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For d ∈ N and r ∈ Rd let τr : Zd → Zd, where τr(a) = (a2, . . . , ad,−brac) for a =

(a1, . . . , ad), denote the (d-dimensional) shift radix system associated with r. τr is said

to have the finiteness property iff all orbits of τr end up in (0, . . . , 0); the set of all

corresponding r ∈ Rd is denoted by D(0)
d , whereas Dd consists of those r ∈ Rd for which

all orbits are eventually periodic. D(0)
d has a very complicated structure even for d = 2.

In the present paper two algorithms are presented which allow the characterization

of the intersection of D(0)
d and any closed convex hull of finitely many interior points

of Dd which is completely contained in the interior of Dd. One of the algorithms is

used to determine the structure of D(0)
2 in a region considerably larger than previously

possible, and to settle two questions on its topology: It is shown that D(0)
2 is disconnected

and that the largest connected component has nontrivial fundamental group. The other

algorithm is the first characterizing D(0)
d in a given convex polyhedron which terminates

for all inputs. Furthermore several infinite families of “cutout polygons” are deduced
settling the finiteness property for a chain of regions touching the boundary of D2.
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0. Conventions

• N is defined as the set of all positive integers, and N0 := N ∪ {0}.
• The modulo function mod has precedence over addition and subtraction.

• P(M) denotes the power set of a set M .

• For x ∈ R, bxc (floor) denotes the largest integer less than or equal to x and

dxe (ceiling) denotes the smallest integer greater than or equal to x. The

floor or ceiling of a vector r ∈ Rd is obtained by elementwise application.

• 0 means the zero vector of suitable length.

• rs is the inner product of r ∈ Rd and s ∈ Rd.
• idM is the identity map on a set M .

1



2 Mario Weitzer

• For a subset M of a topological space int (M) denotes the interior, M the

closure, and ∂M the boundary of M.

1. Introduction

In 2005 Akiyama et al. [1] introduced so-called shift radix systems (compare also

[2,3,4]). For a natural number d and a real vector r ∈ Rd the mapping τr : Zd → Zd
defined by

τr(a) = (a2, . . . , ad,−brac) (a = (a1, . . . , ad)), (1.1)

is called the d-dimensional shift radix system associated with r (SRS) and r its

parameter. Let

Dd :=
{
r ∈ Rd | ∀ a ∈ Zd : ∃ (m,n) ∈ N2 : m 6= n ∧ τmr (a) = τnr (a)

}
(1.2)

D(0)
d :=

{
r ∈ Rd | ∀ a ∈ Zd : ∃ n ∈ N : τnr (a) = 0

}
(1.3)

where for any n ∈ N0, τnr (a) means the n-fold iterative application of τr to a. The

SRS τr is saidab to have the finiteness property iff r ∈ D(0)
d .

It is well-known that D(0)
d has a very complicated structure even for d = 2 (cf.

[18] or Fig. 2 in Section 4). In the present paper two algorithms are presented (Sec-

tion 3) which allow the characterization of the intersection of D(0)
d and any closed

convex hull of finitely many interior points of Dd which is completely contained

in the interior of Dd. One of the algorithms is used to determine the structure of

D(0)
2 in a region considerably larger than previously possible (see [18] for previous

results), and to settle two important questions on its topology: It is shown that

D(0)
2 is disconnected and that the largest connected component has a nontrivial

fundamental group (Section 4). The other algorithm is of particular interest from

a theoretic point of view as it is the first algorithm characterizing D(0)
d in a given

convex polyhedron which terminates for all inputs.

SRS are closely related to two important notions of numeration systems. Indeed,

as pointed out in [1,8], SRS form a generalization of β-expansions (see [6,15,17])

and canonical number systems (CNS) (see [9,13,16] and [12, Section 4.1]).

For a non-integral real number β > 1 every γ ∈ [0,∞) can be represented

uniquely in the form γ = amβ
m + am−1β

m−1 + . . . with m ∈ Z and ai ∈ A :=

{0, . . . , bβc} (set of digits) for all m ≥ i ∈ Z, such that 0 ≤ γ −
∑m
i=k aiβ

i < βk

holds for all m ≥ k ∈ Z (greedy expansion of γ with respect to β). Let Fin(β) be the

set of all γ ∈ [0, 1) having finite greedy expansion with respect to β. Then Fin(β) ⊆
Z[ 1β ] ∩ [0, 1). If the other inclusion is also true, β is said to have property (F). It is

known that property (F) can only hold if β is an algebraic integer and therefore has

aNote that this definition of SRS slightly differs from the original one in [1]. The SRS there are
exactly those SRS (in the notion of the present paper) which have the finiteness property.
b From now on a real vector r and its associated SRS τr shall be identified in terms of properties.
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a minimal polynomial Xd+ad−1X
d−1+ · · ·+a1X+a0 ∈ Z[X] which can be written

as (X−β)(Xd−1 +rd−2X
d−2 + . . .+r1X+r0). On the other hand, not all algebraic

integers have property (F). Indeed, β has property (F) iff (r0, . . . , rd−2) ∈ D(0)
d−1 [8].

A similar relation can be shown for CNS. Let P (X) = Xd + pd−1X
d−1 +

. . . + p1X + p0 ∈ Z[X], R := Z[X]/P (X)Z[X], N := {0, . . . , |p0| − 1} and

x := X + P (X)Z[X] ∈ R. Then (P,N ) is called a canonical number system, P

a CNS polynomial and N the set of digits iff every non-zero element A(x) ∈ R can

be represented uniquely in the form A(x) = amx
m+am−1x

m−1+ . . .+a1x+a0 with

m ∈ N0, ai ∈ N for all i ∈ {0, . . . ,m} and am 6= 0. Then P is a CNS polynomial iff

( 1
p0
, pd−1

p0
, . . . , p2p0 ,

p1
p0

) ∈ D(0)
d [1].

We proceed with some technical preliminaries. For n ∈ N, π = (a1, . . .an) ∈
(Zd)n is called a cycle of r (or τr, see footnote b) iff for all i ∈ {1, . . . , n} it holds

that τr(ai) = ai mod n+1, a cycle iff there is a vector r ∈ Rd for which π is a cycle

of r, and nontrivial iff π 6= (0), the trivial cycle. The set of all cycles in Zd shall

be denoted by Cd. Let P (π) :=
{
r ∈ Rd | π cycle of r

}
, the associated polyhedron

of π or - if π is a nontrivial cycle - the cutout polyhedron of π. It follows from

Lemma 2.2 below that P (π) is either empty or the intersection of finitely many

half-open “strips” and therefore it does in fact always form a - possibly degenerate

- convex polyhedron. It is clear that

D(0)
d = Dd \

⋃
π 6=(0)

P (π) (1.4)

which provides a method to “cut out” regions (the cutout polyhedra) from Dd [1].

The first algorithm described in this paper relies on a similar idea but calculates

polyhedra which either belong entirely to D(0)
d or have empty intersection with it.

These polyhedra do not come from cycles but from so-called sets of witnesses which

are used in what is known as Brunotte’s algorithm ([1, Theorem 5.1]). A set V ⊆ Zd
is called a set of witnesses for r iff it is stable under τr and τ?r := −τr ◦ (− idZd) and

contains a generating set of the group (Zd,+) which is closed under taking inverses.

Every such set of witnesses has the decisive property

r ∈ D(0)
d ⇔ ∀ a ∈ V : ∃ n ∈ N : τnr (a) = 0. (1.5)

In the case of a finite set of witnesses this provides a method to decide whether or

not a given parameter r belongs to D(0)
d . This is what Brunotte’s algorithm does for

any given parameter r in the interior of Dd - it calculates a finite set of witnesses.

