are fixed to 3 respectively 4, as the network receives a temperature value as well as a nu-

meric element and phase labels as input and returns its predictions for the four functions. The

element and phase labels are introduced to make the network more flexible in terms of what can

be predicted. With this implementation, it is possible to train the network on the data of multiple

elements and phases simultaneously, which is not possible with the LaengeNet.

4.3.4 Results

Training on pure iron data

The results of the ThermoNet proved to be better than the ones achieved with the rebuilding of

the LaengeNet. Not only the Gibbs energy and the entropy as in the case of the LaengeNet but also

the enthalpy and the heat capacity can be approximated well for the BCC phase (Figure 4.8) and

the FCC phase (Figure 4.9) of iron when trained only on the iron data.

 Methods and implementations 34

Figure 4.8: approximation of the properties for the BCC phase of iron; top-left: approximation of enthalpy, top-right:

approximation of Gibbs energy, bottom-left: approximation of heat capacity, bottom-right: approximation of entropy

 Methods and implementations 35

Figure 4.9: approximation of the properties for the FCC phase of iron; top-left: approximation of enthalpy, top-right:

approximation of Gibbs energy, bottom-left: approximation of heat capacity, bottom-right: approximation of entropy

For the training of the network, a dataset as described above with the following parameters is

used:

Table 4.5: ThermoDatasetNew parameters for training on pure iron data

Parameter Value

Temperature range 200K-2000K

Temperature step size 1K

Elements Fe

Phase selection None (all phases are selected)

The network is created and initialized using the following hyperparameters:

 Methods and implementations 36

Table 4.6: ThermoNet network hyperparameters

Parameter Value

M 128

N 8

Initialization Xavier normal

The training is conducted by loading temperature values and the respective element and phase

labels from the dataset and feeding it into the network. The output is then compared to the true

values using the mean squared error loss. Also in [4], the mean squared error loss is used to eval-

uate the network’s predictions, whereas one mean squared error loss is used for each function.

The resulting total loss is obtained by weighing and adding up the losses (equation (3.38)). Calcu-

lating the mean squared error on all the four functions at once can also be seen as calculating four

single errors. Those errors are however not weighted by fixed weighting parameters and contrib-

ute evenly to the total loss.

At the beginning of the training, high errors occur. Choosing a high enough learning rate can re-

duce the error after a few epochs by around 102. At this point, the predictions are still far off the

desired outputs, whereas the learning rate becomes too big to furtherly improve and minimize

the error. Instead, the error starts to oscillate. The oscillation can be reduced by reducing the

learning rate, which as a result also minimizes the error. Therefore, a learning rate scheduler is

used. A learning rate scheduler allows starting with a high learning rate which is then reduced

after every epoch by a defined value. In this case, an exponential learning rate scheduler, which

decays the learning rate by the factor γ every epoch, is used.

As the learning rate is part of the optimizer, the learning rate scheduler and the optimizer are

closely related. To find the best optimizer for this case, all optimizers available in the PyTorch

library were tested, whereas some of them worked well and others did not at all. The best results

are obtained by using the RMSProp optimizer.

The training is conducted using the following hyperparameters:

Table 4.7: Training routine hyperparameters for the ThermoNet

Parameter Value

Initial learning rate 0.005

Number of epochs 2500

Batch size 1028

𝛄 0.995

 Methods and implementations 37

Training on iron and carbon data

The network is designed in such a way that it can be used for the approximation of the functions

for multiple elements at once (Figure 4.7). To test this flexibility, the network is trained not only

on the data for pure iron as described above but additionally also on the data for carbon. As in this

case, also the element label plays a role in the prediction, it can be assumed that the training is

harder and that the results will be worse compared to the results presented above. This assump-

tion proves to be true, as Figure 4.10 shows for the approximation of the functions for the BCC

phase of iron.

Figure 4.10: approximation of the properties for the BCC phase of iron when trained on iron and carbon data; top-

left: approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation of heat capacity,

bottom-right: approximation of entropy

These results, especially for the entropy and the enthalpy, are significantly worse than when the

network is trained only on the iron data. On the other hand, the results are still better than the

ones obtained from LaengeNet. As the network is also trained on data for carbon, it can also make

predictions on the functions for carbon. The results are similar for all phases of carbon, whereas

the graphite phase presented in Figure 4.11 yields the most accurate results.

 Methods and implementations 38

Figure 4.11: approximation of the properties for the graphite phase of carbon when trained on iron and carbon data;

top-left: approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation of heat ca-

pacity, bottom-right: approximation of entropy

For the training of the network, a dataset with the following parameters is used:

Table 4.8: ThermoDatasetNew parameters for training on iron and carbon data

Parameter Value

Temperature range 200K-2000K

Temperature step size 1K

Elements Fe, C

Phase selection None (all phases are selected)

All the parameters presented in Table 4.6 and Table 4.7 are reused for the training of this network.

Also, the learning rate scheduler, optimizer and loss function are the same as described above.

 Methods and implementations 39

4.3.5 Discussion & Conclusions

Discussion

As Figure 4.8-Figure 4.11 show, the results obtained with this network are much better than the

results with the LaengeNet (Figure 4.5). With neural networks, it is often hard to determine what

the cause for certain behaviors is. It is although evident, that the changed network architecture

plays a major role in it. In this architecture, all four network outputs depend on the network pa-

rameters in the same way, whereas in the case of the LaengeNet, they depend on the first and

second derivatives of the activation functions as well as the pre-activation. Optimizing such an

architecture is harder.

Also, thanks to the architecture, the training is possible without encountering numerical instabil-

ities. Compared to LaengeNet, this is possible because of the choice of activation functions. Whilst

the ChenSundman function introduces physics into the learning process, it also brings numerical

issues with it. Especially the learnable parameters in the activation function, as well as the first

derivatives of both the ChenSundman and the softplus functions, are roots of instabilities.

Even though this network performs better than the LaengeNet, it comes with the drawback that

training is only possible when data for the Gibbs energy, entropy, enthalpy, and heat capacity is

available for the same temperature values. Therefore, in [4] the temperature input does not need

to be the same for the four functions. Of course, it would be possible to design the network in such

a way that it can receive different input temperatures for all the functions in question, although

for the sake of simplicity this was not done in this case.

The big advantage the LaengeNet has against the ThermoNet is that the LaengeNet can also be

interpreted as four standalone networks. Therefore, it is possible to train the network only on one

property and receive the others from it. This is advantageous because fewer data and therefore

fewer measurements are needed and because it might be difficult to measure some of the proper-

ties.

It is also possible to train this network on the data of multiple elements at once. As Figure 4.10

shows, this leads to worse results than a network trained on the data of only one element (Figure

4.8). As Figure 4.10 and also Figure 4.11 show, in this case, the approximated functions tend to

oscillate around the actual function values. To reduce these oscillations, introducing a term to the

loss function that takes the approximations’ curvature into account could improve the results.

Conclusion

When directly comparing the networks, the ThermoNet is the better option both in terms of accu-

racy as well as ease of training. This comes with the drawback that data must be available for all

four functions at the same temperature values, which is not necessarily required for the

LaengeNet. For the practical use-case of developing a material model of an element where there

are measurements available for only one property, say the heat capacity, the LaengeNet is better

suited. Although, a way to overcome the numerical instabilities needs to be found. In case the

 Methods and implementations 40

training of the network is conducted on data for all four properties, the ThermoNet or a similar

architecture is better suited.

