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Abstract 

In several real-world scenarios (e.g., in steel production), fast decisions about phases that may 

occur at certain temperatures and compositions in chemical systems are required. The classical 

approach of minimizing the Gibbs energy of the system numerically can be slow, wherefore this 

work aims to train and use neural networks to calculate phase equilibria for a given system. It is 

assumed that once trained, a neural network can provide answers quicker than the classical ap-

proach. 

It is the goal of this work to approximate phase equilibria in unary and binary systems with neural 

networks. For this aim, Gibbs energies, entropies, enthalpies, and heat capacities of unary systems 

are approximated. The network for predicting binary equilibria directly uses analytical Gibbs en-

ergy functions to determine the equilibrium compositions.  

Even though the approach for the unary system can be applied to approximate the Gibbs energy, 

entropy, enthalpy, and heat capacity functions of a unary system, it does not provide faster results 

for calculating phase equilibria when compared to classical methods. However, the presented ap-

proach for the binary equilibrium calculation is faster using neural networks than numerical 

methods. The approach using neural networks is an approximation and does not allow for exact 

calculations of the equilibrium compositions. It works best when applied to systems where the 

Gibbs energy curves do not have inflection points. This fact can be limiting for real-world applica-

tions. Therefore, an additional method to categorize phases is presented, which can classify meas-

urements (e.g., for the heat capacity) into the phases the measurements are taken from. The pre-

sented network is trained on 78 pure elements. It can however easily be adapted to classify phases 

of binary systems by training it on the data of the desired systems.  

Whilst the calculation of binary phase equilibria using neural networks is faster than using nu-

merical methods, the approach has restrictions. To make fast decisions about the phases present 

in a system, the approach to classifying measurements rather than calculating equilibrium condi-

tions directly is more reliable.  
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Kurzfassung 

In vielen realen Szenarien wie z. B. in der Stahlproduktion sind schnelle Entscheidungen darüber, 

welche Phasen bei bestimmten Temperaturen und Zusammensetzungen in chemischen Systemen 

auftreten können, erforderlich. Der klassische Ansatz, die Gibbsenergie des Systems numerisch zu 

minimieren, ist oft langsam. Daher ist es das Ziel dieser Arbeit, neuronale Netze zu trainieren, 

welche verwendet werden, um Phasengleichgewichte für ein bestimmtes System zu berechnen. 

Es wird davon ausgegangen, dass ein trainiertes neuronales Netz schneller Antworten liefern 

kann als der klassische Ansatz. 

Das Ziel dieser Arbeit ist es, Phasengleichgewichte in unären und binären Systemen mit neurona-

len Netzen vorherzusagen. Zu diesem Zweck werden Gibbsenergien, Entropien, Enthalpien und 

Wärmekapazitäten von unären Systemen approximiert. Das Netzwerk zur Vorhersage binärer 

Gleichgewichte verwendet direkt analytische Gibbs-Energie-Funktionen zur Bestimmung der 

Gleichgewichtszusammensetzungen.  

Obwohl der Ansatz für das unäre System zur Annäherung an die Gibbs-Energie-, Entropie-, Ent-

halpie- und Wärmekapazitätsfunktionen eines unären Systems angewendet werden kann, liefert 

er im Vergleich zu klassischen Methoden keine schnelleren Ergebnisse für die Berechnung von 

Phasengleichgewichten. Der vorgeschlagene Ansatz für die Berechnung des binären Gleichge-

wichts mit neuronalen Netzen ist jedoch schneller als mit numerischen Methoden. Der Ansatz mit 

neuronalen Netzen ist allerdings eine Annäherung und ermöglicht keine exakte Berechnung der 

Gleichgewichtszusammensetzungen. Er funktioniert am besten, wenn er auf Systeme, bei denen 

die Gibbs-Energiekurven keine Wendepunkte aufweisen, angewandt wird. Dies kann für reale An-

wendungen einschränkend sein. Daher wird eine zusätzliche Methode zur Kategorisierung von 

Phasen vorgestellt, mit der Messwerte (z. B. für die Wärmekapazität) jenen Phasen zugeordnet 

werden können, aus denen die Messungen entnommen wurden. Das vorgestellte Netz wurde auf 

78 reine Elemente trainiert. Es kann jedoch leicht angepasst werden, um Phasen von binären Sys-

temen zu klassifizieren, indem es mit den Daten der gewünschten binären Systeme trainiert wird.  

Die Berechnung binärer Phasengleichgewichte mit Hilfe neuronaler Netze ist zwar schneller als 

mit numerischen Methoden, der Ansatz hat aber Grenzen. Um schnelle Entscheidungen über die 

in einem System vorhandenen Phasen zu treffen ist es zuverlässiger, Messungen zu klassifizieren, 

anstatt die Gleichgewichtsbedingungen direkt zu berechnen. 
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Notation 

In general, this work tries to stick to the common notation used in both thermodynamics and ma-

chine learning/neural networks literature. Some variable names are used in both sciences.  

Types of variables  

The following notation convention is valid for both the thermodynamics and machine learning 

part of this work.  

Normal faced text – both upper- and lower-

case letters 
Scalar values  

Bold-faced text – lower-case letters Vectors 

Bold-faced text – upper-case letters Matrices 

Thermodynamics 

𝑄 amount of heat 

𝑈 internal energy 

𝑊 mechanical energy 

𝐻 enthalpy 

𝐺 Gibbs energy 

𝑆 entropy 

𝐶𝑝  heat capacity at constant pressure 

𝑇 temperature 

𝑝 pressure 

𝑉 volume 

𝑛 mole number 

𝑥 mole fraction 

 

Machine learning and neural networks 

W Neural network weight matrix 

b Neural network bias vector 
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x Neural network (layer) input 

�̂�(𝒙) Neural network output given the input x 

s Neural network pre-activation 

a Neural network activation 

L Neural network loss 
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1 Introduction 

In recent years, the terms Artificial Intelligence (AI) and Machine Learning gained immense pop-

ularity. The reason for this is simple: AI-driven solutions are changing our world and the way we 

live and will do so even more in the future. Banking and retail [1], applications in the life sciences, 

where drugs are developed, diagnostics are made or clinical trials are enhanced using AI technol-

ogies [2] or gaming like AlphaGo, developed by the company DeepMind [3], are just a few exam-

ples, where AI and Machine Learning already influence our lives.  

Also in the field of thermodynamics, attempts were made to investigate the possible enhance-

ments machine learning techniques could make. For example, Länge ([4]) approximated the ther-

modynamic functions of Gibbs energy, entropy, enthalpy, and heat capacity of different phases of 

pure iron using an artificial neural network. Other works (e.g., [5–7]) used neural networks to 

predict phase equilibria in binary systems (in form of the equilibrium composition) directly.  

In this work, thermodynamic problems are investigated by means of neural networks and ma-

chine learning techniques. The main goal is to determine which phases occur at certain tempera-

tures and compositions in a chemical system. To do so, phase equilibria must be calculated. How-

ever, calculating phase equilibria numerically can be slow. It is assumed that once trained, neural 

networks can make fast predictions on which phases are present.  
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2 Problem definition 

The diffusion and phase transformation processes in materials are driven by the tendency to 

minimize a thermodynamic potential. In this case, the thermodynamic potential to be minimized 

is the Gibbs energy 𝐺 for a certain temperature 𝑇 at constant pressure 𝑝. Gibbs energy minimizers 

are commonly used to predict phase equilibria and chemical compositions of the equilibrated 

phases. These Gibbs energy minimizers have to be designed in such a way that they provide the 

local equilibrium conditions in each elemental cell with respect to time to describe dissipative 

processes like heat transfer, diffusion of components, or phase transformations. It is expected that 

strategies involving machine learning may help to decrease the time to compute phase equilibria. 

To check this assumption, equilibria are calculated in both ways, based on classical methods and 

using a neural network. In particular, the temperature-dependent thermodynamic functions (𝐺, 

𝑆, 𝐻, 𝐶𝑝) of pure substances (e.g., Fe) should be approximated based on a neural network. As a 

prerequisite to this task, thermodynamic data have to be compiled from the literature. These data 

will serve as training and testing data for the neural network. Eventually, comprehensive tests 

have to demonstrate that the network works well within its range of application.  

Furthermore, it is planned to apply machine learning methods to calculate equilibria in binary 

systems, e.g., the solidus and liquidus curves in the Au-Ag system as well as in other systems. 

Again, the Gibbs energy has to be minimized, resulting in the equilibrium compositions that fulfill 

the condition of equality of the chemical potentials of the phases with respect to each component.  

In addition, it is planned to classify elements and phases based on thermodynamic data. 



 

 

 Theoretical background and literature survey 3 

3 Theoretical background and literature survey  

3.1 Thermodynamics – a brief overview 

3.1.1 Laws of thermodynamics 

The laws of thermodynamics are essential to understanding and deriving the most important 

thermodynamic properties. But beyond that, the definition of temperature, the energy conserva-

tion, the introduction of entropy, and the inability to reach zero Kelvin within a finite number of 

steps are the foundations for a scientific description of processes occurring in our universe. For 

further reference, the zeroth, first, second, and third laws of thermodynamics are listed briefly in 

the following.  

Zeroth law of thermodynamics 

The state of thermodynamic equilibrium is characterized by uniform temperature in an isolated 

system. Whilst the system is not in equilibrium, there exist irreversible processes that drive the 

system towards equilibrium. At the equilibrium, those irreversible processes vanish and no fur-

ther changes, neither physical nor chemical, occur in the system. The zeroth law of thermodynam-

ics says, that if there exists a system A that is in equilibrium with a system B and system B is in 

equilibrium with a system C, then also system A is in equilibrium with system C. [8] 

First law of thermodynamics 

In [9], Planck formulated the first law of thermodynamics as follows [8]: 

“It is in no way possible, either by mechanical, thermal, chemical, or other devices, to obtain perpet-

ual motion, i.e. it is impossible to construct an engine which will work in a cycle and produce contin-

uous work, or kinetic energy, from nothing.” [9] 

Considering closed systems, the first law of thermodynamics can be formulated as [10]:  

𝑈2 − 𝑈1 = 𝑄12 + 𝑊12 (3.1) 

Whereas indices 1 and 2 denote the transition from an initial state 1 to a final state 2.  

This equation can also be written in the differential form [8]: 

d𝑈 = d𝑄 + d𝑊 (3.2) 

The right side of the equation depends on sign conventions. Moran et al [11] for example formu-

late equation (3.2) using a – sign instead of the + sign. For consistency, this work will use the sign 

convention used in equations (3.1) and (3.2).   

In a closed system, d𝑊 is equal to the mechanical work due to volume change and can be written 

as: 

d𝑊 = −𝑝d𝑉 (3.3) 
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Second law of thermodynamics 

Clausius formulated the second law of thermodynamics as follows:  

“It is impossible for any system to operate in such a way that the sole result would be an energy 

transfer by heat from a cooler to a hotter body.” [11] 

For a full cycle in a closed system and reversible processes, the second law of thermodynamics 

can be formulated by introducing the entropy 𝑆 [8]:  

d𝑆 =
d𝑄

𝑇
, ∮ d𝑆 = ∮

d𝑄

𝑇
= 0 (3.4.1) 

For irreversible processes, the equal sign is replaced by an inequality [8]:  

d𝑆 >
d𝑄

𝑇
, ∮ d𝑆 = 0, ∮

d𝑄

𝑇
< 0 (3.4.2) 

Using the Clausius inequality, these equations can be formulated in a very general way [11]: 

∮ (
∂𝑄

𝑇
)

𝑏
= −σ𝑐𝑦𝑐𝑙𝑒 (3.5) 

Whereas the index b denotes that the integrand is evaluated on the boundary of the system. Σ𝑐𝑦𝑐𝑙𝑒 

can take the values [11]:  

σ𝑐𝑦𝑐𝑙𝑒 = 0 reversible process 

σ𝑐𝑦𝑐𝑙𝑒 > 0 irreversible process 

σ𝑐𝑦𝑐𝑙𝑒 < 0 impossible 

Third law of thermodynamics 

The third law of thermodynamics is often also referred to as Nernst heat theorem. Nernst formu-

lated the law as:  

“At the absolute zero of temperature the entropy of every chemically homogeneous solid or liquid 

body has a zero value.” [8] 

Mathematically formulated, the third law is [8]: 

𝑆 → 0    𝑎𝑠    𝑇 → 0𝐾 (3.6) 

3.1.2 Thermodynamic properties 

Entropy 

The term entropy was already introduced in 3.1.1. The change of the entropy d𝑆 can be formulated 

by distinguishing between two different increments in the change of entropy d𝑒𝑆 and d𝑖𝑆 as:  

d𝑆 = d𝑒𝑆 + d𝑖𝑆 (3.7) 
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Therein, d𝑒𝑆 is the system’s change of entropy due to the exchange of energy and matter, and d𝑖𝑆 

the change of entropy due to irreversible processes within the system. d𝑒𝑆 can take positive as 

well as negative values, d𝑖𝑆 on the other hand must always be equal to or greater than 0. [8] 

Using equation (3.7) in equation (3.4.1) yields: 

∮ d𝑆 = ∮ d𝑒𝑆 + ∮ d𝑖𝑆 = 0 

From the condition that d𝑖𝑆 ≥ 0 follows: 

∮ d𝑒 𝑆 = ∮
d𝑄

𝑇
≤ 0 (3.8) 

This equation says that any real system that runs through a cycle of operations cannot return to 

its initial state without increasing the entropy of its surroundings (often referred to as the “uni-

verse”). [8]  

Enthalpy 

The thermodynamic quantity 𝑈 + 𝑝𝑉 is a state function, specified by the state variables 

𝑈, 𝑝, and 𝑉, that often occurs in this form in thermodynamic equations. Therefore, this property 

was given a name: the enthalpy. [8, 11] 

𝐻 = 𝑈 + 𝑝𝑉 (3.9) 

The enthalpy is associated with an extremum principle and reaches its minimum at the equilib-

rium when the entropy 𝑆 and the pressure 𝑝 are kept constant.  To find the minimum, the change 

of enthalpy must be taken into consideration:  

d𝐻 = d𝑈 + 𝑉d𝑝 + 𝑝d𝑉 

As the pressure 𝑝 is constant when the enthalpy reaches its minimum, this term simplifies to: 

d𝐻 = d𝑈 + 𝑝d𝑉 

According to equations (3.2) and (3.3), the right-hand side of the above equation is the change of 

heat 𝑑𝑄.  

d𝐻 = d𝑈 + 𝑝d𝑉 = d𝑄 

From equation (3.8) follows, that d𝑄 = 𝑇d𝑒𝑆, which, making furtherly use of equation (3.7) yields: 

d𝑄 = 𝑇(d𝑆 − d𝑖𝑆). For the enthalpy therefore follows: 

d𝐻 = 𝑇d𝑆 − 𝑇d𝑖𝑆 

As for the enthalpy to reach its minimum, the total entropy 𝑆 is fixed (d𝑆 = 0). Therefore, the 

change of enthalpy is: 

d𝐻 = −𝑇d𝑖𝑆 ≤ 0 (3.10) 
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More details can be found in the textbook by Kondepudi and Prigogine [8]. 