It shall be denoted by Vr - the set of witnesses associated with r - and can be

calculated using the following iteration (Vr can and shall be defined not only if r is

in the interior of Dd but for any r ∈ Rd):

V0

∀ n ∈ N : Vn

Vr

:= {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}
:= Vn−1 ∪ τr(Vn−1) ∪ τ?r (Vn−1)

:=
⋃
n∈N0

Vn (1.6)
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If r is an element of the interior ofDd the mappings τr and τ?r are contractive on some

Zd \BR(0) (where BR(0) denotes the R-ball around 0 for some R ∈ R). Therefore

the above iteration becomes stationary eventually [1]. Let Πr - the graph of witnesses

associated with r - denote the edge-colored multidigraph with vertex set Vr and an

edge of color 1 from a vertex a to a vertex b iff τr(a) = b and an edge of color 2 from

a to b iff τ?r (a) = b. If E1 is the set of all edges (ordered pairs) of color 1 and E2 the

set of all edges of color 2, then the graph Πr is completely characterized by the pair

(E1, E2) ∈ P((Zd)2)2 (as there are no isolated vertices) and thus the graph and the

pair can be identified. For any such graph Π = (E1, E2) ∈ P((Zd)2)2 let - just as for

cycles - P (Π) :=
{
r ∈ Rd | ∀ (a,b) ∈ E1 : τr(a) = b ∧ ∀ (a,b) ∈ E2 : τ?r (a) = b

}
and Pr := P (Πr). As before one can use Lemma 2.2 from below to see that Pr is a

convex polyhedron if Vr is finite, which is the case if r ∈ int (Dd). Furthermore D(0)
d

is the disjoint union of those Pr the corresponding parameters r of which belong to

D(0)
d (Proposition 3.1), which is essentially the heart of the first algorithm.

The second algorithm relies on a certain refinement of the decomposition of D(0)
d

provided by the set of the Prs, which can be computed much faster. However, this

speedup comes with the same price Brunotte’s algorithm for regions has to pay: the

uncertainty whether or not the algorithm will terminate. But as with Brunotte’s

algorithm this limitation is only of theoretic interest and presents no difficulties in

practice.

In addition to the regions of D(0)
2 which are settled algorithmically in Section 4,

several infinite families of cutout polygons are deduced in Section 5. These families

form a chain leading from (1,−1) to (1, 2) and tend to either of the two ”critical

points” (cf. [1]) (1, 0) and (1, 1).

2. Preliminary Results

Definition 2.1. A strip S ⊆ Rd is the intersection of two parallel oppositely ori-

ented half-spaces, or Rd itself. The empty set and the whole space Rd are consid-

ered degenerate and all others nondegenerate strips. For nondegenerate strips the

attributes open, half-open, and closed shall indicate belonging of the hyperplanes

bounding the strip. The width of a strip is the normal distance of these hyperplanes

if it is nondegenerate or −∞ or ∞ if the strip is the empty set or the whole space.

A set P ⊆ Rd is called (convex) polyhedron iff it is the intersection of finitely

many half-spaces or Rd itself. A polyhedron is considered nondegenerate iff it has

positive and finite Lebesgue measure and degenerate otherwise. The set of all poly-

hedra in Rd shall be denoted by Pd.

Every strip having positive width can be represented in one of the four ways{
r ∈ Rd | 0

{
<

≤

}
ar + b

{
<

≤

}
1

}
(a ∈ Rd, b ∈ R), (2.1)

where a is normal to the strip’s bounding hyperplanes and 1
‖a‖ is the strip’s width.
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Lemma 2.2. Let a = (a1, . . . , ad) ∈ Zd, b = (b1, . . . , bd) ∈ Zd, and r ∈ Rd. Then

(i)
{
r ∈ Rd | τr(a) = b

}
={

r ∈ Rd | (a2, . . . , ad) = (b1, . . . , bd−1) ∧ 0 ≤ ra + bd < 1
}

(ii)
{
r ∈ Rd | τ?r (a) = b

}
={

r ∈ Rd | (a2, . . . , ad) = (b1, . . . , bd−1) ∧ 0 ≤ −ra− bd < 1
}

(iii)
{
s ∈ Rd | τs(a) = τr(a) ∧ τ?s (a) = τ?r (a)

}
={{

s ∈ Rd | sa− ra = 0
}

if ra ∈ Z{
s ∈ Rd | 0 < sa− brac < 1

}
if ra 6∈ Z

(hyperplane or open strip)

Proof. (i) and (ii) follow directly from the definitions of τr and τ?r .

For the proof of (iii) let M :=
{
s ∈ Rd | τs(a) = τr(a) ∧ τ?s (a) = τ?r (a)

}
. Then

(i) and (ii) imply that M =
{
s ∈ Rd | 0 ≤ sa− brac < 1 ∧ 0 ≤ −sa− b−rac < 1

}
.

If ra ∈ Z then −b−rac = ra and therefore M =
{
s ∈ Rd | sa− ra = 0

}
. If ra 6∈ Z

then −b−rac = brac+ 1 and therefore M =
{
s ∈ Rd | 0 < sa− brac < 1

}
.

Lemma 2.3. Let r ∈ int (Dd). Then Pr is the intersection of a nondegenerate, open

polyhedron and an affine subspace of Rd.

Proof. Lemma 2.2 implies that Pr is the intersection of finitely many hyperplanes

and finitely many open strips and thus is the intersection of an open polyhedron and

an affine subspace of Rd. Furthermore it is non-empty as r ∈ Pr and it is bounded

as {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)} ⊆ Vr and therefore Pr ⊆ brc+ [0, 1]d.

3. Two Characterization Algorithms for Regions of D(0)
d

Throughout the following section let k ∈ N, (r1, . . . , rk) ∈ int (Dd)k and H :=

conv ({r1, . . . , rk}) such that H ⊂ int (Dd).

Algorithm 1 Determination of conv ({r1, . . . , rk}) ∩ D(0)
d

Input: (r1, . . . , rk) ∈ int (Dd)k such that conv ({r1, . . . , rk}) ⊂ int (Dd).
Output: P ⊆ Pd with conv ({r1, . . . , rk}) ∩ D(0)

d =
⋃
P disjoint.

1: H ← conv ({r1, . . . , rk})
2: P ← ∅
3: while H \

⋃
P 6= ∅ do

4: select r ∈ H \
⋃
P

5: P ← P ∪ {H ∩ Pr}
6: if r ∈ D(0)

d then {use Brunotte’s algorithm}
7: finH∩Pr ← true
8: else
9: finH∩Pr ← false

10: end if
11: end while

12: return {P ∈ P | finP = true}
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Algorithm 1 is a straightforward application of the following

Proposition 3.1. Let r ∈ Rd. Then

(i) r ∈ Pr, and r ∈ D(0)
d ⇔ Pr ⊆ D(0)

d

(ii) D(0)
d =

⋃{
Pr | r ∈ D(0)

d

}
and this union is disjoint

Proof. Follows directly from the definition of Pr.

Of course the question arises whether the while loop actually terminates, which

is equivalent to the possibility of exhausting H by finitely many Prs.

Theorem 3.2. Algorithm 1 terminates for all inputs.

Proof. In [1, Section 4] it is shown that τr can be represented by the transposed

companion matrix Rr of the polynomial χr(X) = Xd + rdX
d−1 + · · · + r2X + r1,

where r = (r1, . . . , rd) ∈ Rd. For every a ∈ Zd there is a vr = (0, . . . , 0, vr) ∈ Rd
with 0 ≤ vr < 1 such that τr(a) = Rra + vr.