As the comparison of the results between the network trained only on the pure iron data and the

network trained on iron as well as carbon data shows, it is better to train single networks for every

element because it yields better accuracy. Even though accurate approximations of the Gibbs en-

ergy, entropy, enthalpy, and heat capacity could be achieved with this network, its only use is for

demonstration purposes. It is trained on the SGTE data and therefore only a different representa-

tion of this dataset. Every output the network can provide is also directly accessible from the SGTE

database, either by solving the equations or using software like FactSage or even the Python li-

brary presented in 4.1. This although does not mean that the network is useless. Rather than that,

it can be used to derive a material model from experimental data. As described above, a choice for

the architecture must be made depending on which data is available.

4.4 Equilibrium prediction for binary systems – binary predic-

tor

4.4.1 Goal and workflow

The goal of the algorithms implemented in this package is to calculate binary phase equilibria

given analytical Gibbs energy functions as a function of the composition 𝑥 and the temperature 𝑇

at a given pressure 𝑝. Using equations (3.29.1) and (3.29.2), the equilibria compositions can be

found (if an equilibrium exists for this temperature). Therefore, the goal is to find composition

values for either phase that fulfill those equations. The problem that arises although is that it can-

not be told a priori, how many solutions (i.e., single equilibria) to this equation system exist. To

implement a neural network, it is however necessary to define a fixed number of output nodes.

Three different approaches were taken into consideration:

1. Restricting the possible systems to such that have only one equilibrium at each tem-

perature. In this case, the number of output nodes could be set to 2, one node for the

equilibrium composition of either phase. The advantage of this approach is that the

accuracy of the results will likely be very good, the disadvantage is that the predictor

is applicable to only a very small number of systems.

2. Another approach is to predetermine the number of single equilibria that will or can

occur in a system given the Gibbs energy functions. This could either be done by logical

rules or by training a classification neural network on this task. Given the number of

predetermined equilibria, a network could be selected that has the exact number of

output nodes needed. Multiple networks would be necessary to account for every

number of single equilibria. Also, this method likely has very good accuracy but comes

with many drawbacks: an additional pre-processing step would have to be introduced

and in the case of a classification neural network, for this aim, an additional network

 Methods and implementations 41

would have to be trained. Also, a balanced amount of function pairs, so that each num-

ber of equilibria occurs the same time in the training and test sets, must be found. In

addition, in all cases with more than one single equilibrium, it is not guaranteed that

the network finds all equilibria. It is possible, that for the example of two single equi-

libria in the system, both outputs are for the same equilibrium.

3. The third approach is the most general one as it does not restrict the possible systems

and does not need sophisticated pre-processing. Both equations in equation (3.29) are

formulated in such a way, that the respective left sides of the equations depend on the

equilibrium composition 𝑥𝛼 of phase 𝛼 and the respective right sides on the equilib-

rium composition 𝑥𝛽 of phase 𝛽. It is therefore possible, to find functional relation-

ships 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) for either equation so that the equations are fulfilled. The intersec-

tion points of the resulting two equations are the solution to the equilibrium problem.

To find the functional relationships, two neural networks (one for each function) are

used. The advantage of this approach is its generality, which comes with the risk of

greater inaccuracy than the two approaches presented above. Additionally, the net-

work does not directly output the equilibria compositions. Moreover, they must be

determined in a post-processing step.

As the third approach allows the best generality, it is the approach chosen to be implemented. The

risk of loss in accuracy compared to the other two approaches is accepted.

The basic workflow of the algorithm can be seen in Figure 4.12. As described above, two networks

are used in this approach. One finds 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) so that the chemical potential is equal for both

phases (equation (3.29.1)), whilst the other finds a similar functional relationship so that equation

(3.29.2) is fulfilled. Both networks receive as input the values of the Gibbs energy functions (in the

figure below called 𝐺′ and 𝐺′′, in equation (3.29) called 𝐺𝛼 and 𝐺𝛽) evaluated at a fixed number

of composition values as well as at a constant temperature. The predicted functional relationships

are then passed to a post-processing algorithm which finds the intersection points between the

two network outputs so that as a result, the composition values at the equilibria (in the figure

below called 𝑥′_𝑒𝑞 and 𝑥′′_𝑒𝑞) can be found. For the predicted functional relationship, for 𝑥𝛽 the

same x-values that are used to evaluate the Gibbs energy functions are used. Therefore, 𝑥𝛼 =

𝑥𝛼(𝑥𝛽) is not a continuous function but rather a function evaluated at certain points. As a result,

an algorithm to find the intersection points and to avoid duplicated equilibria compositions is

necessary.

When evaluated at different temperatures (or also different pressures), phase diagrams for the

given system can be drawn. To do so, the Gibbs energy functions need to be evaluated at different

temperatures (or pressures) and passed to the algorithm. Depending on the temperature granu-

larity, this will lead to longer or shorter execution times.

 Methods and implementations 42

Figure 4.12: Basic workflow of the binary predictor

4.4.2 Dataset logic

The dataset for the training is compiled in a Python class called FunctionPairDataset (FPD) which

builds on another Python class called FunctionDataset. In the FPD, functions can be generated fol-

lowing the rules presented in [12]. There, examples of possible Gibbs energy functions depending

on certain parameters and rules for which values these parameters can take, are published. Fol-

lowing the presented rules, a provided number of pairs of functions is generated using random

coefficients. The arguments can be specified for the initialization of the dataset:

- Number of functions: the number of function pairs to be generated

- Filename: a filename and -path where the parameters used to generate the functions can

be stored at

- X step size: The step size taken in the x-range from 0 to 1. At every resulting x value, the

functions are evaluated.

- Overwrite: If necessary, the file where the parameters are stored can be overwritten if

the filename already exists. In case this flag is set to False and the file already exists, the

functions are reloaded using the parameters from the file.

Every function needs a temperature at which it is evaluated as well as melting temperatures of

either phase as parameters. Those temperatures are drawn randomly in the range from 0 −

3000𝐾. Also, entropy values can be part of the equations. In case entropy is included, the values

 Methods and implementations 43

are also drawn randomly in the range from 0 to 10
𝐽

𝑚𝑜𝑙 𝐾
. The dataset compiles the specified num-

ber of functions and returns the evaluated values divided by the global absolute maximum of both

functions, the parameters used for the generation, and the absolute maximum value of both

phases. The functions are divided by this maximum value so that the values are scaled to the range

from -1 to 1. This is because those values are passed to the neural network as input and by doing

so, it can be guaranteed that the network always receives inputs of the same magnitude.

For the testing of the network, the same Python classes can be reused. It is also possible to con-

struct the functions outside the dataset class using the respective functions that implement the

core ideas of [12]. Figure 4.13 shows two exemplary functions generated using the Mager-Lukas-

Petzow rules for different values of 𝐴diff and 𝐴sum, which are parameters in the equations. Both

functions are evaluated for a temperature of 1000𝐾 and melting temperatures of 900𝐾 for one

and 1100𝐾 for the other component.