Gibbs energy 

The Gibbs energy is a thermodynamic potential, which evolves to a minimum at constant pressure 

𝑝 and temperature 𝑇. It is defined as follows: [8, 10, 11] 

𝐺 = 𝐻 − 𝑇𝑆 (3.11) 

Considering the change of the Gibbs energy, its minimum can be found using the definition of the 

enthalpy (equation (3.9)):  

d𝐺 = d𝑈 + 𝑝d𝑉 + 𝑉d𝑝 − 𝑇d𝑆 − 𝑆d𝑇 

As the pressure 𝑝 and temperature 𝑇 need to be constant for the Gibbs energy to reach its mini-

mum, the above equation simplifies to:  

d𝐺 = d𝑈 + 𝑝d𝑉 − 𝑇d𝑆 

Using equations (3.2), (3.3), and (3.7), this becomes: 

d𝐺 = d𝑄 − 𝑝d𝑉 + 𝑝d𝑉 − 𝑇d𝑒𝑆 − 𝑇d𝑖𝑆 

As d𝑒𝑆 =
d𝑄

𝑇
, the change of the Gibbs energy can finally be written as:  

d𝐺 = −𝑇d𝑖𝑆 ≤ 0 (3.12) 

The Gibbs energy 𝐺 is a minimum at equilibrium, as the irreversible processes that always de-

crease the Gibbs energy of the system, vanish. Details can be found in the textbook of Kondepudi 

and Prigogine [8]. 

Heat capacity 

The heat capacity is defined as the ratio of the heat absorbed by the increase in temperature:  

𝐶 =
d𝑄

d𝑇
(3.13) 

At constant volume respectively constant pressure, the heat capacities are called 𝐶𝑉 and 𝐶𝑝, re-

spectively. [8] 

Following equations (3.1), (3.3), and (3.9), the change of enthalpy is equal to the change of heat, 

wherefore 𝐶𝑝 can be defined as [11]:  

𝐶𝑝 = (
d𝐻

d𝑇
)

𝑝
(3.14) 

Chemical potential 

In the general case of a multi-component system, the Gibbs energy is not only a function of the 

temperature and pressure but also of the number of moles of each component [11]:  
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𝐺 = 𝐺(𝑇, 𝑝, 𝑛1, 𝑛2, … , 𝑛𝑗) (3.15) 

The Gibbs energy can then also be written as [11]:  

𝐺 = ∑ 𝑛𝑖 (
∂𝐺

∂𝑛𝑖
)

𝑇,𝑝,𝑛𝑙

𝑗

𝑖=1

(3.16) 

The partial derivative (
∂𝐺

∂𝑛𝑖
)

𝑇,𝑝,𝑛𝑙

 is given the name chemical potential μ𝑖 with respect to compo-

nent 𝑖 and is defined as follows [11]:  

μ𝑖 = (
∂𝐺

∂𝑛𝑖
)

𝑇,𝑝,𝑛𝑙

(3.17)

Alternatively, this equation can be written using the activity 𝑎𝑖  of a compound 𝑖, which was first 

introduced by Lewis [8]:  

μ𝑖(𝑝, 𝑇) = μ𝑖(𝑝0, 𝑇) + 𝑅𝑇 𝑙𝑛(𝑎𝑖) (3.18)

There, 𝑝0 is a known pressure value. 

3.1.3 Thermodynamic functions derived from the Gibbs energy 

Entropy 

Substituting equation (3.9) into equation (3.11) gives:  

𝐺 = 𝑈 + 𝑝𝑉 − 𝑇𝑆 

The total differential d𝐺 results in  

d𝐺 = d𝑈 + 𝑉d𝑝 + 𝑝d𝑉 − 𝑇d𝑆 − 𝑆d𝑇 

Using equation (3.7), this can also be written as: 

d𝐺 = d𝑈 + 𝑉d𝑝 + 𝑝d𝑉 − 𝑇d𝑒𝑆 − 𝑇d𝑖𝑆 − 𝑆d𝑇 

when considering the change of the Gibbs energy. Making use of the first law of thermodynamics 

and specifically equations (3.2) and (3.3), d𝑈 + 𝑝d𝑉 = d𝑄. According to the second law of ther-

modynamics, also 𝑇d𝑒𝑆 = d𝑄. For reversible processes, d𝑖𝑆 = 0 [8]. What therefore remains is:  

d𝐺 = 𝑉d𝑝 − 𝑆d𝑇 

Taking the derivative of the above equation with respect to temperature at constant pressure 

gives the negative entropy, which, according to the second law of thermodynamics, is always neg-

ative (see e.g., [11]):  

(
∂𝐺

∂𝑇
)

𝑝
= −𝑆 < 0 (3.19) 
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Enthalpy 

The Gibbs-Helmholtz equation, where the enthalpy 𝐻 is related to Gibbs energy 𝐺, is derived by 

substituting equation (3.19) for the entropy in equation (3.11), 

𝐺 = 𝐻 + (
∂𝐺

∂𝑇
)

𝑝
𝑇 

and arriving at: 

∂

∂𝑇
(

𝐺

𝑇
) = −

𝐻

𝑇2
(3.20) 

Details can e.g. be found in the textbook of Kondepudi and Prigogine [8]. 

Heat capacity 

The heat capacity 𝐶𝑝 at constant pressure relates to the Gibbs energy through the following equa-

tion [10]: 

𝐶𝑝 = −𝑇 (
𝜕2𝐺

∂𝑇2)
𝑝

(3.21) 

This can be derived from equation (3.14) and the Gibbs-Helmholtz equation (3.20):  

𝐶𝑝 = (
d𝐻

d𝑇
)

𝑝
, 𝐻 = −𝑇2

∂

∂𝑇
(

𝐺

𝑇
) 

𝐶𝑝 = [−2𝑇
∂

∂𝑇
(

𝐺

𝑇
) − 𝑇2

∂2

∂𝑇2
(

𝐺

𝑇
)]|

𝑝

= 

= [−2𝑇 (
𝜕𝐺 ∂𝑇⁄

𝑇
−

𝐺

𝑇2) − 𝑇2
∂

∂𝑇
(

𝜕𝐺 ∂𝑇⁄

𝑇
−

𝐺

𝑇2)]|
𝑝

= 

= [2
𝐺

𝑇
− 2

∂𝐺

∂𝑇
− 𝑇2 (

𝜕2𝐺 𝜕𝑇2⁄

𝑇
−

𝜕𝐺 𝜕𝑇⁄

𝑇2
−

𝜕𝐺 𝜕𝑇⁄

𝑇2
+ 2

𝐺

𝑇3)]|
𝑝

= 

= −𝑇 (
∂2𝐺

∂𝑇2)
𝑝

 

3.1.4 Phase equilibria  

Definition of a phase 

In general, thermodynamics knows three states of matter, namely solid, liquid, and gas, which are 

often referred to as phases. In addition, several distinct solid, liquid, or gaseous phases can occur 

in a thermodynamic system. [8] A precise definition of a phase can be found in [11]: 
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“The term phase refers to a quantity of matter that is homogeneous throughout in both chemical 

composition and physical structure. Homogeneity in physical structure means that the matter is all 

solid, or all liquid, or all vapor (or equivalently all gas). A system can contain one or more phases.”  

Equilibria and equilibrium conditions 

A physical system can either be in the state of equilibrium or non-equilibrium. If the system is not 

in equilibrium, there exist irreversible processes which evolve the system towards the state of 

equilibrium. These processes can be internal if the system is isolated and therefore not able to 

react with its surroundings or in addition also externally if the system is not isolated. Internal 

changes include the change of intensive properties as the temperature and the pressure toward 

uniform values, which occur in the state of equilibrium. Once these uniform values are reached 

(e.g., in the state of equilibrium, the system has uniform temperature), the system is in equilibrium 

and the irreversible processes driving the system towards equilibrium vanish. [8, 11] 

In the state of equilibrium with constant temperature and pressure, the following must hold [11]:  

d𝐺|𝑇,𝑝 = 0 (3.22) 

This means the Gibbs energy has an extremum at the point of equilibrium. Using the first and 

second laws of thermodynamics as well as the definitions for the enthalpy and the Gibbs energy, 

it can be shown that this extremum is a minimum in all cases. [11] 

Using the chemical potential, the equilibrium condition can also be written as ([11]):  

d𝐺|𝑇,𝑝 = ∑ μ𝑖d𝑛𝑖

𝑗

𝑖=1

= 0 (3.23) 

Phase equilibria in unary systems 

Depending on the temperature and the pressure, different phases can be stable in a system, 

whereas for a phase to be stable, its Gibbs energy must be the minimum of all Gibbs energies of all 

phases at the conditions given. At the coexistence line p(T), two phases are present in the unary 

system, three phases exist at the triple point. The stability ranges of the phases are often presented 

in phase diagrams (see e.g., Figure 3.1), where the pressure is plotted against the temperature and 

the lines mark equilibria between two phases. Three phases coexist at the triple point. [8] 
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Figure 3.1: Phase diagram for a unary system [8] 

In an equilibrium of two phases, the chemical potential of the two phases must be the same [8, 

11]: 

μα = μβ (3.24) 

There, the superscripts α and β denote two different phases. Equation (3.24) can be derived from 

equation (3.23): 

μ𝛼d𝑛𝛼 + μ𝛽d𝑛𝛽 = 0 

As the number of moles in a phase can change but not the total amount of moles in the system, the 

following must hold [11]: 

d𝑛𝛼 = −d𝑛𝛽 

Combining the last two equations leads to equation (3.24).  

In case there are multiple phases of the same compound at one point, the chemical potentials of 

all phases must be the same as well because equation (3.24) must hold for any combination of two 

phases in the system. For 𝑝 phases, the equilibrium condition becomes, whereas in compliance 

with Gibbs’ phase rule (number of phases + degrees of freedom = components + 2), in this case, p 

cannot be greater than 3: [8] 

μ𝛼 = μ𝛽 = ⋯ = μ𝑝 (3.25) 

Phase equilibria in binary systems 

The term mole fraction, which is generally used to describe the thermodynamics of systems of 

more than one component, is introduced. The mole fraction 𝑥𝑖 is the number of moles 𝑛𝑖 of com-

ponent 𝑖 relative to the total amount of moles 𝑛 in the system [11]: 

𝑥𝑖 =
𝑛𝑖

𝑛
(3.26) 
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A phase diagram of a binary system can, for example, plot the temperature over the mole fraction 

of one component. Figure 3.2 shows a phase diagram of a mixture of two similar liquids a and b 

which are in equilibrium with their vapor.  

 

Figure 3.2: Phase diagram of a mixture of two liquids [8] 

The phase diagram for a mixture of two solids a and b which are miscible in the liquid phase but 

not in the solid can be seen in Figure 3.3. Point E is called the eutectic point. [8] 

 

Figure 3.3: Solid-liquid mixture with eutectic [8] 

Similar to the unary system, an equilibrium condition for the chemical potential can be defined 

for the binary system [11]:  

μa
𝛼 = μa

𝛽
, μb

𝛼 = μb
𝛽 (3.27) 

There, the superscripts 𝛼 and 𝛽 denote again two different phases, and the subscripts 𝑎 and 𝑏 

denote two different components. This condition can, like in the unary case, be derived from the 

fact that the Gibbs energy of the system takes on a minimum in the equilibrium. Also, the total 

number of moles in the system cannot change, whereas the number of moles of different phases 

of a component can. [11] 

The chemical potentials for a binary system can be written as [12]:  
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μa
𝛼 = 𝐺𝛼 − 𝑥𝛼

𝜕𝐺𝛼

𝜕𝑥𝛼
(3.28.1) 

μb
𝛼 = 𝐺𝛼 + (1 − 𝑥𝛼)

∂𝐺𝛼

∂𝑥𝛼
(3.28.2) 

μa
𝛽

= 𝐺𝛽 − 𝑥𝛽
∂𝐺𝛽

∂𝑥𝛽
(3.28.3) 

μb
𝛽

= 𝐺𝛽 + (1 − 𝑥𝛽)
∂𝐺𝛽

∂𝑥𝛽
(3.28.4) 

𝐺𝛼 and 𝐺𝛽 are the Gibbs energies of the respective phases. Using the fact that the chemical poten-

tials of both components must be equal for both phases (equation (3.27)), equations (3.28) be 

simplified to:  

𝐺𝛼 − 𝑥𝛼
𝜕𝐺𝛼

𝜕𝑥𝛼
= 𝐺𝛽 − 𝑥𝛽

∂𝐺𝛽

∂𝑥𝛽
(3.29.1) 

∂𝐺𝛼

∂𝑥𝛼
=

∂𝐺𝛽

∂𝑥𝛽
(3.29.2) 

Equation (3.29.2) can be derived from the equilibrium condition for component b. From equation 

(3.27) follows:  

μb
𝛼 = μb

𝛽
 

Using equations (3.28.2) and (3.28.4), this can be written as:  

𝐺𝛼 + (1 − 𝑥𝛼)
∂𝐺𝛼

∂𝑥𝛼
= 𝐺𝛽 + (1 − 𝑥𝛽)

∂𝐺𝛽

∂𝑥𝛽
 

This can be reformatted to (using equations (3.28.1) and (3.28.3)):  

𝜇𝑎
𝛼 +

𝜕𝐺𝛼

𝜕𝑥𝛼
= 𝜇𝑎

𝛽
+

𝜕𝐺𝛽

𝜕𝑥𝛽
 

Following equation (3.27) also μa
𝛼 = μa

𝛽
 most hold and therefore equation (3.29.2) can be derived.  

3.1.5 Thermodynamic Databases 

For this work, different thermodynamic databases are of importance. On the one hand, this is the 

FactSage software presented in [13], and on the other hand also the SGTE data for pure elements 

of [14]. Given the data of each of the two databases, the minimum Gibbs energy for a certain tem-

perature and pressure can be calculated. Following this, phase equilibria and phase transitions 

can be determined.  

The FactSage software provides extensive amounts of data not only for pure elements but also for 

compounds. For pure elements and compounds, the Gibbs energy, entropy, enthalpy, and heat 

capacity over a user-specified temperature range can be retrieved. The data comes in tabular form 
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and its source for pure elements is the aforementioned SGTE data for pure elements [13]. The 

sources for other data in the FactSage software can also be found in chapter 3 of [13]. 

The SGTE data for pure elements represents the Gibbs energy, entropy, enthalpy, and heat capacity 

for 78 elements in the form of functions with constant coefficients in certain temperature ranges. 