Furthermore formula (3.2) of [14] is used to show that for every r ∈ Rd and

ρ̃ > ρ(Rr) (the spectral radius of Rr) there is a norm ‖·‖r,ρ̃ such that ‖Rra‖r,ρ̃ ≤
ρ̃ ‖a‖r,ρ̃ for all a ∈ Rd and ‖Rra‖r,ρ̃ = ρ̃ ‖a‖r,ρ̃ iff a = 0. As the function which

maps s ∈ Rd to max
{‖Rsa‖r,ρ̃
‖a‖r,ρ̃

| a ∈ Rd ∧ ‖a‖r,ρ̃ = 1
}

is continuous, there is an open

neighborhood Br,ρ̃ of r such that ‖Rsa‖r,ρ̃ ≤ ρ̃ ‖a‖r,ρ̃ for every s ∈ Br,ρ̃ and a ∈ Rd.
Since r is an interior point of Dd iff ρ(Rr) < 1 ([1, Lemma 4.1 and Lemma 4.3])

we get that for every r ∈ H ⊂ int (Dd) there is a ρ(Rr) < ρ̃r < 1 such that

‖τs(a)‖r,ρ̃r < ‖a‖r,ρ̃r for every s ∈ Br,ρ̃r and a ∈ Zd with ‖a‖r,ρ̃r > ρr :=
max{‖(0,...,0,v)‖r,ρ̃r |v∈[0,1]}

1−ρ̃r . This implies that Vs ⊆
{

a ∈ Zd | ‖a‖r,ρ̃r ≤ ρr
}

for ev-

ery s ∈ Br,ρ̃r . The set {Br,ρ̃r | r ∈ H} is an open cover of H and since H is compact

there exists a finite subcover. Thus
⋃

r∈H Vr is finite and since only finitely many

graphs can be defined on a finite number of vertices the sets {Πr | r ∈ H} and

{Pr | r ∈ H} are also finite.

Algorithm 1 computes a decomposition of H into finitely many disjoint poly-

hedra (from which it selects those which are contained in D(0)
d in the final step).

Algorithm 2 - which will be treated in the following - uses any finite superset V

(which has to be fixed initially) of ṼH :=
⋃

r∈H Vr to compute a refinement of

this decomposition (cf. Fig. 1). ṼH itself is a finite set according to Theorem 3.2

and can be computed by Algorithm 1. Though ṼH would be the optimal choice for

V its determination by Algorithm 1 would of course be pointless. But at least for

some choices of H another finite superset of ṼH can be calculated efficiently using

Brunotte’s algorithm for regions [1]. It calculates a common set of witnesses for all

r ∈ H essentially using the same iteration as for single parameters (cf. formula (1.6))

but with the slightly modified functions τH : P(Zd)→ P(Zd), where

τH(V ) = {τr(a) | r ∈ H ∧ a ∈ V } , (3.1)
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and τ?H := −τH ◦ (− idP(Zd)). A possible choice for VH can then be found using

the following iteration:

V0

∀ n ∈ N : Vn

VH

:= {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}
:= Vn−1 ∪ τH(Vn−1) ∪ τ?H(Vn−1)

:=
⋃
n∈N0

Vn (3.2)

Unfortunately the set VH found in this way need not always be finite even if H

is contained in the interior of Dd. However in practice this causes no troubles as

one just has to start with a smaller H if the iteration does not become stationary,

which can be decided heuristically by comparing the size (i.e. number of elements

or maximum of its elements’ norms) of Vn to the sizes of the Vrs for all vertices r

of the polyhedron H. If Vn is considerably larger than all of the Vrs the iteration

probably will not terminate.

From now on let V ⊆ Zd fix any finite superset of ṼH and consider the following

equivalence relation:

∼ :=
{

(r1, r2) ∈ R2 | ∀ a ∈ V : τr1(a) = τr2(a) ∧ τ?r1(a) = τ?r2(a)
}

(3.3)

Then the set H/∼ :=
{

[r]∼ ∩H | r ∈ Rd
}

is a refinement of the decomposition

of H calculated by Algorithm 1. If R ⊆ H is any system of representatives of

H/∼ then the intersection of D(0)
d and H is given by the finite disjoint union⋃{

[r]∼ ∩H | r ∈ R ∩D(0)
d

}
. In order to determine the complete list of equivalence

classes (Proposition 3.5 below) the notion of face lattices of (convex) polyhedra

proves useful (an adapted version of [7, Chapter 3] is used to cover degenerate

polyhedra which will be needed in Section 5).

Definition 3.3. A face of a polyhedron P ∈ Pd is any intersection of P with a

closed half-space such that the interior of P (with respect to the smallest affine

subspace of Rd containing P ) and the boundary of the half-space are disjoint. In

addition ∅ and Rd shall be considered faces if P = Rd. The set of faces of P shall

be denoted by F(P ).

The face lattice of P is the set of faces F(P ) of P together with the partial order

given by set inclusion.

For a face F of P let F ◦ denote the set difference of F and the union of all

faces of P that are less than F (in the face lattice of P ). Any F ◦ where F ∈ F(P )

shall be referred to as open face of P and consequently F◦(P ) := {F ◦ | F ∈ F(P )}
as the set of open faces of P .

Note that any closed polyhedron is the disjoint union of its open faces. Also note

that open faces need not to be open sets (e.g. the singletons containing the vertices

of a polyhedron are among its open faces). Furthermore we need the following

technical
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Definition 3.4. For a tuple (a, b) ∈ Rd × R let P (a, b) :=
{
r ∈ Rd | ar + b = 0

}
.

A hyperplane P ⊆ Rd is called integer if there is a tuple (a, b) ∈ Zd × Z such that

P = P (a, b). Any such tuple shall then be denoted as generator of P . The unique

generator which satisfies that the first nonzero entry of a is positive and that the

greatest common divisor of the entries of a and b is 1 is the canonical generator of

P and shall be denoted by CG (P ) = (CG1 (P ) ,CG2 (P )). The first entry CG1 (P )

of the canonical generator is the canonical normal vector of P .

Proposition 3.5. For all a ∈ V let Ba := {−ari | i ∈ {1, . . . , k}} and G :=

{CG (P (a, b)) | a ∈ V \ {0} ∧ b ∈ {bmin (Ba)c , . . . , dmax (Ba)e}}. Furthermore let

φ : Rd → {−1, 0, 1}|G| where φ(r) = (sgn (ar + b))(a,b)∈G and let P denote

the set of all minimal nondegenerate polyhedra having non-empty intersection

with H which are the intersection of some selection of half-spaces from the set{{
r ∈ Rd | ar + b ≥ 0

}
| (a, b) ∈ G

}
∪
{{

r ∈ Rd | −ar− b ≥ 0
}
| (a, b) ∈ G

}
. Then

H/∼ =
{
φ−1(S) ∩H | S ∈ {−1, 0, 1}|G|

}
\{∅} =

{
F ∩H | F ∈

⋃
P∈P F◦(P )

}
\{∅}.

Proof. Lemma 2.2 implies that Φ1 : H/∼ → {−1, 0, 1}|G|, where Φ1([r]∼) = φ(r)

is well-defined and injective. On the other hand it follows from the definitions of

open faces and P that Φ2 :
{
F ∩H | F ∈

⋃
P∈P F◦(P )

}
\ {∅} → {−1, 0, 1}|G| given

by Φ2(F ) = (sgn (av + b))(a,b)∈G with v ∈ F is also well-defined and injective and

Φ−11 (S) = Φ−12 (S) for all S ∈ {−1, 0, 1}|G| which proves the statement.