Figure 4.13: Examples for function pairs compiled using the Mager-Lukas-Petzow rules; left: 𝐴diff = 0, 𝐴sum = 0,

right: 𝐴diff = 1, 𝐴sum = 3

4.4.3 Network architecture

As shown in Figure 4.12, two networks are used in the workflow. The network class (called Tan-

gentNet) was therefore implemented flexibly so that the same class can be used for either net-

work. Figure 4.14 shows the network’s architecture. A number 𝑁 of hidden layers with 𝑀 nodes

each can be chosen. The number of nodes in the input layer is exactly two times the number of

nodes in the output layer. This is because the network receives as input the Gibbs energy functions

evaluated at a certain number of points. The output 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) is a function the is evaluated at

the exact same points, therefore the number of output values is only half the number of input

values.

All layers except the output layer are activated by the ReLU function. Because the composition can

only take values between 0 and 1, the output layer is activated by the Sigmoid function which

maps all values to this range.

It should be noted that the network can get big depending on the granularity chosen. The results

are more accurate the more points the functions are evaluated at. This comes with the drawback

 Methods and implementations 44

that the number of parameters in the network increases. Therefore, the execution time of the al-

gorithm also increases. A good compromise between accuracy and calculation speed therefore

must be found.

Figure 4.14: Network architecture of the binary predictor (‘ refers to α and ‘’ refers to β in previous equations)

4.4.4 Description of the algorithm

Requirements for the algorithm to work & pre-processing

For the algorithm to work, two functions and the respective first derivatives need to be known as

analytical functions. In Python, they must be implemented as a callable (e.g., a function or a lambda

function) and take as input a composition and a temperature value. Together with a temperature

range, those functions are passed to the function get_phase_diagram which is part of the Bina-

ryPredictor class. Also, a threshold value, which determines the maximum difference between the

slope of a predicted common tangent and the slopes of either curve and a maximum threshold

value (if for the given threshold no tangents are found, the threshold is increased step-wise up to

the maximum threshold) can optionally be specified.

By calling the get_phase_diagram function, the pre-processing is initiated. In the pre-processing,

at first, a check is made on whether one phase is stable over the whole composition range. In this

case, the values of the Gibbs energy function of this phase are lower than the values of the Gibbs

energy function of the other phase for all composition values. Figure 4.15 shows an example of

this case. There, the solid phase is stable everywhere because the solid curve’s values are always

smaller than the liquid curve’s. As there cannot be any common tangents, in this case, the algo-

rithm is aborted for this temperature and will be continued with the next temperature in the

range.

 Methods and implementations 45

Figure 4.15: Gibbs energy curves for an arbitrary system, where the solid phase is stable everywhere

For temperatures where there are common tangents (i.e., equilibria between the two phases), the

absolute maximum value of both phases is determined, so that the functions can be scaled by this

value to the range from -1 to 1. With this, it is made sure that the networks always receive inputs

of the same magnitude. Even though this is already done when creating the training set, the func-

tions may not be scaled in a testing application, wherefore it must be done again. Figure 4.16

shows a pair of scaled Gibbs energy curves where there will be one common tangent and therefore

one phase equilibrium.

Figure 4.16: Scaled Gibbs energy curves

Neural network predictions

After the pre-processing step, the Gibbs energy curves evaluated at predefined composition val-

ues and a temperature are stacked together in one vector and passed to the networks. The net-

works make predictions for 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) so that equations (3.29) are fulfilled. As the output of

 Methods and implementations 46

both networks are functions of 𝑥𝛽, they can be plotted in the same graph (Figure 4.17). The out-

puts are then passed to the post-processing to final find the equilibria.

Figure 4.17: Outputs of both networks

Post-processing

Both equations in equation (3.29) are fulfilled when there is an intersection of the two curves

shown in Figure 4.17. Therefore, the intersections need to be found. This is the same as finding the

roots of the difference between the two output functions (Figure 4.18).

Figure 4.18: Difference between the network outputs to find the intersection points

As the network outputs are approximations, the intersections will in general not be exactly where

the equilibrium is, i.e., where the equations (3.29) are fulfilled. Therefore, all value differences that

are smaller than a predefined threshold (chosen to be 0.1) are considered. For all these values, the

corresponding 𝑥𝛼 values will be chosen using the network outputs.

From there, the slopes of the resulting possible tangents are calculated and compared to the slopes

of either curve. All tangent candidates, for which the difference between the slope of the tangent

 Methods and implementations 47

and the slopes of the curves is smaller than a predefined threshold, are kept, otherwise, they are

discarded. In case no tangent is found, the threshold is increased by 0.1 up to a user-defined max-

imum threshold.

In the next step, duplicates are sorted out, because it is not unlikely that composition values are

kept that form the same tangent as other pairs of composition values. To do so, all the composition

values are rounded off to the first decimal point and then paired with the composition values. In

the last step, the pairs with the smallest squared difference of slopes to the curves are kept. The

example below will demonstrate the process.

Example: Assume there are two tangents to be found. After considering the difference between

the network outputs and the deviations from the curves’ slopes, 7 tangents are suggested, whereas

there are multiple “duplicates”. The duplicates are sorted out using the following process. As a

measurement variable, the square root of the sum of the squared differences between the slope

of the tangent and either curve is used.

The following composition values are considered tangent candidates:

Table 4.9: Tangent candidates

𝐱𝜶 𝐱𝜷 Slope difference

0.1089 0.2475 0.324

0.1023 0.2489 0.298

0.0987 0.2503 0.315

0.6498 0.9132 0.212

0.6543 0.9089 0.204

0.6517 0.9099 0.225

0.6487 0.9112 0.218

Then, the composition values are rounded off to the first decimal point and clustered based on

equal values. For example, the first line in Table 4.9 will be rounded off to the pair 0.1 and 0.2, the

same as the values in the second line. Therefore, they are clustered together and the one with the

smallest slope difference is kept. This is done for all clusters.

Table 4.10: Rounded composition values with the minimum slope differences

𝐱𝜶 𝐱𝜷 Smallest Slope difference

0.1 0.2 0.298

0.0 0.2 0.315

0.6 0.9 0.204

 Methods and implementations 48

As one can see, lines 1 and 2 in Table 4.10 belong to the same tangent but are not clustered to-

gether because of the nature of this process. To avoid this, in the last step, the composition value

pairs are interpreted as vectors and the distances between the points are computed. In case the

distance is smaller than a predefined threshold (chosen to be 0.2), the value pairs are considered

to belong to the same tangent and again, the one with the smallest slope difference is kept. It would

be possible to calculate the distance between the composition values right from the beginning, it

although proved to be much faster by applying the above-described pre-sorting. All composition

values that are kept after this step are considered the results and returned.

For the function pair in Figure 4.16 (with the network outputs in Figure 4.17 and Figure 4.18), the

correct tangent is found (Figure 4.19). The x-value of the red dot on the liquid (i.e., blue) curve is

the equilibrium composition of the liquid phase, whereas the x-value of the red dot on the solid

curve is the equilibrium composition of the solid phase.