As the enthalpy and therefore the Gibbs energy have no absolute value, a reference state of 

298.15K and a pressure of 1 bar is used for the tabulation of the enthalpy of formation. The Gibbs 

energy functions are tabulated using the enthalpy at the reference state and the absolute values 

for the entropy. [14] 

The functions for the Gibbs energy, entropy, enthalpy, and heat capacity are the following [14]: 

𝐺 = 𝑎 + 𝑏 ⋅ 𝑇 + 𝑐 ⋅ 𝑇 ⋅ ln(𝑇) + ∑ 𝑑 ⋅ 𝑇𝑛 

𝑆 = −𝑏 − 𝑐 − 𝑐 ⋅ ln(𝑇) − ∑ 𝑛 ⋅ 𝑑 ⋅ 𝑇𝑛−1 

𝐻 = 𝑎 − 𝑐 ⋅ 𝑇 − ∑(𝑛 − 1) ⋅ 𝑑 ⋅ 𝑇𝑛 

𝐶𝑝 = −𝑐 − ∑ 𝑛 ⋅ (𝑛 − 1) ⋅ 𝑑 ⋅ 𝑇𝑛−1 

In these equations, 𝑇 stands for the temperature, 𝑛 are integer values (often 2, 3, or -1, but also 

other values are possible and occur). The coefficients 𝑎, 𝑏, 𝑐, and 𝑑 (one 𝑑 value for every unique 

𝑛) are listed in the data for different temperature ranges. For elements with magnetic properties 

like Fe, an additional magnetic term is added to each of the functions. Also, pressure-dependent 

terms are added to the functions of some elements. [14] 

Barin [15] presents thermodynamic tables not only for pure elements but also for compounds. For 

pure elements, the values slightly differ from the ones obtained from evaluating the SGTE equa-

tions. Therefore, these tables are used to simulate real measurement data and therefore test the 

performance of the classification network on data that does not come from the SGTE database. 

Phase equilibria (e.g., solidus/liquidus curve in the Ag/Au-system) are calculated by using ther-

modynamic data and the resulting coexistence curves are compared to those obtained by the soft-

ware ThermoCalc [16]. 

3.2 Basics of neural networks and machine learning 

3.2.1 Types of machine learning 

Machine Learning is a technology that over the past two decades has become an important field 

in computer science [17]. In general, it is a computer system that is programmed to learn the the-

oretical laws of any learning system automatically [18]. It has a very broad spectrum of applica-

tions, including web page ranking for search engines, automatic translations, classification of face 
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images, speech recognition, and many more [17]. Machine Learning is often divided into three 

subcategories: supervised, unsupervised, and reinforcement learning [19]. 

This work will mostly use supervised learning techniques.  

Supervised learning 

Supervised machine learning focuses on labeled data. This means, that for every data point, a cor-

rect label exists, which is often assigned to it by humans. The machine learning model’s task is to 

correctly learn and predict the label for a data point when only given its features. [19] 

Common supervised learning tasks are classification and regression. In classification, the model 

learns to classify the input into finite many classes. Regression handles continuous data, whereas 

the goal often is to approximate functions from the given data points. [20] 

Unsupervised learning 

As opposed to supervised learning, which needs labeled data, unsupervised learning does not 

work with labeled data. It tries to find a good model by just knowing the structure of the data, but 

nothing else. [19] 

Common unsupervised learning tasks are clustering, density estimation, or down-projection. In 

clustering, as the name suggests, the goal is to divide the data into clusters where data points are 

similar. Density estimation tries to determine the data distribution in the input space. Down-pro-

jection aims to reduce the dimensionality of multi-dimensional data into a space, where the data 

can be visualized. [20] 

Reinforcement learning 

Like in unsupervised learning, also in reinforcement learning there are no labels or target values 

given. It rather has a so-called agent in a defined environment which can perform certain actions 

which change its state. Based on the agent’s current state, it tries to learn the best possible action 

for this state. Usually, a reward signal is used to reward or punish the agent for good or bad actions 

and tries to use these learnings to make good predictions in the future. [19] 

Reinforcement learning is used to learn to play games, for example, Backgammon [20] or the Chi-

nese board game Go, as the company DeepMind showed with AlphaGo which was able to beat the 

best Go players in the world [3]. Also, autonomous driving often relies on reinforcement learning 

[19]. 

3.2.2 General idea and types of neural networks 

Gurney gives a good definition of neural networks:  

“A neural network is an interconnected assembly of simple processing elements, units or nodes, 

whose functionality is loosely based on the animal neuron. The processing ability of the network is 

stored in the interunit connection strengths, or weights, obtained by a process of adaptation to, or 

learning from, a set of training patterns.” [21] 
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This definition is very general and therefore allows for different kinds of neural networks. There 

are many different types of neural network architectures in existence, whereas for this work, 

(deep) feed-forward networks will be most important. Therefore, only the idea and theory behind 

(deep) feed-forward networks are presented in this chapter.  

Basic structure of feed-forward neural networks 

In easier words, the definition of neural networks in [21] from above says that a neural network 

can take an input and give an output that is adapted to the desired task. The network is made up 

of elements called either units, nodes, or also neurons (this work uses the term node(s)), which 

are structured in layers. Each node’s input vector is multiplied with a weight matrix before being 

added up. Adding a bias term ([20]) to this sum gives the pre-activation, which is passed through 

a so-called activation function 𝑓 to build the node’s output. This output can either be the output 

of the network or serve as an input for the next layer. Figure 3.4 shows a visualization of an arbi-

trary node. [21]  

 

Figure 3.4: A node in a neural network [4] 

Figure 3.5 shows an arbitrary network where each circle marks a node in the network. It consists 

of three layers: the input, one hidden, and the output layer. Whilst every network has an input and 

an output layer, it can have an arbitrary number of hidden layers. Networks with more than 10 

hidden layers are often referred to as deep networks [19]. Also, the number of nodes in a layer is 

not restricted and can be as small as one node per layer but also be a large collection of nodes [21].  

 

Figure 3.5: Feed forward neural network [19] 
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Mathematical representation of neural networks 

The above chapter gives a very abstract idea of how neural networks are built. Mathematically, 

neural networks can be formulated similarly to [20]. For an arbitrary node 𝑗 in an arbitrary layer 

of a neural network with an input vector 𝒙 of length 𝐷, the pre-activation 𝑠𝑗 can be formulated as:  

𝑠𝑗 = ∑ 𝑤𝑗𝑖

𝐷

𝑖=1

𝑥𝑖 + 𝑏𝑖 (3.30) 

Where 𝑠𝑗 is the entry in the 𝑗th row of the pre-activation vector 𝒔, 𝑤𝑗𝑖 is the entry in the 𝑗th row and 

𝑖th column of the weight matrix 𝑾, 𝑥𝑖 the entry in the 𝑖th row of the input vector 𝒙 and 𝑏𝑖 the entry 

in the 𝑖th row of the bias vector 𝒃. 𝒔 is called pre-activation because, in the next step, the output of 

this matrix-vector multiplication is passed through a (typically non-linear) function called activa-

tion function so that it can represent an extremely large number of prediction mappings [19]. 

Without a non-linear activation function, a neural network just represents a linear transformation 

and would not be able to learn complex tasks [22]. In general, an activation function can be any 

function. If the layer is the output layer, depending on the task, different activation functions are 

used: for regression problems, the output activation is typically the linear function, for binary 

classification, it is the logistic sigmoid function and for multi-class classification, a softmax activa-

tion is used [20]. In hidden layers, also other functions are common as activation functions. Table 

3.1 gives an overview of the most used activation functions.  

Table 3.1: Common activation functions [22] 

Name Function Graph 

Linear 𝑓(𝑠) = 𝑠 

 

Sigmoid or Logistic 𝑓(𝑠) =
1

1 + 𝑒−𝑠
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Tanh 𝑓(𝑠) = tanh(𝑠) =
𝑒𝑠 − 𝑒−𝑠

𝑒𝑠 + 𝑒−𝑠
 

 

ReLU 𝑓(𝑠) = max(0, 𝑠) 

 

Leaky ReLU 𝑓(𝑠) = max(0.1 ⋅ 𝑠, 𝑠) 

 

ELU 𝑓(𝑠) = {
𝑠,                   𝑠 ≥ 0 
α(𝑒𝑠 − 1), 𝑠 < 0

 

 

Softmax 𝑓(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝑗

 
 

 

Applying an activation function 𝑓 to the pre-activation 𝒔 gives the activations 𝒂: 

𝑎𝑗 = 𝑓(𝑠𝑗) = 𝑓 (∑ 𝑤𝑗𝑖

𝐷

𝑖=1

𝑥𝑖 + 𝑏𝑖) (3.31) 
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Where 𝑎𝑗 is the entry in the 𝑗-th row of the activation vector 𝒂. The activation can now be either a 

network output or an input to the next layer. In case it is the input to the next layer, the next layer’s 

activation looks as follows when the superscripts 1 and 2 denote the number of the layer and 𝑀 

is the length of the activation vector of the first layer [20]: 

𝑎𝑘
(2) = 𝑓(2) (∑ 𝑤𝑘𝑗

(2)

𝑀

𝑗=1

𝑎𝑗
(1)

+ 𝑏𝑘
(2)

) = 𝑓(2) (∑ 𝑤𝑘𝑗
(2)

𝑀

𝑗=1

𝑓(1) (∑ 𝑤𝑗𝑖
(1)

𝐷

𝑖=1

𝑥𝑖 + 𝑏𝑖
(1)

) + 𝑏𝑘
(2)

) (3.32) 

There, 𝑎𝑘 is the entry in the 𝑘-th row of the activation vector 𝒂 of the second layer. This procedure 

is continued for every layer there is in the network.  

3.2.3 Training a neural network 

The goal of a neural network is to find weight matrices 𝑾 and bias vectors 𝒃 that allow the net-

work to approximate the given target with its output as well as possible. To measure how well the 

network can do this, loss functions or also called cost functions are used. The loss function gives a 

scalar value that is small when the network can approximate the target data well and big when 

not. To adjust the network parameters so that this loss is minimized, an algorithm called gradient 

descent is used. [23]  

It depends on the task, which loss function is used. Even for one task, multiple loss functions can 

be applied. For regression tasks, it is common to use the mean squared error loss, where 𝒚𝒊 de-

notes the target vector:  

𝐿(𝑾, 𝒃, 𝒙) =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖(𝑥𝑖))

2
𝑛

𝑖=1

(3.33) 

In the case of classification, the cross-entropy loss is usually used:  

𝐿(𝑾, 𝒃, 𝒙) = − ∑ 𝑦𝑖

𝐶

𝑖=1

log(�̂�𝑖(𝑥𝑖)) (3.34) 

There are also other loss functions, these two are however the most commonly used. [24] 

To now update the network parameters 𝑾 and 𝒃, the afore-mentioned gradient descent algorithm 

is used. It calculates the partial derivatives of the network’s loss with respect to every single net-

work parameter (i.e., every entry in every weight matrix and every bias vector in the network). 

The partial derivatives are multiplied with a hyperparameter called learning rate 𝜂 and subtracted 

from the original parameter. For an arbitrary weight vector 𝒘𝒌 part of a weight matrix, the update 

looks as follows when the updated weight vector is 𝒘𝒌
′ : 

𝒘𝒌
′ = 𝒘𝒌 − η

∂𝐿

∂𝒘𝒌

(3.35) 

For the bias vector, this works analogously. [23]  
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This is the most basic update rule, but there are also more sophisticated methods to update neural 

network parameters. The update rules, which are often also referred to as optimizers, that are 

used in this work and deviate from this basic rule will be introduced in the description of the re-

spective implementation.  

The update of the parameters is an iterative process. This means every input is used multiple 

times. Between seeing the same input, at least one update (often multiple updates) is made to the 

network, leading in the best case to a minimum loss [20]. In this work, one iteration through all 

inputs is called an epoch. The number of times the network receives the same input is therefore 

called the number of epochs, which is a parameter to be chosen optimally for each training rou-

tine. 

To speed up the training process, the inputs are often passed to the network in batches. Such a 

batch can contain all input values, whereas the network is evaluated on all input values at once. 

More commonly used are batches that contain only parts of the input values at once. [20] For this 

work, the number of values in one batch will be referred to as the batch size.  

3.2.4 Generalization and dataset splits 

The main goal when training a neural network is to be able to generalize the predictions it makes. 

This means the network should also be able to make accurate predictions for input data it has not 

been trained on. To test the generalization abilities, the dataset is split into a training and a test 

set, whereas both sets are generated using the same procedure. During the training phase, the 

network is trained using the training set whereas after that its generalization abilities are tested 

using the test set. In some cases, also a second split and a so-called validation set are used. The 

validation set is used to compare different sets of network parameters and to choose the set which 

gives the best performance. [20] 

3.2.5 Neural networks in Python 

The programming language Python is one of the most used languages to implement neural net-

works. Standard libraries for this purpose are Tensorflow [25] and Pytorch [26]. Both allow the 

programmer to easily and efficiently implement the concepts presented above. For the implemen-

tation of this work, Pytorch is used to build neural networks and training routines.  

3.3 Applications of neural networks to thermodynamics 

As neural networks and machine learning gained popularity over the last years, experiments in 

all kinds of fields were made to apply those technologies. Also in thermodynamics, work was done 

to discover possible applications. In the following, recent publications regarding the topic of neu-

ral networks and machine learning in thermodynamics are presented. 
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3.3.1 Neural networks applied to unary systems 

In [4], Länge presented an approximation of the thermodynamic functions 𝐺(𝑇), 𝑆(𝑇), 𝐻(𝑇) −

𝐻(𝑇𝑟𝑒𝑓) & 𝐶𝑝(𝑇) of unary systems in a temperature range from 0𝐾 − 6000𝐾 using an artificial 

neural network. The paper presents the results of the specific application of the approximation of 

above-mentioned functions for pure iron. [4] 

Länge used a network consisting of two subnetworks, where each has one hidden layer (Figure 

3.6). Whilst the hidden layer of subnetwork 1 (purple in the figure) has only one node, no specifi-

cations are made about the number of nodes in the second subnetwork (orange in the figure). The 

networks take as input (𝑥𝑡) temperature values (which can be different for the four functions) 

and output an approximation for the Gibbs energy 𝐺(𝑇). For the other functions, Länge made use 

of the partial differential equations presented in 3.1.3, which link the entropy, enthalpy, and heat 

capacity to the Gibbs energy. Using equations 3.31 and 3.32, the network’s parameters can be re-

used to approximate the derivatives of the Gibbs energy. As the network’s input 𝑥𝑡 are tempera-

ture values and the networks output are Gibbs energy values, the partial derivative of the output 

(e.g., equation 3.32) with respect to the input 𝑥𝑡 can be taken. Taking the derivatives according to 

the equations presented in 3.1.3 gives the entropy, enthalpy, and heat capacity values as functions 

of the network parameters. This can be interpreted as having one network per property but with 

shared parameters. Therefore, it would be possible to train a network only on the data of one 

function and receive the network for the others at the same time. [4] 

 

Figure 3.6: Network architecture [4] 

Both subnetworks use different activation functions. For the first subnetwork, a function that aims 

to introduce laws of physics into the network is used [4]:  

𝑓𝑎(𝑠) = 𝐸0 +
3

2
𝑅θ𝐸 + 3𝑅𝑠 log(1 − 𝑒−θ𝐸/𝑠) −

1

2
𝑎𝑠2 −

1

6
𝑏𝑠3 (3.36) 

There, 𝑅 is the universal gas constant, 𝑠 are the pre-activations and all the other variables are 

network parameters that are learned by the network. The second subnetwork uses the softplus 

function as its activation function [4]: 

𝑓𝑏(𝑠) = log(𝑒𝑠 + 1) (3.37) 
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As a loss function, Länge used the mean squared error for each of the four thermodynamic func-

tions and summed them up. The magnitudes of the functions’ values vary, therefore the contribu-

tion of each function to the total loss is weighted by undisclosed factors 𝑞 :  

𝐿total = 𝑞G𝐿G + 𝑞S𝐿S + 𝑞H𝐿H + 𝑞C𝐿C (3.38) 

Where 𝐿G, 𝐿S, 𝐿H and 𝐿C are the mean squared errors for the respective functions. [4] 

The work led to good results. E.g., the heat capacity of the bcc phase of pure iron could be approx-

imated well in the range from 0𝐾 to 3000𝐾. Further results can be found in the original paper.  