Remark 3.6. Proposition 3.5 gives a geometric interpretation of the equivalence

classes of ∼. The hyperplanes which are generated by the elements of G cut Rd into

pieces of polyhedral shape and the set of all (nonempty) open faces of these poly-

hedra is exactly the set of equivalence classes of ∼. The use of canonical generators

eliminates redundant hyperplanes, which is not needed in the proof but will speed

up the process of actually finding the set of all open faces. If d = 2 this is not too

difficult but one would probably approach the problem in reverse order than what

Proposition 3.5 suggests. Instead of calculating the set P of polygons directly and

then the set of open faces (singletons (vertices), open line segments (edges), and

nondegenerate open polygons (interiors)) one can first find all vertices by pairwise

intersection of the given lines, then the edges (pair of distinct vertices that lie on a

common line with no other vertex lying in between), and at last the interiors (use

any algorithm to find the graph theoretic faces of a planar embedding of a graph).

In higher dimensions one could use the cylindrical algebraic decomposition al-

gorithm [5] which, for a given set of polynomials in R[X1, . . . , Xd], finds a decom-

position of Rd into regions on which each polynomial has constant sign.

Remark 3.7. The set H/∼ of equivalence classes is also useful when calculating

τH(V ) for some finite V ⊆ Zd (see formula (3.2)). It follows from the definition

of τH that τH(V ) =
⋃

a∈V τH({a}) and for any a ∈ Zd one gets that τH({a}) =

{τr(a) | [r]∼ ∈ H/∼} where ∼:=
{

(r1, r2) ∈ R2 | τr1(a) = τr2(a) ∧ τ?r1(a) = τ?r2(a)
}

.
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If the set H/∼ of equivalence classes is known one could use Brunotte’s algorithm

to decide whether or not a given class belongs to D(0)
d . The definition of ∼ guarantees

that the result will be the same for all parameters in the class. But instead of treating

all classes independently two decisive optimizations can be made to speed up the

process considerably.

If [r]∼ ∈ H/∼ is any class then Vr ⊆ V and in all situations of practical relevance

(where V has been found with Brunotte’s algorithm for regions) V probably will not

be much larger than Vr. So instead of calculating Vr and checking it for nontrivial

cycles one can just check the similar superset V .

The second optimization relies on the fact that the graph defined by τr on V can

only change at specific vertices if the parameter is changed to s where [s]∼ ∈ H/∼
is any class that is adjacent to [r]∼ and two classes are considered adjacent if they

are distinct and their topological boundaries intersect. The following proposition

describes on which nodes the graph on V needs to be updated (at most) in this

situation. If both classes have a positive distance from the boundary of H, the set

M of these nodes consists of those elements of V which are integer multiples of

the canonical normal vectors of any hyperplane containing the intersection of the

boundaries of [r]∼ and [s]∼ and any (d-1)-dimensional class in the intersection of

the “closed neighborhoods” of [r]∼ and [s]∼.

Proposition 3.8. Let [r]∼ ∈ H/∼ and [s]∼ ∈ H/∼ be adjacent and for any class

C ∈ H/∼ let N(C) := {D ∈ H/∼ | D adjacent to C} ∪ {C} (closed neighborhood

of C). Furthermore let M := {a ∈ V | ∃ b ∈ Z : ∂[r]∼ ∩ ∂[s]∼ ⊆ P (a, b)}. Then

(i) {a ∈ V | τr(a) 6= τs(a)} ⊆M
(ii) ∂[r]∼ ∩ ∂H = ∅ ∧ ∂[s]∼ ∩ ∂H = ∅ ⇒

M = V ∩ Z{CG1 (spanR([t]∼ − t) + t) | [t]∼ ∈ N([r]∼) ∩N([s]∼) ∧
dimR(spanR([t]∼ − t)) = d− 1 ∧
∂[r]∼ ∩ ∂[s]∼ ⊆ spanR([t]∼ − t) + t}

Proof. We say that a hyperplane separates two classes from H/∼ iff either one

class is contained in the hyperplane while the other has empty intersection with it

or each class has empty intersection with exactly one of the two open half-spaces

Rd is divided into by the hyperplane. For every a ∈ V with τr(a) 6= τs(a) there is a

b ∈ Z such that P (a, b) separates [r]∼ and [s]∼ according to Proposition 3.5. And

every hyperplane separating the two distinct but “touching” classes [r]∼ and [s]∼
has to contain the intersection of their topological boundaries which shows (i).

For the proof of (ii) assume that [r]∼ and [s]∼ both have a positive distance from

the boundary ofH and let a ∈ V and b ∈ Z such that ∂[r]∼∩∂[s]∼ ⊆ P (a, b). Then it

follows from Proposition 3.5 that there is a class [t]∼ ∈ N([r]∼)∩N([s]∼) satisfying

that P (a, b) = spanR([t]∼ − t) + t which implies that dimR(spanR([t]∼ − t)) =

dimR(P (a, b)−t) = d−1. Furthermore it follows from the definition of the canonical

generator that a ∈ ZCG1 (P (a, b)) which proves (ii).
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Algorithm 2 Determination of conv ({r1, . . . , rk}) ∩ D(0)
d

Input: (r1, . . . , rk) ∈ int (Dd)k such that conv ({r1, . . . , rk}) ⊂ int (Dd),
Ṽconv({r1,...,rk}) ⊆ V ⊆ Zd finite.

Output: C ⊆ Cd with conv ({r1, . . . , rk})∩D(0)
d = conv ({r1, . . . , rk}) \

⋃
π∈C P (π).

1: H ← conv ({r1, . . . , rk})
2: C ← ∅
3: G = (V (G), E(G))← (V, ∅) {edgeless digraph with vertex set V }
4: calculate H/∼ according to Proposition 3.5 and Remark 3.6
5: for all C ∈ H/∼ do
6: NC ← {D ∈ H/∼ | D adjacent to C}
7: BC ← false
8: end for

9: for all [r]∼ ∈ H/∼ with B[r]∼ = false and ∂[r]∼ ∩ ∂H 6= ∅ do

10: if r ∈ D(0)
d then {search for cycles of r on V }

11: B[r]∼ ← true
12: else
13: select π nontrivial cycle of r on V
14: C ← C ∪ {π}
15: for all [s]∼ ∈ H/∼ with B[s]∼ = false and s ∈ P (π) do
16: B[s]∼ ← true
17: end for
18: end if
19: end for

20: while ∃ C ∈ H/∼ : BC = false do
21: select [r]∼ ∈ H/∼ with B[r]∼ = false
22: E(G)← {(a, τr(a)) | a ∈ V }
23: W ← V
24: loop

25: if r ∈ D(0)
d then {search for cycles of G starting at the vertices in W}

26: B[r]∼ ← true
27: if ∃ C ∈ N[r]∼ : BC = false then
28: select C ∈ N[r]∼ with BC = false
29: update E(G) according to Proposition 3.8
30: save the tails of the changed edges in W
31: [r]∼ ← C
32: else
33: break
34: end if
35: else
36: select π nontrivial cycle of G
37: C ← C ∪ {π}
38: for all [s]∼ ∈ H/∼ with B[s]∼ = false and s ∈ P (π) do
39: B[s]∼ ← true
40: end for
41: break
42: end if
43: end loop
44: end while

45: return C
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Algorithm 2 computes a minimal set of cutout polyhedra (with respect to set

inclusion but not necessarily cardinality) which describes D(0)
d inside of H. After

initialization of required variables (steps 1-8) the classes “touching” the boundary

of H are treated directly and one by one (steps 9-19). If a nontrivial cycle is found

all classes contained in the corresponding cutout polyhedron are considered “done”

(the associated B-flag is set to true) and the cycle is added to the output set C.
After that the main part of the algorithm follows (steps 20-44). The classes are

treated along walks in the graph defined on H/∼ by the adjacency relation. When

a nontrivial cycle is found it is handled as before and a new walk begins, as it

does when the walk reaches a dead end (i.e. if there are no neighbors yet to be

treated). Any time a new walk starts all edges of G have to be updated and checked

for cycles which consumes much more time than updating and checking only those

edges which are changed when going from one class to an adjacent one. In order to

minimize the number of restarts it is crucial to make a good choice when selecting

the next node (step 28). A Hamiltonian path would of course be an optimal but

also costly choice. Instead the following heuristic turns out to be adequate: Of all

possible neighbors of least dimension take the one (or one of those) which has the

highest number of neighbors that are already treated. This way the walks tend to

stay “compact” and will not cut the graph into too many pieces of pending vertices.