Figure 4.19: Common tangent found for the example system

4.4.5 Results

For testing the network, two different approaches are chosen. On the one hand, the phase diagram

of the Au-Ag system based on the Gibbs energy functions for this system presented in [32] is cal-

culated and compared to the actual phase diagram taken from the thermodynamic software Ther-

moCalc. On the other hand, [12] is used to generate arbitrary functions the same as in the genera-

tion of the training set although with different coefficients. Whereas for the Au-Ag system a devi-

ation from the real values can be calculated, this cannot be done for the arbitrary functions as

there the ground truth is not known.

For all approaches, the same networks and therefore the same training routine is used. As de-

scribed in 4.2.2, the training dataset is generated following the rules from [12] using random co-

efficients. The dataset is generated using the following arguments:

 Methods and implementations 49

Table 4.11: FunctionPairDataset parameters for training

Parameter Value

Number of composition values where

functions are evaluated
500

Number of function pairs 100.000

Temperature range 0-3000K

Entropy range 0 − 10
𝐽

𝑚𝑜𝑙 𝐾

For both networks, the same architecture with the same parameters is used. Using the variables

introduced in Figure 4.14, the networks’ parameters are:

Table 4.12: Neural network hyperparameters

Parameter Value

N 2

M 500

Output nodes 500

Input nodes 1000

The training of the network is conducted using the following hyperparameters. As the optimizer,

the Adam [33] optimizer is used.

Table 4.13: Training hyperparameters

Parameter Value

Learning rate 0.001

Number of epochs 250

Batch size 1028

In the training of either network, the mean squared error is used to evaluate the performance.

Figure 4.20 shows how the training losses develop over the epochs. Both networks show similar

behavior, whereas the absolute losses of network 2 are smaller than those of network 1. The losses

are calculated in an unsupervised setting: the network outputs its prediction for a function 𝑥𝛼 =

𝑥𝛼(𝑥𝛽) so that the equations in (3.29) are fulfilled. These predictions are plugged into one of the

left sides of the equations in (3.29). The respective right side is evaluated using the same x-values

that are used to create the Gibbs energy function in the training dataset (vector with 500 values

 Methods and implementations 50

between 0 and 1 ordered ascendingly). The loss is then calculated as the deviation of the left side

of the equations from the respective right side.

Figure 4.20: Training losses of each epoch; left: network 1 (trained to find function 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) s.t. the slopes are

equal), right: network 2 (trained to find function 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) s.t. the chemical potentials are equal)

Au-Ag system

Based on the Gibbs energy of the liquid and the solid phase of the Au-Ag system from [32], the

phase diagram is calculated. In Figure 4.21, the orange and green dots mark the predicted phase

diagram, whereas the blue dots are from the actual phase diagram.

Figure 4.21: Predicted and true phase diagrams of the Au-Ag system

The phase diagram can be predicted well. Most notably is the deviation at higher temperatures.

To make a comparison between the predicted and the real phase diagram possible, the predictions

were made at the temperatures that can be obtained from ThermoCalc. Table 4.14 presents the

results of this comparison.

 Methods and implementations 51

Table 4.14: Statistics of the comparison between predicted and real phase diagram for the Au-Ag system

Parameter Value

Mean error 0.015655

Mean squared error 0.000493

Minimum deviation 9.7975e-6

Maximum deviation 0.066123

The mean execution time of the above-mentioned algorithm for this system is 2.36 seconds with

a standard deviation of 71.3ms tested on 7 runs with 20 loops each. Compared to this, the classical

approach using numerical techniques (in this case the SciPy subpackage optimize with the func-

tion least_squares) takes on average 6.65 seconds with 629ms standard deviation, determined in

the same number of loops.

Lukas-Petzow-Mager functions

The rules for the construction of arbitrary Gibbs energy functions in [12] can be controlled by the

parameters 𝐴diff and 𝐴sum (see also chapter 4.4.2). 𝐴diff can take integer values from −2 to 4,

whereas 𝐴sum can take the values −2, integer values from 0 to 6 as well as 8, 10 and 12. Depending

on the choice of these two parameters, Gibbs energy functions can be generated that lead to dif-

ferent kinds of phase diagrams. For further reference, see the original paper [12]. In general, the

presented approach aims to predict all phase equilibria. This is although not fully possible, as mis-

cibility gaps in solid phases follow different physical rules than those presented in equation (3.29)

and can therefore not be calculated with this approach.

In the following figures, a selection of systems will be presented for which the approximation of

the phase diagram works well. In the case of 𝐴diff = 0, 𝐴sum = 0, the computation using the pre-

sented algorithm takes a mean of 3.43 seconds with a standard deviation of 99.3ms, determined

over 7 runs with 20 loops each, for a temperature range from 900-1100K (range from one melting

point to the other) with a step size of 1K. Compared to this, the classical approach using the SciPy

optimize package takes on average 24.8 seconds with a standard deviation of 1.4s over the same

number of cycles.

 Methods and implementations 52

Figure 4.22: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 0

Figure 4.23: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 0

 Methods and implementations 53

Figure 4.24: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 2

Other systems cannot be predicted as well. As Figure 4.25 shows, for 𝐴diff = 4, 𝐴sum = 1, the phase

diagram can only be approximated roughly, others, like in Figure 4.26 for 𝐴diff = −1, 𝐴sum = 6,

cannot be approximated at all. Figure 4.27 shows for which systems the phase diagrams can be

predicted and for which not. A green symbol means that the phase diagram can be approximated

well, yellow means that it can only be approximated roughly, and red means that it cannot be

approximated well at all. Invalid combinations of 𝐴diff and 𝐴sum values are marked with no symbol

in Figure 4.27. For each system, an exemplary phase diagram is shown in the appendix.

Figure 4.25: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 1

 Methods and implementations 54

Figure 4.26: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 6

Figure 4.27: Phase diagrams that can be predicted by the algorithm: green: can be predicted well, yellow: can be pre-

dicted roughly, red: cannot be predicted well, no symbol: invalid combination

4.4.6 Discussion & Conclusions

Discussion

Many of the possible phase diagrams can be predicted well using the presented approach (see

Figure 4.27). Also, as comparisons with classical optimization approaches show, the neural net-

work works faster. This comes with the drawback that the accuracy is not as good as it is not an

accurate calculation method. One of the reasons for this is that the network outputs are only points

of a function and not a continuous function, therefore accuracy is lost there. Additionally, the net-

work outputs themselves are only predictions of the desired functions and not analytically com-

puted functions.

Other systems’ phase diagrams (see Figure 4.27) cannot be approximated at all. This is mostly

because they contain miscibility gaps that follow different physical laws than the ones presented

 Methods and implementations 55

in equation (3.29). To show that this approach can work, it was assumed to be sufficient to calcu-

late phase diagrams without the miscibility gaps. To also be able to calculate the equilibria in mis-

cibility gaps, the presented approach would have to be changed. A detailed description of this is

not given here as this goes beyond the scope of this work.

Conclusions

This approach is well-suited to making fast approximations of phase diagrams for many different

systems. If accurate phase diagrams are needed, one should use potentially slower numerical

methods. To find regions where a phase is stable, this approach is good enough. It is assumed that

this approach can work better with more computation capacities at hand. The networks were

trained on a regular laptop and using more than 250.000 training samples came close to exceeding

the available RAM. With more RAM available, the networks could be trained on a bigger dataset

and could therefore generalize better.