Based on Länge’s network, the present work investigates the advantages and disadvantages of a 

different network architecture for approximating the Gibbs energy, entropy, enthalpy, and heat 

capacity in unary systems.  

3.3.2 Neural networks applied to binary systems 

While the paper ([4]) presented above tried to approximate thermodynamic functions in unary 

systems, also several papers were published on the prediction of phase equilibria in binary sys-

tems using neural networks. Many of the networks for phase equilibria prediction found in the 

literature are restricted to certain systems or elements: The network presented by Kan et al [5] 

can predict phase equilibria in aqueous two-phase systems, and Farzi et al [7] estimated the phase 

equilibria of eleven binary systems containing acetone. Bilgin et al predicted the vapor-liquid 

equilibria of six systems of different chemical structures in [6]. 

Goals, approaches, and network architectures 

All the above-mentioned works [5–7, 27] used feed-forward neural networks. As the networks 

are applied to different chemical systems, both the number of input and output nodes are differ-

ent. However, all of them predict a fixed number of equilibria composition values.  

Farzi et al [7] used literature data for the vapor-liquid equilibria of eleven binary systems contai-

ning acetone in the temperature range from 298.15-391.25K and the pressure range from 2.640-

101.33kPa. Amongst the eleven binary systems were e.g., benzene, ethanol, or ethyl acetate. The 

network used in this paper consists of one hidden layer, an input layer with five nodes, and an 

output layer with 2 nodes. The predictions made are the mole fractions in the equilibrium of ace-

tone in liquid and vapor phases. As input, the network receives critical temperature, critical pres-

sure, acentric factor, temperature, and pressure values. The best results were achieved with a net-

work consisting of 19 nodes in the hidden layers and a logarithmic sigmoid function as the activa-

tion function of the hidden layer and a linear activation in the output layer. The dataset was split 

so that 70% of the data was used for training, 20% for validation, and 10% for testing. For the 

majority of the eleven systems used, the phase equilibria and as a result, the phase diagrams could 

be predicted well and with only small deviations from the true values. [7] For the present work, 

the network presented in [7] cannot be applied directly because it only has two output nodes and 
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can therefore only predict one equilibrium (i.e., two equilibrium composition values). For a net-

work to be able to predict equilibria also for other systems, where there can occur multiple equi-

libria at a given temperature, more than two output nodes are required.  

The work by Kan et al [5] aimed to predict equilibria in aqueous two-phase systems. It compared 

two different network architectures. Both networks have three input and four output nodes. The 

difference is that one network is fully connected, whereas the other network is made up of four 

subnetworks. For both networks, the inputs are physical properties (weight proportions and mo-

lecular weights of the components) which are the base for predicting the equilibrium composi-

tions in the 4 nodes of the output layer. The layers are activated by the sigmoid function. [5] Sim-

ilar to the work by Farzi et al [7], also these networks cannot be directly applied in the present 

work as both networks have 4 output nodes and are therefore restricted in the number of equi-

libria that can be predicted at once.  

In [6], the goal of Bilgin et al was to predict both equilibrium compositions as well as activity co-

efficients for six different systems. It used a fully connected feed-forward neural network with 

two hidden layers and the logarithmic sigmoid function as activation. The predictions were made 

given the low boiling component concentrations in the liquid phase, whereas the network’s out-

puts are the concentrations in the vapor phase as well as the activity coefficients of the liquid 

phase. For this aim, the network has three nodes in the output layer and can therefore only predict 

the composition values of one equilibrium. [6] This fact is again limiting when trying to predict a 

variable number of equilibria in different chemical systems, wherefore also this approach cannot 

be applied directly in the present work.  
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4 Methods and implementations 

For this work, multiple Python packages are implemented. Each of the tasks is structured in a sin-

gle package and additionally, a handler for the SGTE data, which is used to create the training, 

testing, and validation datasets, is also structured in a package. In total, this leads to five packages 

which are explained in this chapter:  

- sgte: data handler to create the training, testing, and validation datasets 

- laenge: rebuild of the network proposed by Länge (see 3.3.1) 

- thermonet: a different approach to what was presented in the paper by Länge 

- binarypredictor: neural networks that predict phase equilibria in binary systems 

- thermoclassifier: a classifier that, given measurement data for the heat capacity of any 

of 78 elements, predicts both the element and the phase(s) of the measurements 

4.1 SGTE data handling – sgte 

4.1.1 Data extraction and ordering 

As described in 3.1.5, the SGTE data is listed in [14] as coefficients of functions. Using a Python 

script, these coefficients and in the case of the polynomial terms, also the corresponding expo-

nents, are extracted from the SGTE PDF file and stored in one Excel file per element. The Excel files 

are stored inside the package so that the package can be used on any computer. Figure 4.1 shows 

for the example of iron, how these files are structured.  

 

Figure 4.1: Excel table for the SGTE coefficients of iron (Fe) 

The column “Phase” stores the name of the phase for which the coefficients are listed in the cor-

responding row. Following this, columns B to I and column S list coefficients for the magnetic and 

pressure-dependent terms. These coefficients are only stored for those elements, where either a 

magnetic or pressure-dependent term or both are used in the SGTE equations. The columns with 

numeric values as column names refer to the polynomial terms, whereas the column name, in this 

case, is the exponent of the respective polynomial term. In column L, the 𝑐 value is listed, which 

refers to the coefficient of the logarithmic term in the SGTE equation of the Gibbs energy. The 

columns “Start temperature” and “End temperature” define the temperature ranges in Kelvin in 

which the coefficients of the respective rows are valid.  

As the coefficients are extracted from a PDF file automatically using a Python script, the ordering 

of the columns is made based on the first occurrence of the column name in the PDF file. Figure 

4.1 therefore only gives an example of how these files are structured. For other elements, the table 
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orderings can look different. When using the tables to create the training, testing, and validation 

datasets, the columns are referenced by the column name, which is why a certain ordering is not 

required.  

4.1.2 Dataset creation 

Using the class SGTEHandler, the Gibbs energy, entropy, enthalpy, or heat capacity values of any 

element and any phase in the SGTE data can be calculated for any temperature in the defined 

ranges.  

 

Figure 4.2: Basic workflow of the SGTEHandler 

An SGTEHandler is always defined for one element which can either be provided as an argument 

when defining the class or as a command-line input. For the given element, the corresponding 

Excel file (see 4.1.1) is loaded as a pandas DataFrame. To evaluate the equations, the correspond-

ing class method must be called, whereas the following arguments must be passed:  

- Temperature range and temperature step: A start and end value for the temperature 

range as well as the size of the steps made in this range need to be defined in Kelvin. For 

the input, the ranges in which the coefficients are defined in the SGTE data do not need to 

be known. The class handles transitions between the defined ranges automatically and 

returns smooth functions. Also, the minimum and maximum values of the defined ranges 

do not necessarily have to be known as the method only considers temperatures for which 

the coefficients are defined.  

- Pressure: A pressure value needs to be passed as an argument as a float value. For most 

of the elements, the SGTE equations are only defined for a pressure of 1𝑏𝑎𝑟. Therefore, for 

these elements entering different pressure values will not affect the results.  

- Phases: The phases for which the evaluation should be made need to be defined and 

passed as a list of strings, whereas these strings can either be the phase names as defined 

in the Excel coefficient data sheet or “all”. In the first case, only the phases provided are 

considered, in the second case all phases for which coefficients are defined are taken into 

account.  

- Functions: For each of Gibbs energy, entropy, enthalpy, and heat capacity, a Boolean value 

has to be passed to determine which functions to evaluate.  

For the equation evaluation, the coefficients from the Excel file are used to solve the equations. 

The values of the polynomial terms are calculated by using the column names as the exponents of 
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the temperature (for the equations see 3.1.5) and multiplying them with the respective coeffi-

cients. If magnetic and pressure-dependent terms are defined for an element, also these equations 

are solved for every temperature in the range as well as the logarithmic term. For the output, the 

three results are added to each other. As a result of the evaluation process, a pandas DataFrame 

containing all the values is stored as a class attribute. 

4.1.3 Stable properties 

The process mentioned in 4.1.2 does not consider whether the phase considered is stable at a 

temperature and pressure or not. As in some cases, it is necessary to only get the values for any of 

the functions for only stable phases, a class method is introduced to return those values. For a 

stable phase, its Gibbs energy must be the minimum Gibbs energy of all possible phases at the 

given conditions (see 3.1.4). Therefore, to get the values of the stable phases, only the function 

values of a phase for which the Gibbs energy is smaller than the Gibbs energy of all the other 

phases are returned.  

For visualization purposes, it is possible to plot any of the four functions over the temperature 

only for stable phases. The phase information can be included in the plot so that it can be seen 

which phase is stable at a given temperature. Figure 4.3 shows as an example the Gibbs energy 

function of iron over the temperature in the range from 300𝐾 to 6000𝐾, whereas the different 

coloring shows the stable phases at a temperature.  

 

Figure 4.3: Gibbs energy of iron over the temperature 
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4.2 Adaption of the Länge network – laenge  

4.2.1 Goal and workflow 

In this package, the network presented by Länge in [4] is implemented and trained to check how 

well and easy the network can be trained so that it can serve as a basis for other networks in this 

work. Länge uses experimental data to approximate the thermodynamic functions of Gibbs en-

ergy, entropy, enthalpy, and heat capacity using a neural network as described in 3.3.1. As exper-

imental data is not available freely and in abundance, for the training of this network, the data 

from the SGTE database is used. Whilst it would be possible to apply this network to any element, 

it is trained only on data from the element iron and its BCC phase. Länge’s paper also presents the 

results for iron, thus the results from both networks can be compared well.  

As described in Figure 3.6, the network’s direct output is the Gibbs energy as a function of the 

temperature, which is the input to the network. Using the equations described in 3.1.3 the net-

work’s parameters can be reused to also calculate the entropy, enthalpy, and heat capacity. Figure 

4.4 shows the basic workflow of the network. The Python class, in which the network is imple-

mented, is however designed in such a way that all four functions can be calculated at once.  

 

Figure 4.4: Basic workflow of the rebuild of Länge’s network 

4.2.2 Dataset logic 

As shortly described above, the experimental data used in [4] is not easily available, although the 

SGTE database provides similar data in abundance. Therefore, for the training of this network, the 

SGTE data is used by utilizing the data handler described in 4.1. The Python library PyTorch pro-

vides extensive tools for creating and loading datasets. A PyTorch dataset called LaengeDataset is 

created and takes the following arguments for its creation:  

- Temperature range and step size: the temperature range which the SGTE data is loaded 

for, and the size of steps taken in this range. For further reference, see 4.1.2.  

- Element: which element to load the data for 
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- Phase: which phase to load the data for 

- Scaling: whether to scale the data to the interval from -1 to 1  

Using these arguments, the SGTE functions are evaluated. The resulting data is then accessible as 

a combination of a temperature value and the values of the respective functions at this tempera-

ture. In case the scaling flag is activated (i.e., the value set to True), the temperature and the Gibbs 

energy values of the total temperature range are scaled by the respective maximum values to the 

interval from -1 to 1.  

4.2.3 Network architecture 

For this package, the network presented in Figure 3.6 is implemented with the information pro-

vided in [4]. The paper does not provide information on the number of nodes in the hidden layer 

of Subnetwork 2, wherefore this number is a variable in the network’s definition. It is also not 

described in the paper how the outputs of the two subnetworks are combined. For this, the as-

sumption is that the outputs are simply added to each other without any weighting factors.  

In addition to the network itself, the activation functions are also implemented as PyTorch mod-

ules so that the parameters in the activation function can be learned during the training process 

as it was done in [4]. Whilst the softplus activation (equation (3.37)) is a standard activation func-

tion and therefore available in the PyTorch library, its first and second derivatives are not availa-

ble there. The derivatives are however needed for the calculation of the entropy, enthalpy, and 

heat capacity. Therefore, the softplus activation is implemented inside the laenge package as well 

as the activation function for subnetwork 1 (equation (3.36)), called ChenSundman function in the 

implementation following the use of a paper by Chen and Sundman [28] in [4] that served as the 

basis for the use of this activation function. The ChenSundman function contains four parameters 

that are learned throughout the training process (the variables 𝐸0, θ𝐸 , 𝑎 and 𝑏).  

4.2.4 Results  

The results achieved are not comparable to the results presented in [4]. Especially the approxi-

mation of the heat capacity is far off the true values as can be seen in the bottom-left graph in 

Figure 4.5, whereas in [4] it could be approximated well. Also, the prediction of the enthalpy is not 

accurate (top-left in Figure 4.5). The graphs on the right show that both the Gibbs energy and the 

entropy can be approximated well by the network.  
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Figure 4.5: top-left: approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation 

of heat capacity, bottom-right: approximation of entropy 

For the training of the network, a dataset as described above with the following parameters is 

used:  

Table 4.1: LaengeDataset parameters 

Parameter Value 

Temperature range 200K-2000K 

Temperature step size 2K 

Scaling False 

 

The subnetworks are created and initialized using the following hyperparameters:  
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Table 4.2: LaengeNet network hyperparameters 

Parameter Value 

Nodes in hidden layer of subnetwork 2 32 

Initialization  
Randomly uniform with values between 0.1 

and 0.2 

 

For the training of the network itself, several adaptations are made to keep the process numeri-

cally stable. As the values of Gibbs energy, entropy, enthalpy, and heat capacity vary in magnitude, 

a scaling is introduced. The true values (to which the network outputs are compared) of the Gibbs 

energy and the enthalpy are scaled from J to kJ so that the network also outputs values in kJ, which 

are regarding the magnitude of the same order as the entropy and the heat capacity. Although, the 

network tends to output small values for entropy and heat capacity, which is why the network’s 

outputs for these capacities are multiplied by 1000.  