Fig. 1 illustrates the relation between the resulting decompositions of Algo-

rithm 1 and Algorithm 2 and cutout polygons.

Fig. 1. Comparison of the decompositions obtained by Algorithm 1 (bold) and Algorithm 2 of H =
conv

({
( 41
50
, 37
100

), ( 93
100

, 37
100

), ( 93
100

, 11
25

), ( 41
50
, 11
25

)
})

. Dark regions are contained in cutout polygons.
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4. Results

Using Algorithm 2 of Section 3 the list of Appendix A has been found. It completely

characterizes the set D(0)
2 ∩ C where

C

C1

C2

:=

:=

:=

C1 \ C2,{
(x, y) ∈ R2 | x ≤ 1− L

}
,

int
(

conv
({(

1−K, 2−K
)
,
(

1−K +
√

2L, 2−K
)
,(

1−
√

2L, 2− 2
√

2L
)
,
(

1, 2
)}))

(4.1)

and K = 1
20 , L = 1

512 , which is considerably larger than what has been

achieved with Brunotte’s algorithm for regions so far (L = 1
100 , [18]). Note

that C2 is a small open quadrangle of width L touching the boundary of D2

left of (1, 2). The convex sets used as inputs for the algorithm were the closed

squares
[
x
n ,

x+1
n

]
×
[
y
n ,

y+1
n

]
, where n = 8192, (x, y) ∈ Z2 with

⌊
2n
3

⌋
≤ x ≤

L − 1
n and −n2 ≤ y ≤ 3n

2 − 1. The remaining regions have already been

characterized in [2] (especially by Theorem 4.8 there, which covers the region{
(x, y) ∈ R2 | 0 < x < 1 ∧ 0 < y < x+ 1 ∧ 4x < y2 ∧ y > x

γ6
+ γ6

}
where γq is the

positive root of qt3 + qt2 − qt − q + 1, q ∈ N, and therefore reaches the boundary

of D2) or were also treated by Algorithm 2 using suitable convex input sets. Every

5-tuple (n, x, y, a1, a2) in the list of Appendix A represents a cutout polygon P in

the following way: Let r := ( xn ,
y
n ), a := (a1, a2), m := min

{
k ∈ N | τkr (a) = a

}
,

and π := (τr(a), . . . , τmr (a)). Then P := P (π).

If {P1, . . . , P598} is the set of the 598 cutout polygons then

D(0)
2 ∩ C =

{
(x, y) ∈ R2 | x ≤ 1 ∧ |y| ≤ x+ 1

}
∩ C \

598⋃
k=1

Pk. (4.2)

Note that
{

(x, y) ∈ R2 | x ≤ 1 ∧ |y| ≤ x+ 1
}

is the topological closure of D2 [1].

Also note that none of the given cutout polygons is redundant, which can easily

be verified as any of the given parameters is contained solely in the corresponding

cutout polygon.

The analysis of the list of cutout polygons leads to the following

Theorem 4.1.

(i) D(0)
2 has at least 22 connected components

(ii) The largest connected component of D(0)
2 has at least 3 holes

Proof. The parameters

( 1
2 ,

1
2 ), ( 152

157 ,
193
157 ), ( 313

315 ,
239
210 ), ( 167

168 ,
255
224 ), ( 314

317 ,
359
317 ), ( 453

455 ,
496
455 ), ( 305

306 ,
37
34 ), ( 362

363 ,
259
242 ),

( 356
357 ,

382
357 ), ( 358

359 ,
384
359 ), ( 1121

1124 ,
601
562 ), ( 1375

1378 ,
640
689 ), ( 2061

2066 ,
959
1033 ), ( 309

310 ,
141
155 ), ( 1533

1538 ,
699
769 ),

( 989
992 ,

901
992 ), ( 1127

1133 ,
1009
1133 ), ( 1607

1612 ,
691
806 ), ( 694

697 ,
521
697 ), ( 92

93 ,
16
31 ), ( 537

539 ,
67
539 ), ( 304

305 ,
38
305 )



Characterization algorithms for SRS 13

are contained in 22 distinct connected components of D(0)
2 .

The parameters

( 911
914 ,

391
457 ), ( 2455

2463 ,
2108
2463 ), ( 265

266 ,
1
4 )

are contained in 3 distinct holes of the largest connected component of D(0)
2 .

The figures below show the calculated cutout polygons and the resulting shape

of D(0)
2 in the corresponding region. Figure 2 gives an overview of D(0)

2 and shows the

regions which lie above and below the point (1, 1), Fig. 3 shows several connected

components, and Fig. 4 gives an example of holes.

The cutout polygons are represented in the following way: If an edge belongs

to the polygon it is plotted solid, and dotted otherwise. Belonging of a vertex is

indicated by a prominent dot at the respective position. In the images which show

the resulting shape of D(0)
2 black regions do belong to D(0)

2 , white regions do not

and gray regions are not settled by now.

Fig. 2. Overview of D(0)
2 and the regions above and below (1, 1).
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Fig. 3. Four connected components of D(0)
2 .

Fig. 4. Two holes of D(0)
2 .
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5. Infinite Families of Cutout Polygons

In [18] two infinite families of cutout polygons of D(0)
2 are deduced. The following

Lemma provides a formal method to identify families of cutout polyhedra. It was

used to find four additional infinite families of cutout polygons of D(0)
2 which - to-

gether with the two families already known and two singular cutout polygons - form

a chain leading from (1,−1) to (1, 2) along the ”critical line”
{

(x, y) ∈ R2 | x = 1
}

.

They cut out a considerable part of the region in D2 which has not been settled

algorithmically in Section 4.

Lemma 5.1. Let H denote a finite set of half-spaces in Rd and P ∈ Pd be

bounded. Furthermore let Ho := {H ∈ H | H open}, Hc := {H ∈ H | H closed},
Fo(P ) := F◦(P ) \ P(P ), Fc(P ) := F◦(P ) ∩ P(P ) and AP :=⋂{

A affine subspace of Rd | P ⊆ A
}

. Then P =
⋂
H iff the following holds:

(i) ∀ F ∈ F◦(P ) : |F | = 1⇒ ∀H ∈ H : F ⊆ H
(ii) AP = Rd ∨ ∃ H′ ⊆ H : AP =

⋂
H′

(iii) ∀ F ∈ Fo(P ) : ∃H ∈ Ho : F ⊆ ∂H
(iv) ∀ F ∈ Fc(P ) : F 6= P ⇒ ∃H ∈ Hc : F ⊆ ∂H ∧ P 6⊆ ∂H
(v) ∀ F ∈ Fc(P ) : @H ∈ Ho : F ⊆ ∂H

Proof. It is obvious that P =
⋂
H ⇒ (i)∧ . . .∧(v). In the other direction the

boundedness of P , (i) and (v) imply that P ⊆
⋂
H. Also it follows from (ii) that⋂

H ⊆ AP – the smallest affine subspace containing P (if P is nonempty, otherwise

the statement of the Lemma is trivial due to (ii)). In addition to the restriction

P 6⊆ ∂H in (iv) this allows to assume w.l.o.g. that P is nondegenerate (⇔ AP = Rd).
But then it follows from (iii) and (iv) that

⋂
H ⊆ P .