It must be noted at this point that the user must provide the correct pairs of Gibbs energy func-

tions to the algorithm. In systems with multiple phases, it might be that there are multiple Gibbs

energy functions that, when minimized, lead to different equilibria, although only one (the one

with the minimum total Gibbs energy) can be stable. Providing the “wrong” pair of Gibbs energy

curves, this algorithm would find the wrong phase equilibria and therefore the wrong phase dia-

gram.

4.5 Measurement data classification – thermoclassifier

4.5.1 Goal and workflow

The goal of the network implemented in this package is, given a set of pairs of temperature values

and measured heat capacity values of any of the 78 elements in the SGTE data, to predict both the

element which the measurements have been taken from and the phase of every measurement in

the set. Not all measurements in the set need to be taken from the same phase, although it is re-

quired that they are taken from the same element. The heat capacity is chosen as the property to

make the predictions on as it is assumed to be the most likely to be measured in experiments.

Although, after sufficient training, the network could theoretically also predict elements and

phases based on Gibbs energy, entropy, or enthalpy measurements.

 To allow for measurements from different phases in the measurement set, the element and phase

classification are split into two separate classification tasks. In case the element and the phases

were to be predicted in one single step, it could not be guaranteed that the classifier predicts the

same element for every measurement pair in the set. Figure 4.28 shows the basic workflow for a

set of five temperature/heat capacity measurement pairs.

 Methods and implementations 56

Figure 4.28: Basic workflow of the measurement data classification

The network to predict the element takes the set of measurement values as input and gives as

output a prediction for the element. The phase classifier then takes the predicted element (in form

of a numeric label) and the set of measurement values as the input to predict the phase of every

single temperature/heat capacity measurement pair.

4.5.2 Dataset logic

For the training and testing of the classification networks, the SGTE data is used. The dataset is

generated by a Python class called DatasetCreator, which is part of the dataset submodule of the

thermoclassifier package. The element classifier and the phase classifier are trained individually,

therefore also the data for training is generated individually with different settings for the Da-

tasetCreator. DatasetCreator takes the following arguments for its definition:

- Temperature range and step size: the temperature range which the SGTE data is loaded

for, and the size of steps taken in this range. For further reference, see 4.1.2.

- Measurement type: the measurement (i.e., either of Gibbs energy, entropy, enthalpy, or

heat capacity) to load the data for. As the classification is only made on heat capacity val-

ues, the measurement type is always the heat capacity.

- Sequence length: number of temperature/heat capacity pairs in each measurement set.

- Dataset size/splits: the size of training, test (and, if needed, validation) sets in percent of

the size of the whole dataset

- Validation: whether to include a validation set

- Elements: which elements to load the data for

- User: Defines if DatasetCreator is used to generate data for the classification of phases or

elements.

- Pressure: pressure at which the equations are evaluated

For all the elements defined, DatasetCreator solves the SGTE equations in the defined temperature

range, whereas only values from phases stable at the given temperature and pressure are consid-

ered as only values from stable phases can be found in real measurement data. It randomly packs

 Methods and implementations 57

temperature/heat capacity value pairs plus a unique label for the element (an integer value in the

range from 0 to the number of elements) and a unique label for the phase (just in case of phase

classification; integer in the range from 0 to the number of phases of a specific element) in pack-

ages of size sequence length. Inside each package, the temperature/heat capacity/label triples are

sorted ascendingly by the temperature if the sequence length is greater than 1.

The packages serve as input for the network, whereas the labels are removed and only used to

check if the prediction made is correct or not (in the case of phase classification, only the phase

label is removed as in this case the element label serves as input to the network). Assuming a

temperature range that gives 9 temperature/heat capacity pairs, an arbitrary element with label

L, and a sequence length of 3, Figure 4.29 shows how the data packs are generated for element

classification. In the case of phase classification, an additional label for the phase is added.

Figure 4.29: Packing of data

In Figure 4.29, the box on the left contains the values obtained from solving the SGTE equations,

whereas the temperatures are sorted from T1 to T9 ascendingly. The values are then assigned

randomly to a package and passed the label for the element and/or the phase, depending on which

classifier is trained. This process is repeated for every element/phase, giving a collection of such

packages for every element/phase in the end. For training the networks, the packages are re-

deemed in random order from this collection so that there is no order anymore.

Additionally, using a class called TestData, other datasets can be loaded to check how the classifier

reacts to data not from the SGTE data. As of 3.2.4, the data for testing should be generated in the

same way as the training data is, which is not the case when using data from other datasets. Alt-

hough, as this classification network can be used to make predictions on real measurement data,

using different sources is a good way to simulate real measurement data. Specifically, the data

from Barin [15] (see also 3.1.5) is used for this purpose.

For the training and testing, the data is handed to the network by a torch DataLoader, which is

part of the PyTorch library introduced in 3.2.5. The DataLoader allows to shuffle the data so that

in each epoch, the network receives the input in different orderings.

 Methods and implementations 58

4.5.3 Network architectures

As described in 4.5.1, the task is split into the classification of elements and phases separately,

which leads to two individually trained networks. One network is used for the element classifica-

tion, whereas the other is used for the classification of one element’s phases. The element classi-

fication network gives as output the most likely element for the given input. This output serves

together with the same temperature/heat capacity values the element classifier received as input

for the phase classifier.

Element classifier

Apart from the number of output classes and therefore the number of output nodes, which is the

number of elements in the SGTE data (i.e., 78 elements), the network’s architecture is designed

variable. The number of hidden layers 𝑁, the number of nodes in the hidden layers 𝑀 as well as

the number of input nodes 2𝑆 (with 𝑆 being the sequence length of the DatasetCreator introduced

in 4.5.2) can be adapted and are therefore hyperparameters of the network, which means good

values must be found for them during training. Figure 4.30 shows the architecture of the network,

which is a fully connected network (i.e., every node of one layer is connected with every node in

its neighboring layers), whereas the connections are not shown for clarity (compare with Figure

3.5., which shows all connections). Every hidden layer and the input layer use the ReLU function

as their activation function.

Figure 4.30: Network architecture of the element classification

The network receives as input a package of temperature/heat capacity value pairs of size se-

quence length (in the following referred to as 𝑆). A linear network layer expects as an input a

vector; therefore, the packages are flattened giving a vector of length 2𝑆. Every element in the

 Methods and implementations 59

input vector corresponds to one input node, whereas due to the package structure the nodes al-

ternatingly receive either a temperature or heat capacity value (see 𝑇 and 𝐶 nodes in Figure 4.30).

Phase classifier

The phase classifier’s architecture is very similar to the element classifier’s, although, in this net-

work, the number of input nodes is not variable as the network makes its predictions on one tem-

perature/heat capacity value pair at a time. Additionally, the network receives an element label

as input so that it can correctly assign the measurements. The number of hidden layers 𝐿 and the

number of nodes 𝐾 in each hidden layer are variable (Figure 4.31; again, for clarity shown without

the connections between the nodes). This network also uses the ReLU function as the activation

function for every node apart from the nodes in the output layer.