Also, other than suggested in [4], the variable θ𝐸  in the loss function is set to a fixed value and 

therefore not learnable. This results from the fact that θ𝐸  is an argument of a logarithm in the 

ChenSundman function and is therefore restricted in its possible values. Making this parameter 

learnable leads in most cases to negative arguments of the logarithm, which is not defined. As a 

result, the loss cannot be evaluated anymore and therefore learning is not possible. In experi-

ments conducted it proved to be better to fix θ𝐸  to a certain value rather than restricting the values 

it can take. For choosing the value, θ𝐸  is interpreted as the Einstein temperature, which is defined 

as [29]:  

θ𝐸 =
ℎν

𝑘𝐵

(4.1) 

There, ℎ is Planck’s constant, 𝑘𝐵 is Boltzmann’s constant and ν is the atoms’ oscillator frequency 

inside the solid.  

Using ν = 1.7 ⋅ 1013Hz [30] results in a value of θ𝐸 = 129.85K. The learned parameters of the 

ChenSundman function resulted in:  

Table 4.3: Results of the learned parameters in the ChenSundman function 

Parameter Value 

E0 -1404.8337 

a 0.1356 

b -0.0018 
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For the training routine, the loss function from equation (3.38) is used. As [4] does not provide 

information on the weighting values 𝑞 in the loss functions, a hyperparameter search was con-

ducted to find the optimal values. Alongside the training hyperparameters, the weighting values 

can be found in Table 4.4. The choice of the 𝑞 values is based on the ratio of the respective losses 

and 𝐿𝐺 .  

Table 4.4: Training routine hyperparameters for the LaengeNet 

Parameter Value 

Learning rate 0.025 

Number of epochs  1000 

Batch size 64 

qG 1 

qS 10 

qH 1 

qC 10 

 

The optimizer used for the training is in accordance with [4] the Rprop optimizer.  

4.2.5 Discussion & Conclusions  

Discussion 

Whilst Gibbs energy and entropy can be approximated well, this is not the case for the enthalpy 

and the heat capacity. The exact reasons for this are unclear, whereas probably the network’s de-

sign is the root of the problem. By evaluating the single losses on the respective functions, a back 

and forth can be noticed, so that the loss on one function improves whilst the loss on another gets 

worse. Not calculating the entropy, enthalpy, and heat capacity from the network parameters but 

rather designing the network in such a way that those functions are direct outputs improves the 

results. Training this network is however only possible when values for all four functions are 

available at a given temperature. It is possible when using the SGTE database as the data source. 

The results for this network architecture are presented in 4.3.  

In general, the network’s architecture and its loss functions lead to numerical instabilities in many 

different cases. One is the previously described issue with the parameter θ𝐸  in the activation func-

tion of subnetwork 1. Also, the Softplus activation function leads to numerical instabilities in its 

first and second derivatives. For the first derivative, the problem can be overcome by rewriting 

the function using the LogSumExp trick [31]. As of equation (3.37), the Softplus function is defined 

as:  

𝑓𝑏(𝑠) = log(𝑒𝑠 + 1) 
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Using the LogSumExp trick, this function can also be written as:  

𝑓𝑏(𝑠) = max(0, 𝑠) + log(𝑒−|𝑠|+1) 

The first derivative 𝑓𝑏
′(𝑠) therefore is: 

𝑓𝑏
′(𝑠) = 𝑝(𝑠) −

𝑠

𝑒|𝑠|
⋅ |𝑠| + |𝑠| 

Where 𝑝(𝑠) = {
1 ∀ 𝑠 > 0
0 ∀ 𝑠 ≤ 0

.  

In the second derivative of the Softplus function, small pre-activations 𝑠 lead to the undefined 

property 
∞

∞
, which cannot be handled by PyTorch. Therefore, the learning algorithm crashes once 

this case occurs. It can although be overcome by replacing those values with 0.  

Also, the network initialization can lead to numerical instabilities. Specifically, all parameters 

must be initialized with either all positive or all negative values. A very common initialization with 

values drawn from a standard normal distribution can therefore not be applied. Learning rates 

higher than 0.01 also lead to instabilities in some cases.  

Conclusions 

It can be concluded that the network architecture and the choice of loss functions are very prone 

to numerical instabilities. Also, the results when trained on the SGTE data are poor. The numerical 

instabilities can be overcome by introducing certain restrictions which make training possible. 

Once the network is trained, the training algorithm is not needed anymore, wherefore the difficult 

training routine could be accepted. Although, this is not possible for the poor results. Therefore, 

an approach is made in 4.3 to design a network that can be trained without numerical instabilities 

and that delivers better results.  

4.3 Function approximation for unary systems – thermonet 

4.3.1 Goal and workflow 

As chapter 4.2 concludes that the network presented in [4] cannot be easily rebuilt, a different 

approach to achieve the same approximations is presented in this chapter. The main goals of this 

network are to avoid numerical instabilities in the training process as well as to achieve better 

and more accurate results. To do so, the approach of deriving the entropy, enthalpy, and heat ca-

pacity from the network parameters using partial differential equations is abandoned. Instead, all 

four capacities are direct outputs of the network as can be seen in the basic workflow in Figure 

4.6.  
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Figure 4.6: Basic workflow of the ThermoNet 

4.3.2 Dataset logic 

The basic idea behind the dataset for the ThermoNet is very similar to the one for the LaengeNet, 

although it differs from it in some points. The main difference is that the LaengeDataset presented 

in 4.2.2 can only contain data from one element. To allow more flexibility, the dataset for the Ther-

moNet, called ThermoDatasetNew, can load and contain data for multiple elements at once. If only 

one element’s data is loaded, the phases to be loaded can be specified, otherwise, all phases of all 

the desired elements must be loaded. The dataset takes the following arguments for its creation: 

- Temperature range and step size: the temperature range which the SGTE data is loaded 

for, and the size of steps taken in this range. For further reference, see 4.1.2.  

- Elements: which elements to load the data for 

- Phase selection: a flag called inp_phases that defines whether all phases or just a selection 

are loaded in case only one element’s data is contained in the dataset.  

Using these arguments, the SGTE functions are evaluated. The resulting data is then accessible as 

a combination of a temperature value and the values of the respective functions at this tempera-

ture. As opposed to the dataset for the LaengeNet, a scaling of the values in the dataset is not pos-

sible.  

4.3.3 Network architecture 

Unlike the LaengeNet (see Figure 3.6), where the only network output is the Gibbs energy and all 

the other capacities are derived from the network parameters, ThermoNet has four outputs, one 

for each of Gibbs energy, entropy, enthalpy, and heat capacity. This architecture is chosen as the 

design of the LaengeNet with the derivation of the entropy, enthalpy, and heat capacity using de-

rivatives of the network parameters was identified as a possible reason for its poor results. A 

schematic of the architecture can be seen in Figure 4.7. All layers are fully connected but for im-

proved clarity, no connections between the nodes are shown. Every hidden layer and the input 

layer use the softplus function as their activation function, whereas the output does not use an 

activation function. 
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Figure 4.7: Network architecture of the ThermoNet 

The network is made up of 𝑁 hidden layers with 𝑀 nodes each. Those two values are hyperpa-

rameters that are optimized in the training process. The numbers of nodes in the input and output 

layers are fixed to 3 respectively 4, as the network receives a temperature value as well as a nu-

meric element and phase labels as input and returns its predictions for the four functions. The 

element and phase labels are introduced to make the network more flexible in terms of what can 

be predicted. With this implementation, it is possible to train the network on the data of multiple 

elements and phases simultaneously, which is not possible with the LaengeNet.   

4.3.4 Results 

Training on pure iron data 

The results of the ThermoNet proved to be better than the ones achieved with the rebuilding of 

the LaengeNet. Not only the Gibbs energy and the entropy as in the case of the LaengeNet but also 

the enthalpy and the heat capacity can be approximated well for the BCC phase (Figure 4.8) and 

the FCC phase (Figure 4.9) of iron when trained only on the iron data.  
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Figure 4.8: approximation of the properties for the BCC phase of iron; top-left: approximation of enthalpy, top-right: 

approximation of Gibbs energy, bottom-left: approximation of heat capacity, bottom-right: approximation of entropy 
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Figure 4.9: approximation of the properties for the FCC phase of iron; top-left: approximation of enthalpy, top-right: 

approximation of Gibbs energy, bottom-left: approximation of heat capacity, bottom-right: approximation of entropy 

For the training of the network, a dataset as described above with the following parameters is 

used:  

Table 4.5: ThermoDatasetNew parameters for training on pure iron data 

Parameter Value 

Temperature range 200K-2000K 

Temperature step size 1K 

Elements Fe 

Phase selection None (all phases are selected) 

 

The network is created and initialized using the following hyperparameters:  
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Table 4.6: ThermoNet network hyperparameters 

Parameter Value 

M 128 

N  8 

Initialization  Xavier normal 

 

The training is conducted by loading temperature values and the respective element and phase 

labels from the dataset and feeding it into the network. The output is then compared to the true 

values using the mean squared error loss. Also in [4], the mean squared error loss is used to eval-

uate the network’s predictions, whereas one mean squared error loss is used for each function. 

The resulting total loss is obtained by weighing and adding up the losses (equation (3.38)). Calcu-

lating the mean squared error on all the four functions at once can also be seen as calculating four 

single errors. Those errors are however not weighted by fixed weighting parameters and contrib-

ute evenly to the total loss.  

At the beginning of the training, high errors occur. Choosing a high enough learning rate can re-

duce the error after a few epochs by around 102. At this point, the predictions are still far off the 

desired outputs, whereas the learning rate becomes too big to furtherly improve and minimize 

the error. Instead, the error starts to oscillate. The oscillation can be reduced by reducing the 

learning rate, which as a result also minimizes the error. Therefore, a learning rate scheduler is 

used. A learning rate scheduler allows starting with a high learning rate which is then reduced 

after every epoch by a defined value. In this case, an exponential learning rate scheduler, which 

decays the learning rate by the factor γ every epoch, is used.   

As the learning rate is part of the optimizer, the learning rate scheduler and the optimizer are 

closely related. To find the best optimizer for this case, all optimizers available in the PyTorch 

library were tested, whereas some of them worked well and others did not at all. The best results 

are obtained by using the RMSProp optimizer.  

The training is conducted using the following hyperparameters: 

Table 4.7: Training routine hyperparameters for the ThermoNet 

Parameter Value 

Initial learning rate 0.005 

Number of epochs  2500 

Batch size 1028 

𝛄 0.995 
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Training on iron and carbon data 

The network is designed in such a way that it can be used for the approximation of the functions 

for multiple elements at once (Figure 4.7). To test this flexibility, the network is trained not only 

on the data for pure iron as described above but additionally also on the data for carbon. As in this 

case, also the element label plays a role in the prediction, it can be assumed that the training is 

harder and that the results will be worse compared to the results presented above. This assump-

tion proves to be true, as Figure 4.10 shows for the approximation of the functions for the BCC 

phase of iron.  

  

Figure 4.10: approximation of the properties for the BCC phase of iron when trained on iron and carbon data; top-

left: approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation of heat capacity, 

bottom-right: approximation of entropy 

These results, especially for the entropy and the enthalpy, are significantly worse than when the 

network is trained only on the iron data. On the other hand, the results are still better than the 

ones obtained from LaengeNet. As the network is also trained on data for carbon, it can also make 

predictions on the functions for carbon. The results are similar for all phases of carbon, whereas 

the graphite phase presented in Figure 4.11 yields the most accurate results.  
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Figure 4.11: approximation of the properties for the graphite phase of carbon when trained on iron and carbon data; 

top-left: approximation of enthalpy, top-right: approximation of Gibbs energy, bottom-left: approximation of heat ca-

pacity, bottom-right: approximation of entropy 

For the training of the network, a dataset with the following parameters is used:  

Table 4.8: ThermoDatasetNew parameters for training on iron and carbon data 

Parameter Value 

Temperature range 200K-2000K 

Temperature step size 1K 

Elements Fe, C 

Phase selection None (all phases are selected) 

 

All the parameters presented in Table 4.6 and Table 4.7 are reused for the training of this network. 

Also, the learning rate scheduler, optimizer and loss function are the same as described above.  
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4.3.5 Discussion & Conclusions 

Discussion 

As Figure 4.8-Figure 4.11 show, the results obtained with this network are much better than the 

results with the LaengeNet (Figure 4.5). With neural networks, it is often hard to determine what 

the cause for certain behaviors is. It is although evident, that the changed network architecture 

plays a major role in it. In this architecture, all four network outputs depend on the network pa-

rameters in the same way, whereas in the case of the LaengeNet, they depend on the first and 

second derivatives of the activation functions as well as the pre-activation. Optimizing such an 

architecture is harder.  

Also, thanks to the architecture, the training is possible without encountering numerical instabil-

ities. Compared to LaengeNet, this is possible because of the choice of activation functions. Whilst 

the ChenSundman function introduces physics into the learning process, it also brings numerical 

issues with it. Especially the learnable parameters in the activation function, as well as the first 

derivatives of both the ChenSundman and the softplus functions, are roots of instabilities.  

Even though this network performs better than the LaengeNet, it comes with the drawback that 

training is only possible when data for the Gibbs energy, entropy, enthalpy, and heat capacity is 

available for the same temperature values. Therefore, in [4] the temperature input does not need 

to be the same for the four functions. Of course, it would be possible to design the network in such 

a way that it can receive different input temperatures for all the functions in question, although 

for the sake of simplicity this was not done in this case.  

The big advantage the LaengeNet has against the ThermoNet is that the LaengeNet can also be 

interpreted as four standalone networks. Therefore, it is possible to train the network only on one 

property and receive the others from it. This is advantageous because fewer data and therefore 

fewer measurements are needed and because it might be difficult to measure some of the proper-

ties.  

It is also possible to train this network on the data of multiple elements at once. As Figure 4.10 

shows, this leads to worse results than a network trained on the data of only one element (Figure 

4.8). As Figure 4.10 and also Figure 4.11 show, in this case, the approximated functions tend to 

oscillate around the actual function values. To reduce these oscillations, introducing a term to the 

loss function that takes the approximations’ curvature into account could improve the results.  

Conclusion 

When directly comparing the networks, the ThermoNet is the better option both in terms of accu-

racy as well as ease of training. This comes with the drawback that data must be available for all 

four functions at the same temperature values, which is not necessarily required for the 

LaengeNet. For the practical use-case of developing a material model of an element where there 

are measurements available for only one property, say the heat capacity, the LaengeNet is better 

suited. Although, a way to overcome the numerical instabilities needs to be found. In case the 
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training of the network is conducted on data for all four properties, the ThermoNet or a similar 

architecture is better suited.  