Definition 5.2. For two finite tuples S and T let S t T denote the tuple obtained

by concatenation of S and T .

For a tuple (T1, . . . , Tn) of n ∈ N finite tuples let shuffle(T1, . . . , Tn) denote the

tuple obtained by successively stringing together the first entries of the tuples (in the

given order) followed by the second entries and so forth, with tuples having too little

entries being skipped (e.g. shuffle((1, 2), (3), (4, 5, 6)) = (1, 3, 4, 2, 5, 6)).

Using the notions of Definition 5.2 one can define the following families of cycles

(for convenience the families studied in [18] are also given – C2(n) and C6(n)):

C0(1) := ((−3, 3), (3,−2), (−2, 1), (1, 1), (1,−2), (−2, 3), (3,−3))

C0(2) := ((−5, 1), (1, 5), (5,−3), (−3,−3), (−3, 5), (5, 1), (1,−5), (−5, 2), (2, 4),

(4,−4), (−4,−1), (−1, 5), (5,−1), (−1,−4), (−4, 4), (4, 2), (2,−5))
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C
(1)
1 (n) := ((−2n, 2k))nk=1 t ((−2n+ 2k, 2n))n−1k=1 t ((2k − 1, 2n− 2k))n−1k=1t

((2n− 1,−2k + 1))nk=1 t ((2n− 2k − 1,−2n+ 1))n−1k=1t
((−2k,−2n+ 2k + 1))n−1k=1

C
(2)
1 (n) := ((2k, 2n− 2k))n−1k=1 t ((2n,−2k + 1))nk=1 t ((2n− 2k,−2n+ 1))n−1k=1t

((−2k + 1,−2n+ 2k + 1))n−1k=1 t ((−2n+ 1, 2k))nk=1t
((−2n+ 2k + 1, 2n))n−1k=1

C
(3)
1 (n) := ((2n− 2k,−2n))n−1k=1 t ((−2k + 1,−2n+ 2k))n−1k=1t

((−2n+ 1, 2k − 1))nk=1 t ((−2n+ 2k + 1, 2n− 1))n−1k=1t
((2k, 2n− 2k − 1))n−1k=1 t ((2n,−2k))nk=1

C1(n) := shuffle(C
(1)
1 (n), C

(2)
1 (n), C

(3)
1 (n)), n ≥ 2

C
(1)
2 (n) := ((−2n, 2k − 1))n+1

k=1 t ((−2n+ 2k, 2n+ 1))n−1k=1

C
(2)
2 (n) := ((2k − 1, 2n− 2k + 1))nk=1 t ((2n+ 1,−2k))nk=1

C
(3)
2 (n) := ((2n− 2k + 1,−2n))nk=1 t ((−2k,−2n+ 2k))n−1k=1

C2(n) := shuffle(C
(1)
2 (n), C

(2)
2 (n), C

(3)
2 (n)), n ≥ 1

C
(1)
3 (n) := ((−2n− 1, 1)) t ((−2n+ 2k − 2,−2k))nk=1 t ((2k − 1,−2n− 1))nk=1

C
(2)
3 (n) := ((1, 2n+ 1)) t ((−2k, 2n+ 2))n−1k=1 t ((−2n, 2n+ 1))t

((−2n− 1, 2n− 2k + 1))n−1k=1

C
(3)
3 (n) := ((2n+ 1,−2n)) t ((2n+ 2,−2n+ 2k))n−1k=1 t ((2n− 2k + 3, 2k − 1))nk=1

C3(n) := shuffle(C
(1)
3 (n), C

(2)
3 (n), C

(3)
3 (n)), n ≥ 2

C
(1)
4 (n) := ((−2n− 1, 2)) t ((−2n+ 2k − 2,−2k + 1))nk=1 t ((2k − 1,−2n))n−1k=1t

((2n− 1,−2n+ 1)) t ((2n,−2n+ 2k + 1))n−1k=1 t ((2n− 2k + 1, 2k))nk=1t
((−2k, 2n+ 1))n−1k=1 t ((−2n, 2n)) t ((−2n− 1, 2n− 2k))n−2k=1

C
(2)
4 (n) := ((2, 2n)) t ((−2k + 1, 2n+ 1))n−1k=1 t ((−2n+ 1, 2n))t

((−2n, 2n− 2k))n−1k=1 t ((−2n+ 2k − 1,−2k + 1))nk=1 t ((2k,−2n))n−1k=1t
((2n,−2n+ 1)) t ((2n+ 1,−2n+ 2k + 1))n−1k=1 t ((2n− 2k + 2, 2k))n−1k=1

C
(3)
4 (n) := ((2n,−2n)) t ((2n+ 1,−2n+ 2k))n−1k=1 t ((2n− 2k + 2, 2k − 1))nk=1t

((−2k + 1, 2n))n−1k=1 t ((−2n+ 1, 2n− 1)) t ((−2n, 2n− 2k − 1))n−1k=1t
((−2n+ 2k − 1,−2k))nk=1 t ((2k,−2n− 1))n−1k=1

C4(n) := shuffle(C
(1)
4 (n), C

(2)
4 (n), C

(3)
4 (n)), n ≥ 2

C
(1)
5 (n) := ((−n− 1, 1)) t ((−n+ k − 1, k + 2))n−1k=1

C
(2)
5 (n) := ((1, n+ 1)) t ((k + 2, n− k + 1))n−2k=1 t ((n+ 1, 1))

C
(3)
5 (n) := ((n− k + 2,−k − 1))n−1k=1 t ((1,−n− 1))

C
(4)
5 (n) := ((−k − 1,−n+ k − 1))n−1k=1

C5(n) := shuffle(C
(1)
5 (n), C

(2)
5 (n), C

(3)
5 (n), C

(4)
5 (n)), n ≥ 2
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C
(1)
6 (n) := ((−n+ k − 1,−k))nk=1 t ((1,−n))

C
(2)
6 (n) := ((−k, n− k + 1))nk=1 t ((n− k + 1, k + 1))nk=1

C
(3)
6 (n) := ((k + 1,−n+ k))n−1k=1 t ((n+ 1, 1))

C6(n) := shuffle(C
(1)
6 (n), C

(2)
6 (n), C

(3)
6 (n)), n ≥ 1

Using Lemma 5.1 one can verify that the corresponding cutout polygons of the

cycles defined above have the shapes given in Proposition 5.3 below. Every polygon

is given by a list of its vertices in counterclockwise order. A vertex is overlined iff

it belongs to the respective polygon. Belonging of an edge is indicated by a solid

(contained) or dotted (not contained) line between the endpoints.

Proposition 5.3. With the notions defined above we have the following infinite

families of cutout polygons:

C0(n), n = 1:
(

3
4 ,

3
2

) (
1, 53

) (
7
6 ,

11
6

) (
1, 2
)

n = 2:
(

25
26 ,

15
26

) (
1, 12

) (
28
27 ,

16
27

) (
1, 35

)
C1(n), n ≥ 2:

(
1− 1

4n2−4n+2 , 1 + 2n−1
4n2−4n+2

) (
1, 1 + 1

2n−1

)(
1 + 1

4n2−2 , 1 + 2n+2
4n2−2

) (
1, 1 + 1

2n−2

)
C2(n), n = 1:

(
2
3 ,

4
3

) (
1, 32

) (
6
5 ,

9
5

) (
3
4 ,

3
2

)
n ≥ 2:

(
1− 1

4n2−2n+1 , 1 + 2n−1
4n2−2n+1

) (
1, 1 + 1

2n

)(
1 + 1

4n2+2n−1 , 1 + 2n+2
4n2+2n−1

) (
1, 1 + 1

2n−1

)
C3(n), n ≥ 2:

(
1− 1

4n2+6n−1 , 1−
2n+4

4n2+6n−1

) (
1, 1− 1

2n−1

)
(

1 + 1
4n2+6n−2 , 1−

2n+3
4n2+6n−2

) (
1, 1− 1

2n

)
C4(n), n = 2:

(
19
20 ,

3
5

) (
21
22 ,

13
22

) (
1, 35

) (
22
21 ,

13
21

) (
20
19 ,

12
19

) (
1, 23

)
n ≥ 3:

(
1− 1

4n2+4n−4 , 1−
2n+4

4n2+4n−4

) (
1, 1− 1

2n−2

)(
1 + 1

4n2+4n−5 , 1−
2n+3

4n2+4n−5

) (
1, 1− 1

2n−1

)
C5(n), n = 2:

(
10
11 ,

4
11

) (
1, 13

) (
11
10 ,

2
5

) (
1, 12

)
n = 3:

(
14
15 ,

4
15

) (
1, 14

) (
19
18 ,

5
18

) (
1, 13

)
n = 4:

(
22
23 ,

5
23

) (
23
24 ,

5
24

) (
1, 15

) (
24
23 ,

5
23

) (
1, 14

)
n ≥ 5:

(
1− 1

n2+n+3 ,
n+1

n2+n+3

) (
1− 1

n2+2n ,
n+1
n2+2n

) (
1, 1

n+1

)
(

1 + 1
n2+2n−1 ,

n+1
n2+2n−1

) (
1 + 1

n2+n+3 ,
n+1

n2+n+3

) (
1, 1

n

)
C6(n), n = 1

(
2
3 ,−

1
3

) (
1,−1

) (
4
3 ,−

2
3

)
n ≥ 2:

(
1− 1

n2+2 ,−
n

n2+2

) (
1,− 1

n

) (
1 + 1

n2+n+1 ,−
n+1

n2+n+1

)(
1 + 1

n2+2n ,−
n+1
n2+2n

) (
1− 1

n2+n+1 ,−
n

n2+n+1

)
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C0(1)

C0(2)

C1(2)

C2(1)

C3(2)
C4(2)

C5(2)

C6(1)

C1(3)
C2(2)

C3(3)
C4(3)

C5(3)

C6(2)

(0, 0)

(0, 1)

(1,−1)

(1, 0)

(1, 1)

(1, 2)

Fig. 5. Six families of cutout polygons.

6. Further Remarks and Conjectures

The answers to the topological questions given in this paper of course raise new

questions. How many connected components and holes does D(0)
2 have? Considering

its highly complicated structure, the answer might be ”infinitely many” in both

cases. A full characterization of D(0)
2 seems to be out of reach for the moment, but

the two ”critical points” (cf. [1]) (1, 0) and (1, 1) appear to be asymmetric in terms

of complexity of the surrounding areas. While the latter hoards several connected

components and holes, the former seems to have a comparably simple, maybe even

regular neighborhood. It might be possible to characterize D(0)
2 by finitely many

classes of cutout polygons at least for y ≤ 1− ε where ε > 0. Furthermore, besides

of some singular results (e.g. [10,11]), the structure of D(0)
d for d > 2 is still open.
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Appendix A. List of Cutout Polygons