Figure 4.31: Network architecture of the phase classification

For the training and testing of the phase classifier, a sequence length of 1 is used for the Dataset-

Creator. This is because the phase classifier makes one prediction per temperature/heat capacity

value pair and not one prediction per pack. Compared to the element classifier, this means that,

when the element classifier receives an input with sequence length 5 (5 temperature/heat capac-

ity value pairs), the element classifier makes one prediction on the whole package and the phase

classifier makes 5 individual predictions. This is necessary because the measurements are not re-

stricted to being from the same phase.

 Methods and implementations 60

4.5.4 Results

The element and the phase classifier are trained individually, therefore they produce separate

results. After sufficient training, the resulting networks are combined into a combined predictor

as shown in Figure 4.28. In the following, the training and testing results of the individual net-

works as well as the performance of the combined predictor are presented.

To evaluate the performance of the classification, the prediction accuracy 𝑎 is used:

𝑎 =
correct predictions

correct predictions + false predictions

For the element classifier, two different approaches regarding the training data are made. First,

the classifier is trained on the plain SGTE data as obtained from evaluating the equations. This

gives data points that lie on a smooth curve without any variance. As real measurement data, in

general, has variance in it, the classifier is also trained with random normal distributed noise

added to the SGTE data.

The phase classifier is trained only on the plain SGTE data as in this case variance in the data makes

no difference because the phase can be distinguished by the element and the temperature. The

heat capacity value is therefore additional information.

Instead of the simple gradient descent method described in 3.2.3, the Adam optimizer introduced

in [33] is used. The Adam optimizer uses adaptive learning rates and claims to have little memory

requirements [33]. The detailed algorithm is irrelevant to this work but can be found in the pub-

lication. As the loss function, the cross-entropy loss (equation 3.32) is used for both the element

and the phase classifiers.

Element classifier – plain SGTE data

For the training of this classifier, the (hyper-) parameters shown in Table 4.15, Table 4.16, and

Table 4.17 are used:

Table 4.15: DatasetCreator hyperparameters

Parameter Value

Temperature range 200K-2000K

Temperature step size 0.05K

Sequence length S 5

Training-/test set splits 80%/20%

Pressure 1 bar

Accuracy on SGTE data test set: 97.82%

Accuracy on Barin test set: 62.04%

 Methods and implementations 61

With the hyperparameters chosen for the DatasetCreator (Table 4.15), the training dataset has a

shape of (411319, 5, 3). There, 411319 is the number of packs with 5 temperature/heat capac-

ity/label triples (see also 4.5.2).

Table 4.16: Neural network hyperparameters (see also Figure 4.30)

Parameter Value

2S 10

M 128

N 2

A more complex network with five hidden layers (𝑁 = 5) does not increase the accuracy when

tested on the SGTE data test set as it achieves the same result. Although, with an accuracy of 64.6%,

it achieves slightly better results when tested on the Barin data.

Table 4.17: Hyperparameters for the training routine

Parameter Value

Learning rate 0.001

Number of epochs 250

Batch size 256

The chosen learning rate of 0.001 proves to be optimal for this task. Higher learning rates result

in a not converging training routine. This means, that the average loss over one epoch does not

constantly decrease over time but rather decreases and increases alternatingly, i.e., the losses

start to oscillate.

Training for more epochs does not lead to better results. The same network trained for 500 in-

stead of 250 epochs achieves an accuracy of 98.06% on the SGTE data test set and 61.31% on the

Barin data. Figure 3.1 confirms this fact, as after around 300 epochs no real progress in neither

the minimization of the loss nor the increase of the training accuracy (on the SGTE data training

set) can be seen. Although, already after a few epochs, the training accuracy is above 90%.

 Methods and implementations 62

Figure 4.32: Left: Mean loss per epoch over all epochs, right: Training accuracies over all epochs

Also, an increase in the sequence length does not increase the accuracy. Trained on a sequence

length of 10, the classifier achieves an accuracy of 95.01% on the SGTE data test set. For practical

use, a shorter sequence length is also advantageous, as a longer sequence length means that more

measurements are required. To make predictions, it is possible to give fewer measurements than

the sequence length trained on as input, although this also leads to worse prediction accuracy as

information important for the network is not included.

Element classifier – SGTE data with variance

Evaluating the SGTE data gives data points where all values are on smooth curves with no variance

around these curves. For real measurement data, it must be assumed that this is not the case.

Therefore, for the training of this classifier random normal distributed noise is added on top of

the SGTE data. Before every epoch, a new noise vector is generated and added to the data so that

the variance effect is maximized.

The classifier is trained using the same hyperparameters as shown in Table 4.15, Table 4.16, and

Table 4.17.

For the training of the results presented above, the normal distribution 𝒩(0,0.75) is used to add

the random noise. Increasing the standard deviation leads to lower accuracy on both the SGTE

data test set and the Barin data. With the normal distribution 𝒩(0,1.25), an accuracy of 84.81%

on the SGTE data test set and 54.38% on the Barin data can be achieved. Training the network for

Accuracy on SGTE data test set: 91.02%

Accuracy on Barin test set: 59.12%

 Methods and implementations 63

more epochs does not lead to better results, as a network trained with 𝒩(0,0.75) for 500 epochs

achieves 89.12% accuracy on the SGTE data test set and 58.39% on the Barin data.

Phase classifier

As the information about the phases in the Barin tables is not as extensive as it is in the SGTE data,

testing the phase classifier on the Barin data is not possible because of lacking phase labels. For

the training of this classifier, the (hyper-) parameters shown in Table 4.18, Table 4.19, and Table

4.20 are used:

Table 4.18: DatasetCreator hyperparameters

Parameter Value

Temperature range 200K-2000K

Temperature step size 0.5K

Sequence length S 1

Training-/test set splits 80%/20%

Pressure 1 bar

With the hyperparameters chosen for the DatasetCreator (Table 4.15), the training dataset has a

shape of (205592, 1, 4). There, 205592 is the number of packs with 1 temperature/heat capac-

ity/element label/phase label quadruples (see also 4.5.2). The step size is just 0.5K as finer steps

lead to bigger datasets and problems with the working memory while training.

Table 4.19: Neural network hyperparameters (see also Figure 4.30)

Parameter Value

K 128

L 2

Table 4.20: Hyperparameters for the training routine

Parameter Value

Learning rate 0.001

Number of epochs 250

Batch size 256

Accuracy on SGTE data test set: 95.63%

 Methods and implementations 64

Also, a less complex network with 𝐾 = 32 and 𝐿 = 1 was tested. This led to an accuracy of just

87.78% and needed 5000 training epochs to reach this performance.

Combined classifier

The combined classifier makes predictions on both the element and the phase using the workflow

shown in Figure 4.28. It has no own network but rather uses the fully trained element and phase

classifiers presented above. The element classifier used is the one trained on the plain SGTE data.

For the evaluation of the combined classifier, three metrics are used: the accuracy of element pre-

dictions, the accuracy of phase predictions, and the combined accuracies. Whilst the accuracy of

element and phase predictions are the same as the accuracy used when training the two classifi-

ers, the values are almost the same as after training. The differences occur because, for the testing

of the individual networks and the testing of the combined classifier, different data packages are

used as they are always randomly generated. For the combined accuracy, only the predictions

where both the element and the phase are classified correctly are viewed as correct predictions.