As the comparison of the results between the network trained only on the pure iron data and the 

network trained on iron as well as carbon data shows, it is better to train single networks for every 

element because it yields better accuracy. Even though accurate approximations of the Gibbs en-

ergy, entropy, enthalpy, and heat capacity could be achieved with this network, its only use is for 

demonstration purposes. It is trained on the SGTE data and therefore only a different representa-

tion of this dataset. Every output the network can provide is also directly accessible from the SGTE 

database, either by solving the equations or using software like FactSage or even the Python li-

brary presented in 4.1. This although does not mean that the network is useless. Rather than that, 

it can be used to derive a material model from experimental data. As described above, a choice for 

the architecture must be made depending on which data is available.  

4.4 Equilibrium prediction for binary systems – binary predic-

tor 

4.4.1 Goal and workflow 

The goal of the algorithms implemented in this package is to calculate binary phase equilibria 

given analytical Gibbs energy functions as a function of the composition 𝑥 and the temperature 𝑇 

at a given pressure 𝑝. Using equations (3.29.1) and (3.29.2), the equilibria compositions can be 

found (if an equilibrium exists for this temperature). Therefore, the goal is to find composition 

values for either phase that fulfill those equations. The problem that arises although is that it can-

not be told a priori, how many solutions (i.e., single equilibria) to this equation system exist. To 

implement a neural network, it is however necessary to define a fixed number of output nodes. 

Three different approaches were taken into consideration: 

1. Restricting the possible systems to such that have only one equilibrium at each tem-

perature. In this case, the number of output nodes could be set to 2, one node for the 

equilibrium composition of either phase. The advantage of this approach is that the 

accuracy of the results will likely be very good, the disadvantage is that the predictor 

is applicable to only a very small number of systems.  

2. Another approach is to predetermine the number of single equilibria that will or can 

occur in a system given the Gibbs energy functions. This could either be done by logical 

rules or by training a classification neural network on this task. Given the number of 

predetermined equilibria, a network could be selected that has the exact number of 

output nodes needed. Multiple networks would be necessary to account for every 

number of single equilibria. Also, this method likely has very good accuracy but comes 

with many drawbacks: an additional pre-processing step would have to be introduced 

and in the case of a classification neural network, for this aim, an additional network 
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would have to be trained. Also, a balanced amount of function pairs, so that each num-

ber of equilibria occurs the same time in the training and test sets, must be found. In 

addition, in all cases with more than one single equilibrium, it is not guaranteed that 

the network finds all equilibria. It is possible, that for the example of two single equi-

libria in the system, both outputs are for the same equilibrium.  

3. The third approach is the most general one as it does not restrict the possible systems 

and does not need sophisticated pre-processing. Both equations in equation (3.29) are 

formulated in such a way, that the respective left sides of the equations depend on the 

equilibrium composition 𝑥𝛼 of phase 𝛼 and the respective right sides on the equilib-

rium composition 𝑥𝛽 of phase 𝛽. It is therefore possible, to find functional relation-

ships 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) for either equation so that the equations are fulfilled. The intersec-

tion points of the resulting two equations are the solution to the equilibrium problem. 

To find the functional relationships, two neural networks (one for each function) are 

used. The advantage of this approach is its generality, which comes with the risk of 

greater inaccuracy than the two approaches presented above. Additionally, the net-

work does not directly output the equilibria compositions. Moreover, they must be 

determined in a post-processing step. 

As the third approach allows the best generality, it is the approach chosen to be implemented. The 

risk of loss in accuracy compared to the other two approaches is accepted.  

The basic workflow of the algorithm can be seen in Figure 4.12. As described above, two networks 

are used in this approach. One finds 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) so that the chemical potential is equal for both 

phases (equation (3.29.1)), whilst the other finds a similar functional relationship so that equation 

(3.29.2) is fulfilled. Both networks receive as input the values of the Gibbs energy functions (in the 

figure below called 𝐺′ and 𝐺′′, in equation (3.29) called 𝐺𝛼 and 𝐺𝛽) evaluated at a fixed number 

of composition values as well as at a constant temperature. The predicted functional relationships 

are then passed to a post-processing algorithm which finds the intersection points between the 

two network outputs so that as a result, the composition values at the equilibria (in the figure 

below called 𝑥′_𝑒𝑞 and 𝑥′′_𝑒𝑞) can be found. For the predicted functional relationship, for 𝑥𝛽 the 

same x-values that are used to evaluate the Gibbs energy functions are used. Therefore, 𝑥𝛼 =

𝑥𝛼(𝑥𝛽) is not a continuous function but rather a function evaluated at certain points. As a result, 

an algorithm to find the intersection points and to avoid duplicated equilibria compositions is 

necessary.  

When evaluated at different temperatures (or also different pressures), phase diagrams for the 

given system can be drawn. To do so, the Gibbs energy functions need to be evaluated at different 

temperatures (or pressures) and passed to the algorithm. Depending on the temperature granu-

larity, this will lead to longer or shorter execution times.  
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Figure 4.12: Basic workflow of the binary predictor 

4.4.2 Dataset logic 

The dataset for the training is compiled in a Python class called FunctionPairDataset (FPD) which 

builds on another Python class called FunctionDataset. In the FPD, functions can be generated fol-

lowing the rules presented in [12]. There, examples of possible Gibbs energy functions depending 

on certain parameters and rules for which values these parameters can take, are published. Fol-

lowing the presented rules, a provided number of pairs of functions is generated using random 

coefficients. The arguments can be specified for the initialization of the dataset:  

- Number of functions: the number of function pairs to be generated 

- Filename: a filename and -path where the parameters used to generate the functions can 

be stored at 

- X step size: The step size taken in the x-range from 0 to 1. At every resulting x value, the 

functions are evaluated. 

- Overwrite: If necessary, the file where the parameters are stored can be overwritten if 

the filename already exists. In case this flag is set to False and the file already exists, the 

functions are reloaded using the parameters from the file.  

Every function needs a temperature at which it is evaluated as well as melting temperatures of 

either phase as parameters. Those temperatures are drawn randomly in the range from 0 −

3000𝐾. Also, entropy values can be part of the equations. In case entropy is included, the values 
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are also drawn randomly in the range from 0 to 10
𝐽

𝑚𝑜𝑙 𝐾
. The dataset compiles the specified num-

ber of functions and returns the evaluated values divided by the global absolute maximum of both 

functions, the parameters used for the generation, and the absolute maximum value of both 

phases. The functions are divided by this maximum value so that the values are scaled to the range 

from -1 to 1. This is because those values are passed to the neural network as input and by doing 

so, it can be guaranteed that the network always receives inputs of the same magnitude.  

For the testing of the network, the same Python classes can be reused. It is also possible to con-

struct the functions outside the dataset class using the respective functions that implement the 

core ideas of [12]. Figure 4.13 shows two exemplary functions generated using the Mager-Lukas-

Petzow rules for different values of 𝐴diff and 𝐴sum, which are parameters in the equations. Both 

functions are evaluated for a temperature of 1000𝐾 and melting temperatures of 900𝐾 for one 

and 1100𝐾 for the other component.  

  

Figure 4.13: Examples for function pairs compiled using the Mager-Lukas-Petzow rules; left: 𝐴diff = 0, 𝐴sum = 0, 

right: 𝐴diff = 1, 𝐴sum = 3 

4.4.3 Network architecture 

As shown in Figure 4.12, two networks are used in the workflow. The network class (called Tan-

gentNet) was therefore implemented flexibly so that the same class can be used for either net-

work. Figure 4.14 shows the network’s architecture. A number 𝑁 of hidden layers with 𝑀 nodes 

each can be chosen. The number of nodes in the input layer is exactly two times the number of 

nodes in the output layer. This is because the network receives as input the Gibbs energy functions 

evaluated at a certain number of points. The output 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) is a function the is evaluated at 

the exact same points, therefore the number of output values is only half the number of input 

values.  

All layers except the output layer are activated by the ReLU function. Because the composition can 

only take values between 0 and 1, the output layer is activated by the Sigmoid function which 

maps all values to this range.  

It should be noted that the network can get big depending on the granularity chosen. The results 

are more accurate the more points the functions are evaluated at. This comes with the drawback 
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that the number of parameters in the network increases. Therefore, the execution time of the al-

gorithm also increases. A good compromise between accuracy and calculation speed therefore 

must be found.  

 

Figure 4.14: Network architecture of the binary predictor (‘ refers to α  and ‘’ refers to β  in previous equations) 

4.4.4 Description of the algorithm 

Requirements for the algorithm to work & pre-processing 

For the algorithm to work, two functions and the respective first derivatives need to be known as 

analytical functions. In Python, they must be implemented as a callable (e.g., a function or a lambda 

function) and take as input a composition and a temperature value. Together with a temperature 

range, those functions are passed to the function get_phase_diagram which is part of the Bina-

ryPredictor class. Also, a threshold value, which determines the maximum difference between the 

slope of a predicted common tangent and the slopes of either curve and a maximum threshold 

value (if for the given threshold no tangents are found, the threshold is increased step-wise up to 

the maximum threshold) can optionally be specified. 

By calling the get_phase_diagram function, the pre-processing is initiated. In the pre-processing, 

at first, a check is made on whether one phase is stable over the whole composition range. In this 

case, the values of the Gibbs energy function of this phase are lower than the values of the Gibbs 

energy function of the other phase for all composition values. Figure 4.15 shows an example of 

this case. There, the solid phase is stable everywhere because the solid curve’s values are always 

smaller than the liquid curve’s. As there cannot be any common tangents, in this case, the algo-

rithm is aborted for this temperature and will be continued with the next temperature in the 

range.  
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Figure 4.15: Gibbs energy curves for an arbitrary system, where the solid phase is stable everywhere 

For temperatures where there are common tangents (i.e., equilibria between the two phases), the 

absolute maximum value of both phases is determined, so that the functions can be scaled by this 

value to the range from -1 to 1. With this, it is made sure that the networks always receive inputs 

of the same magnitude. Even though this is already done when creating the training set, the func-

tions may not be scaled in a testing application, wherefore it must be done again. Figure 4.16 

shows a pair of scaled Gibbs energy curves where there will be one common tangent and therefore 

one phase equilibrium.  

 

Figure 4.16: Scaled Gibbs energy curves 

Neural network predictions 

After the pre-processing step, the Gibbs energy curves evaluated at predefined composition val-

ues and a temperature are stacked together in one vector and passed to the networks. The net-

works make predictions for  𝑥𝛼 = 𝑥𝛼(𝑥𝛽) so that equations (3.29) are fulfilled. As the output of 
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both networks are functions of 𝑥𝛽, they can be plotted in the same graph (Figure 4.17). The out-

puts are then passed to the post-processing to final find the equilibria.  

 

Figure 4.17: Outputs of both networks  

Post-processing 

Both equations in equation (3.29) are fulfilled when there is an intersection of the two curves 

shown in Figure 4.17. Therefore, the intersections need to be found. This is the same as finding the 

roots of the difference between the two output functions (Figure 4.18).  

 

Figure 4.18: Difference between the network outputs to find the intersection points 

As the network outputs are approximations, the intersections will in general not be exactly where 

the equilibrium is, i.e., where the equations (3.29) are fulfilled. Therefore, all value differences that 

are smaller than a predefined threshold (chosen to be 0.1) are considered. For all these values, the 

corresponding 𝑥𝛼 values will be chosen using the network outputs.  

From there, the slopes of the resulting possible tangents are calculated and compared to the slopes 

of either curve. All tangent candidates, for which the difference between the slope of the tangent 
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and the slopes of the curves is smaller than a predefined threshold, are kept, otherwise, they are 

discarded. In case no tangent is found, the threshold is increased by 0.1 up to a user-defined max-

imum threshold.  

In the next step, duplicates are sorted out, because it is not unlikely that composition values are 

kept that form the same tangent as other pairs of composition values. To do so, all the composition 

values are rounded off to the first decimal point and then paired with the composition values. In 

the last step, the pairs with the smallest squared difference of slopes to the curves are kept. The 

example below will demonstrate the process. 

Example: Assume there are two tangents to be found. After considering the difference between 

the network outputs and the deviations from the curves’ slopes, 7 tangents are suggested, whereas 

there are multiple “duplicates”. The duplicates are sorted out using the following process. As a 

measurement variable, the square root of the sum of the squared differences between the slope 

of the tangent and either curve is used.  

The following composition values are considered tangent candidates: 

Table 4.9: Tangent candidates 

𝐱𝜶 𝐱𝜷 Slope difference 

0.1089 0.2475 0.324 

0.1023 0.2489 0.298 

0.0987 0.2503 0.315 

0.6498 0.9132 0.212 

0.6543 0.9089 0.204 

0.6517 0.9099 0.225 

0.6487 0.9112 0.218 

 

Then, the composition values are rounded off to the first decimal point and clustered based on 

equal values. For example, the first line in Table 4.9 will be rounded off to the pair 0.1 and 0.2, the 

same as the values in the second line. Therefore, they are clustered together and the one with the 

smallest slope difference is kept. This is done for all clusters.  

Table 4.10: Rounded composition values with the minimum slope differences 

𝐱𝜶 𝐱𝜷 Smallest Slope difference 

0.1 0.2 0.298 

0.0 0.2 0.315 

0.6 0.9 0.204 
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As one can see, lines 1 and 2 in Table 4.10 belong to the same tangent but are not clustered to-

gether because of the nature of this process. To avoid this, in the last step, the composition value 

pairs are interpreted as vectors and the distances between the points are computed. In case the 

distance is smaller than a predefined threshold (chosen to be 0.2), the value pairs are considered 

to belong to the same tangent and again, the one with the smallest slope difference is kept. It would 

be possible to calculate the distance between the composition values right from the beginning, it 

although proved to be much faster by applying the above-described pre-sorting. All composition 

values that are kept after this step are considered the results and returned.  

For the function pair in Figure 4.16 (with the network outputs in Figure 4.17 and Figure 4.18), the 

correct tangent is found (Figure 4.19). The x-value of the red dot on the liquid (i.e., blue) curve is 

the equilibrium composition of the liquid phase, whereas the x-value of the red dot on the solid 

curve is the equilibrium composition of the solid phase.  

 

Figure 4.19: Common tangent found for the example system 

4.4.5 Results 

For testing the network, two different approaches are chosen. On the one hand, the phase diagram 

of the Au-Ag system based on the Gibbs energy functions for this system presented in [32] is cal-

culated and compared to the actual phase diagram taken from the thermodynamic software Ther-

moCalc. On the other hand, [12] is used to generate arbitrary functions the same as in the genera-

tion of the training set although with different coefficients. Whereas for the Au-Ag system a devi-

ation from the real values can be calculated, this cannot be done for the arbitrary functions as 

there the ground truth is not known.  