The accuracies are only evaluated on the SGTE data set as the phase classification is not possible

with the Barin data. For the DatasetCreator and the data loading, the following hyperparameters

are used for the testing dataset:

Table 4.21: DatasetCreator hyperparameters

Parameter Value

Temperature range 200K-2000K

Temperature step size 1K

Sequence length S 5

Training-/test set splits 100%/0%

Pressure 1 bar

Batch size 256

The sequence length is 5 as the input is first passed to the element classifier, which is trained on

a sequence length of 5. After the predictions of the element classifier, the data packs are split so

that the phase classifier receives the expected sequences of length 1. Also, for this case, no training

and test set split is necessary as the network is only evaluated and not furtherly trained. There-

fore, all the data generated go into the training set which is used to evaluate the network.

Element prediction accuracy: 97.99%

Phase prediction accuracy: 94.46%

Combined prediction accuracy: 93.49%

 Methods and implementations 65

4.5.5 Discussion & Conclusions

Discussion

All the networks presented above can classify heat capacity data from the SGTE database well.

Depending on the network design and data preprocessing, some networks perform better than

others, in general, although, all of them score a test accuracy that can be considered good. It must

be noted that this network was trained on the SGTE data and will therefore perform better on data

that is similar to the SGTE data. In general, variance is expected when conducting real-world meas-

urements. Therefore, the measurement data will slightly vary from the SGTE model. To account

for this, the network was tested on the data published in [15]. This data differs from the SGTE data,

but still, an accuracy of around 60% could be achieved. The lower accuracy comes from the fact

that the curves in the SGTE data and the ones presented in [15] are not the same. As the network

is trained on 78 elements, this fact leads to misclassifications.

Integrating different databases in the training dataset is an option. The problem although is that

to be able to classify all 78 elements in the SGTE data, a vast amount of training data is necessary.

Publications such as [15] although provide only small numbers of data points for each element,

whereas the SGTE database provides equations of the temperature which can be evaluated at in-

finitely many points. Therefore, the creation of infinitely large datasets is theoretically possible.

Compared to the big number of data points drawn from the SGTE database, far smaller numbers

of data points from other sources would not have a big effect on the outputs of the networks.

Conclusion

This network is suitable for real-world applications to classify measurement data quickly. De-

pending on the measurement accuracy as well as how similar the measurement data points are to

the SGTE model, the predictions’ accuracy will vary. To improve the generalization abilities of the

network, it is possible to retrain a new network using the same design but include data from dif-

ferent sources or use the existing network and try to improve it by retraining it using a more gen-

eral dataset. As described above, this will only lead to satisfactory results if the available amount

of data from other sources is as vast as the amount of data from the SGTE database.

 General discussion, conclusions & outlook 66

5 General discussion, conclusions & outlook

General discussion and conclusions

Apart from the rebuilding of the LaengeNet presented in 4.2, all presented machine learning ap-

plications delivered good results both during training and testing.

Depending on the problem, a choice must be made whether machine learning or classical ap-

proaches make more sense. In the case of binary phase equilibria prediction, the presented ap-

proach works well when predictions are needed quickly. It is in general although not sufficient

when accurate results are needed. The ThermoNet and the LaengeNet can help to obtain thermo-

dynamic functions for unary systems. Using the obtained thermodynamic functions, phase equi-

libria in unary systems can be calculated. This is only useful if no analytic functions for the ther-

modynamic quantities are available. For example, all the equilibria of pure elements contained in

the SGTE database are easier and faster obtained directly from the database than making the de-

tour using a neural network approximation. Lastly, the element and phase classifier can be helpful

if measurements are made on a sample where the actual element and the phase have to be deter-

mined (which however must be part of the SGTE data). Depending on the accuracy of the meas-

urements, a good prediction on both the element and the phase can be made. In case the element

is known but not the phase, this classifier can also be used to only classify the phases.

Outlook

In the future, neural networks will be used in thermodynamics in the above presented as well as

in other areas. The binary equilibrium prediction is promising but will have to be improved using

more computation capacity if it was to be used in real-world applications. The approach chosen is

very general so that it can, in theory, approximate phase diagrams of all different sorts. In a spe-

cific use case (for example in steel production), where the chemical system is always roughly the

same, it is better to train a network specifically on this system. For this case, very good results are

expected. The approach for binary equilibrium calculation presented in this work might be en-

hanced by giving the coefficients of approximating polynomials rather than discrete values of the

functions as outputs of the network (compare with Figure 4.17). The problem with this idea is that

in general, the output of either of the networks can contain the values of multiple functions (in

case one or both Gibbs energy functions have inflection points). Therefore, the values cannot be

approximated by one polynomial. An additional unit, which determines the number of functions,

would be needed. It is assumed that this approach would lead to more accurate results, the prob-

lem however is that the task of determining how many functions occur is not trivial.

Also, the ThermoNet/LaengeNet can have use-cases in the future. Modeling material given meas-

urement data is the most realistic application. Both those networks are only trained for iron, but

given physical laws, it can be possible to find a general network that can predict a material model

for any element/unary system.

 General discussion, conclusions & outlook 67

The element and phase classification can also have real-world use cases. Apart from the one pre-

sented, where the element and the phase are predicted given heat capacity/temperature meas-

urement pairs, also phase predictions for binary or multi-component systems based on tempera-

ture and compositions are possible applications. Especially the latter, if trained on a specific sys-

tem can be of help if quick decisions on which phase is present is needed.

 Appendix 68

6 Appendix

6.1 Predicted phase diagrams for Lukas-Petzow-Mager func-

tions

Figure 6.1: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = −2

Figure 6.2: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 0

 Appendix 69

Figure 6.3: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 2

Figure 6.4: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 3

Figure 6.5: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 4

 Appendix 70

Figure 6.6: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 5

Figure 6.7: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 6

Figure 6.8: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 8

 Appendix 71

Figure 6.9: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 10

Figure 6.10: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 12

Figure 6.11: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 0

 Appendix 72

Figure 6.12: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 1

Figure 6.13: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 2

Figure 6.14: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 3

 Appendix 73

Figure 6.15: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 4

Figure 6.16: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 5

Figure 6.17: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 6

 Appendix 74

Figure 6.18: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = −2

Figure 6.19: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 0

Figure 6.20: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 1

 Appendix 75

Figure 6.21: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 2

Figure 6.22: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 3

Figure 6.23: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 4

 Appendix 76

Figure 6.24: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 5

Figure 6.25: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 6

Figure 6.26: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 8

 Appendix 77

Figure 6.27: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 10

Figure 6.28: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 12

Figure 6.29: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 0

 Appendix 78

Figure 6.30: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 1

Figure 6.31: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 2

Figure 6.32: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 3

 Appendix 79

Figure 6.33: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 4

Figure 6.34: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 5

Figure 6.35: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 6

 Appendix 80

Figure 6.36: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = −2

Figure 6.37: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 1

Figure 6.38: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 2

 Appendix 81

Figure 6.39: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 3

Figure 6.40: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 4

Figure 6.41: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 5

 Appendix 82

Figure 6.42: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 6

Figure 6.43: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 8

Figure 6.44: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 10

 Appendix 83

Figure 6.45: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 12

Figure 6.46: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 1

Figure 6.47: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 2

 Appendix 84

Figure 6.48: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 3

Figure 6.49: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 4

Figure 6.50: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 5

 Appendix 85

Figure 6.51: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = −2

Figure 6.52: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 0

Figure 6.53: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 1

 Appendix 86

Figure 6.54: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 3

Figure 6.55: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 4

Figure 6.56: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 5

 Appendix 87

Figure 6.57: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 6

Figure 6.58: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 8

Figure 6.59: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 10

 Appendix 88

Figure 6.60: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 12

6.2 Code

All the code written for this thesis is available at https://github.com/eldonko/Masters-Thesis-

Code

https://github.com/eldonko/Masters-Thesis-Code
https://github.com/eldonko/Masters-Thesis-Code

 Appendix 89

7 Literatur

[1] Springboard: Artificial Intelligence Future – Less Artificial, More Intelligent. URL: https://www.spring-

board.com/blog/data-science/artificial-intelligence-future/#:~:text=According%20to%20a%20re-

port%20on,it%20will%20take%20away%20jobs. Abrufdatum 04.05.22 09:21.

[2] Contract Pharma: How Artificial Intelligence and Machine Learning are Transforming the Life Sciences.

URL: https://www.contractpharma.com/contents/view_experts-opinion/2022-01-25/how-artificial-intelli-

gence-and-machine-learning-are-transforming-the-life-sciences/. Abrufdatum 04.05.22 09:18.

[3] Silver, D.; Schrittwieser, J.; Simonyan, K.: Mastering the Game of Go without Human Knowledge.

URL: https://discovery.ucl.ac.uk/id/eprint/10045895/1/agz_unformatted_nature.pdf. Abrufdatum

22.02.2022.

[4] Länge, M.: An artificial neural network model for the unary description of pure substances and its application

on the thermodynamic modelling of pure iron. In: Soft Computing 24 (2020) 16, S. 12227–39.

[5] Kan, P.; Lee, C.-J.: A Neural Network Model for Prediction of Phase Equilibria in Aqueous Two-Phase Extraction

[Kan, P.; Lee, C-J.]. In: Ind. Eng. Chem. (1996), S. 2015–23.

[6] Bilgin, M.; Hasdemir, M.; Otas, O.: The use of neural networks on VLE data prediction. In: Journal of Scientific &

Industrial Research (2004) 63, S. 336–43.

[7] Farzi, A.; Tarjoman Nejad, A.: Prediction of phase equilibria in binary systems containing acetone using artifi-

cial neural network. In: International Journal of Scientific & Engineering Research, (2015), S. 358–63.

[8] Kondepudi, D.; Prigogine, I.: Modern Thermodynamics. From Heat Engines to Dissipative Structures. Chiches-

ter 1999.

[9] Planck, M.: Treatise on Thermodynamics, 3. Auflage. New York: Dover 1945.

[10] Baehr, H. D.: Thermodynamik. Grundlagen und technische Anwendungen, 15. Auflage 2012.

[11] Moran, M. J.; Shapiro, H. N.; Boettner, D. D.; Bailey, M. B.: Fundamentals of Engineering Thermodynamics, 8.

Auflage. Hoboken, New Jersey, USA 2014.

[12] Mager, T.; Lukas, H. L.; Petzow, G.: Statistische Konstitutionsanalyse - Thermodynamische Konstitutionsmor-

phologie [Mager, T.; Lukas, H. L.; Petzow, G.]. In: Z. Metallkde. (1972) 63, S. 638–47.

[13] Bale, C. W.; Bélisle, E.; Chartrand, P.; Decterov, S. A.; Eriksson, G.; Gheribi, A. E.; Hack, K.; Jung, I.-H.; Kang, Y.-B.;

Melançon, J.; Pelton, A. D.; Petersen, S.; Robelin, C.; Sangster, J.; Spencer, P.; van Ende, M.-A.: FactSage thermo-

chemical software and databases, 2010–2016. In: Calphad 54 (2016), S. 35–53.

[14] Dinsdale, A. T.: SGTE data for pure elements.

[15] Barin, I.: Thermochemical Data of Pure Substances, 3. Auflage. D-69451 Weinheim (Federal Republic of Ger-

many) 1995.

[16] ThermoCalc. URL: https://thermocalc.com/.

[17] Smola, A.; Vishwanathan, S. V. N.: Introduction to Machine Learning. Cambridge, United Kingdom 2008.

[18] Mitchell, T. M.: Key Ideas in Machine Learning. URL: https://www.cs.cmu.edu/~tom/mlbook/keyIdeas.pdf.

Abrufdatum 22.02.2022.

[19] Jung, A.: Machine Learning. Singapore 2022.

[20] Bishop, C. M.: Pattern Recognition and Machine Learning. Singapore 2006.

[21] Gurney, K.: An Introduction to Neural Networks. Hoboken 2003.

[22] Baheti, P.: 12 Types of Neural Network Activation Functions: How to Choose?

URL: https://www.v7labs.com/blog/neural-networks-activation-functions. Abrufdatum 23.02.2022.

[23] Nielsen, M.: Neural Networks and Deep Learning. URL: https://static.latexstudio.net/article/2018/0912/neu-

ralnetworksanddeeplearning.pdf. Abrufdatum 23.02.2022.

[24] Stanford University: Neural Nets and Deep Learning. URL: http://infolab.stanford.edu/~ull-

man/mmds/ch13.pdf. Abrufdatum 23.02.2022.

[25] Tensorflow. URL: https://www.tensorflow.org/.

[26] Pytorch. URL: https://pytorch.org/.

 Appendix 90

[27] Lashkarbolooki, M.; Shafipour, Z. S.; Hezave, A. Z.; Farmani, H.: Use of artificial neural networks for prediction

of phase equilibria in the binary system containing carbon dioxide. In: The Journal of Supercritical Fluids 75

(2013), S. 144–51.

[28] Chen, Q.; Sundman, B.: Modeling of thermodynamic properties for Bcc, Fcc, liquid, and amorphous iron. In:

Journal of Phase Equilibria 22 (2001) 6, S. 631–44.

[29] Chemistry LibreTexts. URL: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemis-

try_Textbook_Maps/Physical_Chemistry_(LibreTexts)/17%3A_Boltzmann_Factor_and_Partition_Func-

tions/17.04%3A_Heat_Capacity_at_Constant_Volume. Abrufdatum 02.05.22 12:35.

[30] Guinier, A.; Jullien, R.: Die physikalischen Eigenschaften von Festkörpern - Eine leichtverständliche Einführung

in die Festkörperphysik [Guinier, A.; Jullien, R.].

[31] Wikipedia: LogSumExp. URL: https://en.wikipedia.org/wiki/LogSumExp. Abrufdatum 02.05.22 13:25.

[32] Hassam, S.; Gambino, M.; Gaune-Escard, M.; Bros, J. P.; Agren, J.: Experimental and Calculated Ag + Au + Ge

Phase Diagram. In: METALLURGICAL TRANSACTIONS A (1988) 19A.

[33] Kingma, D. P.; Ba, J.: Adam: A Method for Stochastic Optimization.