For all approaches, the same networks and therefore the same training routine is used. As de-

scribed in 4.2.2, the training dataset is generated following the rules from [12] using random co-

efficients. The dataset is generated using the following arguments: 
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Table 4.11: FunctionPairDataset parameters for training 

Parameter Value 

Number of composition values where 

functions are evaluated 
500 

Number of function pairs 100.000 

Temperature range  0-3000K 

Entropy range 0 − 10
𝐽

𝑚𝑜𝑙 𝐾
 

 

For both networks, the same architecture with the same parameters is used. Using the variables 

introduced in Figure 4.14, the networks’ parameters are: 

Table 4.12: Neural network hyperparameters 

Parameter Value 

N 2 

M 500 

Output nodes 500 

Input nodes 1000 

 

The training of the network is conducted using the following hyperparameters. As the optimizer, 

the Adam [33] optimizer is used.  

Table 4.13: Training hyperparameters 

Parameter Value 

Learning rate 0.001 

Number of epochs  250 

Batch size 1028 

 

In the training of either network, the mean squared error is used to evaluate the performance. 

Figure 4.20 shows how the training losses develop over the epochs. Both networks show similar 

behavior, whereas the absolute losses of network 2 are smaller than those of network 1. The losses 

are calculated in an unsupervised setting: the network outputs its prediction for a function 𝑥𝛼 =

𝑥𝛼(𝑥𝛽) so that the equations in (3.29) are fulfilled. These predictions are plugged into one of the 

left sides of the equations in (3.29). The respective right side is evaluated using the same x-values 

that are used to create the Gibbs energy function in the training dataset (vector with 500 values 
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between 0 and 1 ordered ascendingly). The loss is then calculated as the deviation of the left side 

of the equations from the respective right side.  

  

Figure 4.20: Training losses of each epoch; left: network 1 (trained to find function 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) s.t. the slopes are 

equal), right: network 2 (trained to find function 𝑥𝛼 = 𝑥𝛼(𝑥𝛽) s.t. the chemical potentials are equal) 

Au-Ag system  

Based on the Gibbs energy of the liquid and the solid phase of the Au-Ag system from [32], the 

phase diagram is calculated. In Figure 4.21, the orange and green dots mark the predicted phase 

diagram, whereas the blue dots are from the actual phase diagram.  

 

Figure 4.21: Predicted and true phase diagrams of the Au-Ag system 

The phase diagram can be predicted well. Most notably is the deviation at higher temperatures. 

To make a comparison between the predicted and the real phase diagram possible, the predictions 

were made at the temperatures that can be obtained from ThermoCalc. Table 4.14 presents the 

results of this comparison.  
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Table 4.14: Statistics of the comparison between predicted and real phase diagram for the Au-Ag system 

Parameter Value 

Mean error 0.015655 

Mean squared error   0.000493 

Minimum deviation 9.7975e-6 

Maximum deviation 0.066123 

 

The mean execution time of the above-mentioned algorithm for this system is 2.36 seconds with 

a standard deviation of 71.3ms tested on 7 runs with 20 loops each. Compared to this, the classical 

approach using numerical techniques (in this case the SciPy subpackage optimize with the func-

tion least_squares) takes on average 6.65 seconds with 629ms standard deviation, determined in 

the same number of loops.  

Lukas-Petzow-Mager functions 

The rules for the construction of arbitrary Gibbs energy functions in [12] can be controlled by the 

parameters 𝐴diff and 𝐴sum (see also chapter 4.4.2). 𝐴diff can take integer values from −2 to 4, 

whereas 𝐴sum can take the values −2, integer values from 0 to 6 as well as 8, 10 and 12. Depending 

on the choice of these two parameters, Gibbs energy functions can be generated that lead to dif-

ferent kinds of phase diagrams. For further reference, see the original paper [12]. In general, the 

presented approach aims to predict all phase equilibria. This is although not fully possible, as mis-

cibility gaps in solid phases follow different physical rules than those presented in equation (3.29) 

and can therefore not be calculated with this approach.  

In the following figures, a selection of systems will be presented for which the approximation of 

the phase diagram works well. In the case of 𝐴diff = 0, 𝐴sum = 0, the computation using the pre-

sented algorithm takes a mean of 3.43 seconds with a standard deviation of 99.3ms, determined 

over 7 runs with 20 loops each, for a temperature range from 900-1100K (range from one melting 

point to the other) with a step size of 1K. Compared to this, the classical approach using the SciPy 

optimize package takes on average 24.8 seconds with a standard deviation of 1.4s over the same 

number of cycles.  
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Figure 4.22: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 0 

 

Figure 4.23: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 0 
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Figure 4.24: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 2 

Other systems cannot be predicted as well. As Figure 4.25 shows, for 𝐴diff = 4, 𝐴sum = 1, the phase 

diagram can only be approximated roughly, others, like in Figure 4.26 for 𝐴diff = −1, 𝐴sum = 6, 

cannot be approximated at all. Figure 4.27 shows for which systems the phase diagrams can be 

predicted and for which not. A green symbol means that the phase diagram can be approximated 

well, yellow means that it can only be approximated roughly, and red means that it cannot be 

approximated well at all. Invalid combinations of 𝐴diff and 𝐴sum values are marked with no symbol 

in Figure 4.27. For each system, an exemplary phase diagram is shown in the appendix.  

 

Figure 4.25: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 1 
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Figure 4.26: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 6 

 

Figure 4.27: Phase diagrams that can be predicted by the algorithm: green: can be predicted well, yellow: can be pre-

dicted roughly, red: cannot be predicted well, no symbol: invalid combination 

4.4.6 Discussion & Conclusions 

Discussion  

Many of the possible phase diagrams can be predicted well using the presented approach (see 

Figure 4.27). Also, as comparisons with classical optimization approaches show, the neural net-

work works faster. This comes with the drawback that the accuracy is not as good as it is not an 

accurate calculation method. One of the reasons for this is that the network outputs are only points 

of a function and not a continuous function, therefore accuracy is lost there. Additionally, the net-

work outputs themselves are only predictions of the desired functions and not analytically com-

puted functions.  

Other systems’ phase diagrams (see Figure 4.27) cannot be approximated at all. This is mostly 

because they contain miscibility gaps that follow different physical laws than the ones presented 
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in equation (3.29). To show that this approach can work, it was assumed to be sufficient to calcu-

late phase diagrams without the miscibility gaps. To also be able to calculate the equilibria in mis-

cibility gaps, the presented approach would have to be changed. A detailed description of this is 

not given here as this goes beyond the scope of this work.  

Conclusions 

This approach is well-suited to making fast approximations of phase diagrams for many different 

systems. If accurate phase diagrams are needed, one should use potentially slower numerical 

methods. To find regions where a phase is stable, this approach is good enough. It is assumed that 

this approach can work better with more computation capacities at hand. The networks were 

trained on a regular laptop and using more than 250.000 training samples came close to exceeding 

the available RAM. With more RAM available, the networks could be trained on a bigger dataset 

and could therefore generalize better.  

It must be noted at this point that the user must provide the correct pairs of Gibbs energy func-

tions to the algorithm. In systems with multiple phases, it might be that there are multiple Gibbs 

energy functions that, when minimized, lead to different equilibria, although only one (the one 

with the minimum total Gibbs energy) can be stable. Providing the “wrong” pair of Gibbs energy 

curves, this algorithm would find the wrong phase equilibria and therefore the wrong phase dia-

gram.  

4.5 Measurement data classification – thermoclassifier  

4.5.1 Goal and workflow 

The goal of the network implemented in this package is, given a set of pairs of temperature values 

and measured heat capacity values of any of the 78 elements in the SGTE data, to predict both the 

element which the measurements have been taken from and the phase of every measurement in 

the set. Not all measurements in the set need to be taken from the same phase, although it is re-

quired that they are taken from the same element. The heat capacity is chosen as the property to 

make the predictions on as it is assumed to be the most likely to be measured in experiments. 

Although, after sufficient training, the network could theoretically also predict elements and 

phases based on Gibbs energy, entropy, or enthalpy measurements.  

 To allow for measurements from different phases in the measurement set, the element and phase 

classification are split into two separate classification tasks. In case the element and the phases 

were to be predicted in one single step, it could not be guaranteed that the classifier predicts the 

same element for every measurement pair in the set. Figure 4.28 shows the basic workflow for a 

set of five temperature/heat capacity measurement pairs. 
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Figure 4.28: Basic workflow of the measurement data classification 

The network to predict the element takes the set of measurement values as input and gives as 

output a prediction for the element. The phase classifier then takes the predicted element (in form 

of a numeric label) and the set of measurement values as the input to predict the phase of every 

single temperature/heat capacity measurement pair.  

4.5.2 Dataset logic 

For the training and testing of the classification networks, the SGTE data is used. The dataset is 

generated by a Python class called DatasetCreator, which is part of the dataset submodule of the 

thermoclassifier package. The element classifier and the phase classifier are trained individually, 

therefore also the data for training is generated individually with different settings for the Da-

tasetCreator. DatasetCreator takes the following arguments for its definition:  

- Temperature range and step size: the temperature range which the SGTE data is loaded 

for, and the size of steps taken in this range. For further reference, see 4.1.2. 

- Measurement type: the measurement (i.e., either of Gibbs energy, entropy, enthalpy, or 

heat capacity) to load the data for. As the classification is only made on heat capacity val-

ues, the measurement type is always the heat capacity.  

- Sequence length: number of temperature/heat capacity pairs in each measurement set.  

- Dataset size/splits: the size of training, test (and, if needed, validation) sets in percent of 

the size of the whole dataset 

- Validation: whether to include a validation set 

- Elements: which elements to load the data for  

- User: Defines if DatasetCreator is used to generate data for the classification of phases or 

elements.   

- Pressure: pressure at which the equations are evaluated 

For all the elements defined, DatasetCreator solves the SGTE equations in the defined temperature 

range, whereas only values from phases stable at the given temperature and pressure are consid-

ered as only values from stable phases can be found in real measurement data. It randomly packs 
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temperature/heat capacity value pairs plus a unique label for the element (an integer value in the 

range from 0 to the number of elements) and a unique label for the phase (just in case of phase 

classification; integer in the range from 0 to the number of phases of a specific element) in pack-

ages of size sequence length. Inside each package, the temperature/heat capacity/label triples are 

sorted ascendingly by the temperature if the sequence length is greater than 1.  

The packages serve as input for the network, whereas the labels are removed and only used to 

check if the prediction made is correct or not (in the case of phase classification, only the phase 

label is removed as in this case the element label serves as input to the network). Assuming a 

temperature range that gives 9 temperature/heat capacity pairs, an arbitrary element with label 

L, and a sequence length of 3, Figure 4.29 shows how the data packs are generated for element 

classification. In the case of phase classification, an additional label for the phase is added.   

 

Figure 4.29: Packing of data 

In Figure 4.29, the box on the left contains the values obtained from solving the SGTE equations, 

whereas the temperatures are sorted from T1 to T9 ascendingly. The values are then assigned 

randomly to a package and passed the label for the element and/or the phase, depending on which 

classifier is trained. This process is repeated for every element/phase, giving a collection of such 

packages for every element/phase in the end. For training the networks, the packages are re-

deemed in random order from this collection so that there is no order anymore.  

Additionally, using a class called TestData, other datasets can be loaded to check how the classifier 

reacts to data not from the SGTE data. As of 3.2.4, the data for testing should be generated in the 

same way as the training data is, which is not the case when using data from other datasets. Alt-

hough, as this classification network can be used to make predictions on real measurement data, 

using different sources is a good way to simulate real measurement data. Specifically, the data 

from Barin [15] (see also 3.1.5) is used for this purpose.  

For the training and testing, the data is handed to the network by a torch DataLoader, which is 

part of the PyTorch library introduced in 3.2.5. The DataLoader allows to shuffle the data so that 

in each epoch, the network receives the input in different orderings.  
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4.5.3 Network architectures 

As described in 4.5.1, the task is split into the classification of elements and phases separately, 

which leads to two individually trained networks. One network is used for the element classifica-

tion, whereas the other is used for the classification of one element’s phases. The element classi-

fication network gives as output the most likely element for the given input. This output serves 

together with the same temperature/heat capacity values the element classifier received as input 

for the phase classifier.  

Element classifier 

Apart from the number of output classes and therefore the number of output nodes, which is the 

number of elements in the SGTE data (i.e., 78 elements), the network’s architecture is designed 

variable. The number of hidden layers 𝑁, the number of nodes in the hidden layers 𝑀 as well as 

the number of input nodes 2𝑆 (with 𝑆 being the sequence length of the DatasetCreator introduced 

in 4.5.2) can be adapted and are therefore hyperparameters of the network, which means good 

values must be found for them during training. Figure 4.30 shows the architecture of the network, 

which is a fully connected network (i.e., every node of one layer is connected with every node in 

its neighboring layers), whereas the connections are not shown for clarity (compare with Figure 

3.5., which shows all connections). Every hidden layer and the input layer use the ReLU function 

as their activation function. 

 

Figure 4.30: Network architecture of the element classification 

The network receives as input a package of temperature/heat capacity value pairs of size se-

quence length (in the following referred to as 𝑆). A linear network layer expects as an input a 

vector; therefore, the packages are flattened giving a vector of length 2𝑆. Every element in the 
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input vector corresponds to one input node, whereas due to the package structure the nodes al-

ternatingly receive either a temperature or heat capacity value (see 𝑇 and 𝐶 nodes in Figure 4.30).  

Phase classifier 

The phase classifier’s architecture is very similar to the element classifier’s, although, in this net-

work, the number of input nodes is not variable as the network makes its predictions on one tem-

perature/heat capacity value pair at a time. Additionally, the network receives an element label 

as input so that it can correctly assign the measurements. The number of hidden layers 𝐿 and the 

number of nodes 𝐾 in each hidden layer are variable (Figure 4.31; again, for clarity shown without 

the connections between the nodes). This network also uses the ReLU function as the activation 

function for every node apart from the nodes in the output layer.  

 

Figure 4.31: Network architecture of the phase classification 

For the training and testing of the phase classifier, a sequence length of 1 is used for the Dataset-

Creator. This is because the phase classifier makes one prediction per temperature/heat capacity 

value pair and not one prediction per pack. Compared to the element classifier, this means that, 

when the element classifier receives an input with sequence length 5 (5 temperature/heat capac-

ity value pairs), the element classifier makes one prediction on the whole package and the phase 

classifier makes 5 individual predictions. This is necessary because the measurements are not re-

stricted to being from the same phase.  
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4.5.4 Results 

The element and the phase classifier are trained individually, therefore they produce separate 

results. After sufficient training, the resulting networks are combined into a combined predictor 

as shown in Figure 4.28. In the following, the training and testing results of the individual net-

works as well as the performance of the combined predictor are presented.  

To evaluate the performance of the classification, the prediction accuracy 𝑎 is used:  

𝑎 =
correct predictions

correct predictions + false predictions
 

For the element classifier, two different approaches regarding the training data are made. First, 

the classifier is trained on the plain SGTE data as obtained from evaluating the equations. This 

gives data points that lie on a smooth curve without any variance. As real measurement data, in 

general, has variance in it, the classifier is also trained with random normal distributed noise 

added to the SGTE data.    

The phase classifier is trained only on the plain SGTE data as in this case variance in the data makes 

no difference because the phase can be distinguished by the element and the temperature. The 

heat capacity value is therefore additional information.  

Instead of the simple gradient descent method described in 3.2.3, the Adam optimizer introduced 

in [33] is used. The Adam optimizer uses adaptive learning rates and claims to have little memory 

requirements [33]. The detailed algorithm is irrelevant to this work but can be found in the pub-

lication. As the loss function, the cross-entropy loss (equation 3.32) is used for both the element 

and the phase classifiers.  

Element classifier – plain SGTE data 

For the training of this classifier, the (hyper-) parameters shown in Table 4.15, Table 4.16, and 

Table 4.17 are used:  

Table 4.15: DatasetCreator hyperparameters 

Parameter Value 

Temperature range 200K-2000K 

Temperature step size 0.05K 

Sequence length S 5 

Training-/test set splits 80%/20% 

Pressure 1 bar 

Accuracy on SGTE data test set: 97.82% 

Accuracy on Barin test set: 62.04% 
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With the hyperparameters chosen for the DatasetCreator (Table 4.15), the training dataset has a 

shape of (411319, 5, 3). There, 411319 is the number of packs with 5 temperature/heat capac-

ity/label triples (see also 4.5.2). 

Table 4.16: Neural network hyperparameters (see also Figure 4.30) 

Parameter Value 

2S 10 

M 128 

N 2 

 

A more complex network with five hidden layers (𝑁 = 5) does not increase the accuracy when 

tested on the SGTE data test set as it achieves the same result. Although, with an accuracy of 64.6%, 

it achieves slightly better results when tested on the Barin data.  

Table 4.17: Hyperparameters for the training routine 

Parameter Value 

Learning rate 0.001 

Number of epochs 250 

Batch size 256 

 

The chosen learning rate of 0.001 proves to be optimal for this task. Higher learning rates result 

in a not converging training routine. This means, that the average loss over one epoch does not 

constantly decrease over time but rather decreases and increases alternatingly, i.e., the losses 

start to oscillate.  

Training for more epochs does not lead to better results. The same network trained for 500 in-

stead of 250 epochs achieves an accuracy of 98.06% on the SGTE data test set and 61.31% on the 

Barin data. Figure 3.1 confirms this fact, as after around 300 epochs no real progress in neither 

the minimization of the loss nor the increase of the training accuracy (on the SGTE data training 

set) can be seen. Although, already after a few epochs, the training accuracy is above 90%.  
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Figure 4.32: Left: Mean loss per epoch over all epochs, right: Training accuracies over all epochs 

Also, an increase in the sequence length does not increase the accuracy. Trained on a sequence 

length of 10, the classifier achieves an accuracy of 95.01% on the SGTE data test set. For practical 

use, a shorter sequence length is also advantageous, as a longer sequence length means that more 

measurements are required. To make predictions, it is possible to give fewer measurements than 

the sequence length trained on as input, although this also leads to worse prediction accuracy as 

information important for the network is not included.  

Element classifier – SGTE data with variance 

Evaluating the SGTE data gives data points where all values are on smooth curves with no variance 

around these curves. For real measurement data, it must be assumed that this is not the case. 

Therefore, for the training of this classifier random normal distributed noise is added on top of 

the SGTE data. Before every epoch, a new noise vector is generated and added to the data so that 

the variance effect is maximized.  

The classifier is trained using the same hyperparameters as shown in Table 4.15, Table 4.16, and 

Table 4.17.  

For the training of the results presented above, the normal distribution 𝒩(0,0.75) is used to add 

the random noise. Increasing the standard deviation leads to lower accuracy on both the SGTE 

data test set and the Barin data. With the normal distribution 𝒩(0,1.25), an accuracy of 84.81% 

on the SGTE data test set and 54.38% on the Barin data can be achieved. Training the network for 

Accuracy on SGTE data test set: 91.02% 

Accuracy on Barin test set: 59.12% 
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more epochs does not lead to better results, as a network trained with 𝒩(0,0.75) for 500 epochs 

achieves 89.12% accuracy on the SGTE data test set and 58.39% on the Barin data.  

Phase classifier 

As the information about the phases in the Barin tables is not as extensive as it is in the SGTE data, 

testing the phase classifier on the Barin data is not possible because of lacking phase labels. For 

the training of this classifier, the (hyper-) parameters shown in Table 4.18, Table 4.19, and Table 

4.20 are used:  

Table 4.18: DatasetCreator hyperparameters 

Parameter Value 

Temperature range 200K-2000K 

Temperature step size 0.5K 

Sequence length S 1 

Training-/test set splits 80%/20% 

Pressure 1 bar 

 

With the hyperparameters chosen for the DatasetCreator (Table 4.15), the training dataset has a 

shape of (205592, 1, 4). There, 205592 is the number of packs with 1 temperature/heat capac-

ity/element label/phase label quadruples (see also 4.5.2). The step size is just 0.5K as finer steps 

lead to bigger datasets and problems with the working memory while training.  

Table 4.19: Neural network hyperparameters (see also Figure 4.30) 

Parameter Value 

K 128 

L 2 

 

Table 4.20: Hyperparameters for the training routine 

Parameter Value 

Learning rate 0.001 

Number of epochs 250 

Batch size 256 

 

Accuracy on SGTE data test set: 95.63% 
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Also, a less complex network with 𝐾 = 32 and 𝐿 = 1 was tested. This led to an accuracy of just 

87.78% and needed 5000 training epochs to reach this performance.  

Combined classifier 

The combined classifier makes predictions on both the element and the phase using the workflow 

shown in Figure 4.28. It has no own network but rather uses the fully trained element and phase 

classifiers presented above. The element classifier used is the one trained on the plain SGTE data. 

For the evaluation of the combined classifier, three metrics are used: the accuracy of element pre-

dictions, the accuracy of phase predictions, and the combined accuracies. Whilst the accuracy of 

element and phase predictions are the same as the accuracy used when training the two classifi-

ers, the values are almost the same as after training. The differences occur because, for the testing 

of the individual networks and the testing of the combined classifier, different data packages are 

used as they are always randomly generated. For the combined accuracy, only the predictions 

where both the element and the phase are classified correctly are viewed as correct predictions. 

The accuracies are only evaluated on the SGTE data set as the phase classification is not possible 

with the Barin data. For the DatasetCreator and the data loading, the following hyperparameters 

are used for the testing dataset:   

Table 4.21: DatasetCreator hyperparameters 

Parameter Value 

Temperature range 200K-2000K 

Temperature step size 1K 

Sequence length S 5 

Training-/test set splits 100%/0% 

Pressure 1 bar 

Batch size 256 

 

The sequence length is 5 as the input is first passed to the element classifier, which is trained on 

a sequence length of 5. After the predictions of the element classifier, the data packs are split so 

that the phase classifier receives the expected sequences of length 1. Also, for this case, no training 

and test set split is necessary as the network is only evaluated and not furtherly trained. There-

fore, all the data generated go into the training set which is used to evaluate the network.  

Element prediction accuracy: 97.99% 

Phase prediction accuracy: 94.46% 

Combined prediction accuracy: 93.49% 
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4.5.5 Discussion & Conclusions 

Discussion 

All the networks presented above can classify heat capacity data from the SGTE database well. 

Depending on the network design and data preprocessing, some networks perform better than 

others, in general, although, all of them score a test accuracy that can be considered good. It must 

be noted that this network was trained on the SGTE data and will therefore perform better on data 

that is similar to the SGTE data. In general, variance is expected when conducting real-world meas-

urements. Therefore, the measurement data will slightly vary from the SGTE model. To account 

for this, the network was tested on the data published in [15]. This data differs from the SGTE data, 

but still, an accuracy of around 60% could be achieved. The lower accuracy comes from the fact 

that the curves in the SGTE data and the ones presented in [15] are not the same. As the network 

is trained on 78 elements, this fact leads to misclassifications.   

Integrating different databases in the training dataset is an option. The problem although is that 

to be able to classify all 78 elements in the SGTE data, a vast amount of training data is necessary. 

Publications such as [15] although provide only small numbers of data points for each element, 

whereas the SGTE database provides equations of the temperature which can be evaluated at in-

finitely many points. Therefore, the creation of infinitely large datasets is theoretically possible. 

Compared to the big number of data points drawn from the SGTE database, far smaller numbers 

of data points from other sources would not have a big effect on the outputs of the networks.  

Conclusion 

This network is suitable for real-world applications to classify measurement data quickly. De-

pending on the measurement accuracy as well as how similar the measurement data points are to 

the SGTE model, the predictions’ accuracy will vary. To improve the generalization abilities of the 

network, it is possible to retrain a new network using the same design but include data from dif-

ferent sources or use the existing network and try to improve it by retraining it using a more gen-

eral dataset. As described above, this will only lead to satisfactory results if the available amount 

of data from other sources is as vast as the amount of data from the SGTE database.   
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5 General discussion, conclusions & outlook 

General discussion and conclusions 

Apart from the rebuilding of the LaengeNet presented in 4.2, all presented machine learning ap-

plications delivered good results both during training and testing.  

Depending on the problem, a choice must be made whether machine learning or classical ap-

proaches make more sense. In the case of binary phase equilibria prediction, the presented ap-

proach works well when predictions are needed quickly. It is in general although not sufficient 

when accurate results are needed. The ThermoNet and the LaengeNet can help to obtain thermo-

dynamic functions for unary systems. Using the obtained thermodynamic functions, phase equi-

libria in unary systems can be calculated. This is only useful if no analytic functions for the ther-

modynamic quantities are available. For example, all the equilibria of pure elements contained in 

the SGTE database are easier and faster obtained directly from the database than making the de-

tour using a neural network approximation. Lastly, the element and phase classifier can be helpful 

if measurements are made on a sample where the actual element and the phase have to be deter-

mined (which however must be part of the SGTE data). Depending on the accuracy of the meas-

urements, a good prediction on both the element and the phase can be made. In case the element 

is known but not the phase, this classifier can also be used to only classify the phases. 

Outlook 

In the future, neural networks will be used in thermodynamics in the above presented as well as 

in other areas. The binary equilibrium prediction is promising but will have to be improved using 

more computation capacity if it was to be used in real-world applications. The approach chosen is 

very general so that it can, in theory, approximate phase diagrams of all different sorts. In a spe-

cific use case (for example in steel production), where the chemical system is always roughly the 

same, it is better to train a network specifically on this system. For this case, very good results are 

expected. The approach for binary equilibrium calculation presented in this work might be en-

hanced by giving the coefficients of approximating polynomials rather than discrete values of the 

functions as outputs of the network (compare with Figure 4.17). The problem with this idea is that 

in general, the output of either of the networks can contain the values of multiple functions (in 

case one or both Gibbs energy functions have inflection points). Therefore, the values cannot be 

approximated by one polynomial. An additional unit, which determines the number of functions, 

would be needed. It is assumed that this approach would lead to more accurate results, the prob-

lem however is that the task of determining how many functions occur is not trivial.  

Also, the ThermoNet/LaengeNet can have use-cases in the future. Modeling material given meas-

urement data is the most realistic application. Both those networks are only trained for iron, but 

given physical laws, it can be possible to find a general network that can predict a material model 

for any element/unary system.  
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The element and phase classification can also have real-world use cases. Apart from the one pre-

sented, where the element and the phase are predicted given heat capacity/temperature meas-

urement pairs, also phase predictions for binary or multi-component systems based on tempera-

ture and compositions are possible applications. Especially the latter, if trained on a specific sys-

tem can be of help if quick decisions on which phase is present is needed.  
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6 Appendix 

6.1 Predicted phase diagrams for Lukas-Petzow-Mager func-

tions 

 

Figure 6.1: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = −2 

 

Figure 6.2: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 0 
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Figure 6.3: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 2 

 

Figure 6.4: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 3 

 

Figure 6.5: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 4 
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Figure 6.6: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 5 

 

Figure 6.7: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 6 

 

Figure 6.8: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 8 
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Figure 6.9: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 10 

 

Figure 6.10: Predicted phase diagram for 𝐴diff = 4, 𝐴sum = 12 

 

Figure 6.11: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 0 



 

 

 Appendix 72 

 

Figure 6.12: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 1 

 

Figure 6.13: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 2 

 

Figure 6.14: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 3 
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Figure 6.15: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 4 

 

Figure 6.16: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 5 

 

Figure 6.17: Predicted phase diagram for 𝐴diff = 3, 𝐴sum = 6 
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Figure 6.18: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = −2 

 

Figure 6.19: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 0 

 

Figure 6.20: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 1 
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Figure 6.21: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 2 

 

Figure 6.22: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 3 

 

Figure 6.23: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 4 
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Figure 6.24: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 5 

 

Figure 6.25: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 6 

 

Figure 6.26: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 8 
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Figure 6.27: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 10 

 

Figure 6.28: Predicted phase diagram for 𝐴diff = 2, 𝐴sum = 12 

 

Figure 6.29: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 0 
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Figure 6.30: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 1 

 

Figure 6.31: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 2 

 

Figure 6.32: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 3 
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Figure 6.33: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 4 

 

Figure 6.34: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 5 

 

Figure 6.35: Predicted phase diagram for 𝐴diff = 1, 𝐴sum = 6 
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Figure 6.36: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = −2 

 

Figure 6.37: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 1 

 

Figure 6.38: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 2 
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Figure 6.39: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 3 

 

Figure 6.40: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 4 

 

Figure 6.41: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 5 
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Figure 6.42: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 6 

 

Figure 6.43: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 8 

 

Figure 6.44: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 10 
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Figure 6.45: Predicted phase diagram for 𝐴diff = 0, 𝐴sum = 12 

 

Figure 6.46: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 1 

 

Figure 6.47: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 2 
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Figure 6.48: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 3 

 

Figure 6.49: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 4 

 

Figure 6.50: Predicted phase diagram for 𝐴diff = −1, 𝐴sum = 5 
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Figure 6.51: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = −2 

 

Figure 6.52: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 0 

 

Figure 6.53: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 1 
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Figure 6.54: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 3 

 

Figure 6.55: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 4 

 

Figure 6.56: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 5 
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Figure 6.57: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 6 

 

Figure 6.58: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 8 

 

Figure 6.59: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 10 
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Figure 6.60: Predicted phase diagram for 𝐴diff = −2, 𝐴sum = 12 

6.2 Code 

All the code written for this thesis is available at https://github.com/eldonko/Masters-Thesis-

Code 

 

https://github.com/eldonko/Masters-Thesis-Code
https://github.com/eldonko/Masters-Thesis-Code
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