(1, 0, -1, 1, 1) (1, 0, 1, -1, 1) (3, -1, 1, 0, 1) (3, 3, -2, 2, 1) (3, 3, -1, 5, 1) (3, 3, 2, 5, 1) (4, 4, 1, 6, 1) (4, 4, 7, 1, 1)
(5, 5, 1, 11, 4) (5, 5, 8, 1, 1) (6, 6, -1, 9, 1) (6,6,1,10,1) (6, 6, 5, 7, 1) (7, 7, -3, 3, 1) (7,7,-1,16,4) (7, 7, 4, 5, 1)
(7, 7, 9, 3, 1) (8,8,-1,21,4) (8, 8, 3, 3, 1) (8, 8, 5, 4, 1) (8, 8, 7, 9, 1) (8,8,9,25,2) (8,8,11,2,1) (9, 9, -2, 5, 1)
(9,9,-1,13,1) (9,9,1,14,1) (9, 9, 7, 6, 1) (9,9,8,11,1) (9,9,10,39,4) (9,9,11,4,1) (10,9,13,2,1) (10,10,-1,29,4)
(10, 10, 11, 15, 2) (11, 11, 10, 13, 1) (11, 11, 12, 27, 2) (11, 11, 13, 5, 1) (12, 11, 5, 3, 3) (12, 11, 16, 2, 1)
(12, 12, -1, 17, 1) (12, 12, 1, 18, 1) (13, 13, -1, 35, 4) (13, 13, 3, 5, 1) (13, 13, 11, 8, 1) (13, 13, 15, 6, 1)
(14, 13, -4, 4, 1) (14, 14, -1, 54, 2) (14, 14, 15, 30, 2) (15, 15, -2, 8, 1) (15, 15, -1, 21, 1) (15, 15, 1, 22, 1)
(15, 15, 2, 8, 1) (15, 15, 14, 17, 1) (15, 15, 16, 35, 2) (15, 15, 17, 7, 1) (16, 16, 17, 25, 2) (17, 17, 1, 26, 1)
(17, 17, 16, 19, 1) (17, 17, 19, 8, 1) (18, 18, -1, 25, 1) (19, 18, 5, 4, 1) (19, 19, 18, 21, 1) (19, 19, 21, 9, 1)
(21, 21, 19, 12, 1) (21, 21, 23, 10, 1) (22, 21, 28, 2, 4) (23, 23, 25, 11, 1) (25, 24, 17, 6, 1) (25, 25, 27, 12, 1)
(26, 25, 31, 4, 1) (27, 26, 9, 9, 1) (27, 26, 35, 8, 2) (27, 27, -2, 14, 1) (27, 27, 25, 15, 1) (27, 27, 29, 13, 1)
(28, 27, 34, 7, 2) (29, 29, 27, 16, 1) (29, 29, 31, 14, 1) (30, 29, 36, 4, 1) (30, 29, 37, 7, 1) (31, 29, 43, 4, 1)
(31, 31, 33, 15, 1) (32, 30, 19, 3, 2) (32, 31, -6, 6, 1) (32, 32, -3, 11, 1) (33, 33, -2, 17, 1) (33, 33, 2, 17, 1)
(33, 33, 31, 35, 2) (33, 33, 35, 16, 1) (34, 33, 6, 6, 1) (34, 33, 42, 7, 2) (35, 34, 43, 7, 2) (35, 35, 37, 17, 1)
(37, 35, 22, 4, 2) (37, 37, 35, 20, 1) (37, 37, 39, 18, 1) (38, 37, 56, 15, 3) (39, 39, -2, 20, 1) (39, 39, 2, 20, 1)
(39, 39, 41, 19, 1) (40, 39, 29, 8, 1) (40, 39, 30, 10, 2) (41, 38, 56, 4, 2) (41, 41, -2, 21, 1) (41, 41, 2, 21, 1)
(41, 41, 43, 20, 1) (43, 43, -2, 22, 1) (43, 43, 2, 22, 1) (43, 43, 45, 21, 1) (44, 43, -7, 7, 1) (45, 45, -2, 23, 1)
(45, 45, 2, 23, 1) (46, 44, 27, 4, 2) (46, 45, 7, 7, 1) (49, 47, 60, 5, 2) (50, 49, 57, 6, 1) (50, 49, 58, 15, 2)
(52, 51, 27, 15, 1) (54, 53, 41, 9, 2) (55, 54, 11, 11, 1) (55, 54, 42, 10, 4) (55, 54, 64, 15, 2) (56, 55, 64, 6, 1)
(56, 55, 65, 15, 2) (61, 60, -15, 16, 2) (61, 60, 71, 15, 3) (61, 60, 72, 7, 4) (63, 62, 75, 9, 6) (67, 66, 55, 18, 3)
(68, 67, 45, 21, 2) (68, 67, 54, 13, 2) (68, 67, 56, 20, 4) (68, 67, 79, 14, 3) (68, 68, 5, 14, 1) (71, 69, -17, 9, 2)
(71, 70, 59, 11, 1) (72, 71, 83, 9, 3) (74, 72, 57, 5, 2) (74, 73, -9, 9, 1) (74, 73, 18, 17, 1) (74, 73, 59, 14, 2)
(74, 73, 86, 14, 2) (76, 74, 57, 9, 3) (76, 75, 9, 9, 1) (79, 76, 97, 6, 1) (79, 77, 59, 10, 3) (80, 78, 59, 8, 3)
(81, 80, 92, 10, 2) (82, 81, 66, 11, 3) (82, 81, 91, 8, 1) (83, 81, 64, 6, 2) (86, 85, 69, 13, 4) (89, 87, 48, 9, 2)
(90, 89, 100, 8, 1) (92, 91, -10, 10, 1) (94, 93, 10, 10, 1) (98, 97, 14, 14, 1) (98,97,111,24,2) (99, 97, 75, 8, 3)
(100, 99, 85, 13, 1) (114, 113, 11, 11, 1) (116, 115, 102, 10, 1) (120, 119, 136, 22, 3) (121, 120, 96, 21, 3)
(122, 121, 133, 10, 1) (122, 121, 137, 14, 1) (124, 123, 141, 16, 2) (127, 123, 183, 7, 1) (127, 126, 109, 14, 2)
(128, 127, 16, 15, 3) (129, 127, 106, 17, 4) (132, 130, 111, 7, 2) (132, 131, 144, 10, 1) (134, 133, -12, 12, 1)
(134, 133, 152, 26, 4) (136, 135, 12, 12, 1) (136, 135, 152, 13, 3) (137, 134, 74, 9, 2) (137, 136, 154, 14, 2)
(139, 138, 121, 16, 2) (140, 139, 155, 38, 3) (141, 139, 34, 19, 2) (141, 140, 20, 21, 2) (141, 140, 160, 26, 4)
(142, 141, 157, 14, 3) (144, 142, 115, 14, 2) (145, 143, 122, 8, 2) (147, 146, 163, 14, 3) (148, 146, -29, 15, 2)
(148, 147, 172, 22, 4) (151, 150, 134, 16, 1) (153, 151, -30, 15, 4) (154, 152, 37, 18, 2) (155, 153, 127, 19, 5)
(156, 155, 22, 28, 2) (158, 155, 183, 13, 3) (158, 157, -13, 13, 1) (159, 157, 127, 14, 2) (160, 159, 13, 13, 1)
(168, 167, 183, 28, 2) (170, 169, 183, 12, 1) (172, 170, 195, 11, 2) (173, 169, 129, 10, 3) (177, 176, 194, 16, 2)
(179, 177, 147, 19, 4) (179, 178, 195, 28, 2) (180, 178, 93, 22, 1) (180, 179, 196, 27, 2) (182, 181, 136, 44, 3)
(182, 181, 196, 12, 1) (183, 182, 201, 16, 3) (185, 183, 152, 19, 4) (185, 183, 211, 10, 4) (189, 187, 214, 23, 2)
(191, 189, 157, 19, 3) (191, 190, 208, 27, 2) (191, 190, 212, 19, 1) (192, 191, 209, 29, 3) (193, 192, 173, 18, 1)
(195, 192, 160, 18, 4) (200, 199, 222, 19, 1) (201, 200, 219, 27, 3) (202, 199, 106, 15, 1) (202, 201, 179, 21, 3)
(203, 202, 25, 24, 4) (203, 202, 178, 36, 4) (206, 204, 181, 9, 2) (212, 211, -15, 15, 1) (214, 213, 15, 15, 1)
(218, 215, 114, 16, 4) (220, 216, 255, 14, 2) (220, 217, 115, 16, 4) (220, 219, 202, 14, 1) (221, 218, 181, 18, 4)
(222, 221, 242, 54, 4) (223, 221, 196, 10, 2) (226, 225, 241, 14, 1) (230, 229, 207, 19, 2) (231, 230, 259, 23, 7)
(232, 231, 210, 62, 6) (233, 232, 174, 53, 3) (238, 237, 267, 35, 7) (240, 239, 256, 14, 1) (241, 240, 262, 18, 3)
(242, 239, 275, 11, 1) (242, 241, -16, 16, 1) (242, 241, 263, 20, 2) (244, 243, 16, 16, 1) (244, 243, 146, 48, 2)
(244, 243, 268, 24, 5) (245, 244, 222, 20, 2) (249, 248, 269, 19, 3) (250, 249, 25, 25, 1) (254, 251, 288, 12, 1)
(255, 254, 191, 63, 3) (255, 254, 231, 60, 7) (256, 255, 23, 22, 3) (258, 257, 32, 68, 3) (258, 257, 283, 24, 1)
(260, 259, 238, 21, 1) (265, 264, 33, 67, 3) (265, 264, 66, 66, 1) (265, 264, 238, 26, 2) (265, 264, 285, 25, 2)
(268, 267, 294, 24, 1) (270, 268, 235, 15, 3) (272, 270, 301, 38, 4) (273, 271, 302, 39, 4) (273, 272, 34, 68, 3)
(275, 273, 239, 15, 2) (276, 275, 248, 27, 2) (277, 275, 241, 16, 3) (277, 276, 298, 25, 2) (278, 276, 243, 15, 3)
(278, 277, 250, 27, 2) (278, 277, 299, 25, 2) (278, 277, 301, 20, 3) (279, 277, 242, 29, 6) (280, 279, 301, 20, 2)
(281, 280, -28, 29, 2) (286, 285, -57, 56, 4) (290, 288, 321, 39, 3) (290, 289, 307, 16, 1) (293, 289, 240, 18, 4)
(295, 294, 321, 30, 2) (296, 294, 267, 11, 2) (299, 298, 262, 27, 3) (301, 300, 322, 95, 7) (304, 303, 260, 79, 5)
(306, 305, 324, 16, 1) (308, 306, 341, 39, 5) (308, 307, -18, 18, 1) (309, 308, 278, 26, 4) (310, 309, 18, 18, 1)
(317, 315, 286, 12, 2) (318, 317, 293, 28, 2) (327, 325, 284, 16, 3) (327, 326, 297, 31, 4) (328, 327, 302, 23, 1)
(329, 328, 299, 33, 3) (331, 330, 354, 96, 6) (335, 333, 291, 17, 3) (335, 334, 287, 45, 1) (337, 336, 303, 31, 5)
(338, 337, 386, 46, 1) (341, 336, 281, 20, 4) (343, 341, 298, 17, 2) (344, 343, -19, 19, 1) (346, 345, 19, 19, 1)
(351, 349, 389, 19, 1) (352, 351, 32, 64, 2) (352, 351, 402, 47, 1) (353, 352, 321, 33, 2) (353, 352, 411, 54, 4)
(354, 353, 379, 24, 1) (356, 355, 378, 41, 2) (356, 355, 381, 95, 4) (360, 359, 329, 48, 2) (361, 360, 386, 23, 3)
(362, 361, 381, 18, 1) (363, 361, 403, 35, 3) (363, 362, 335, 24, 2) (363, 362, 388, 49, 3) (365, 362, 317, 15, 2)
(365, 364, 331, 61, 6) (367, 365, 411, 21, 1) (368, 367, 394, 24, 2) (369, 368, 395, 30, 2) (370, 369, 396, 30, 2)
(372, 370, 413, 34, 5) (372, 371, 398, 95, 6) (373, 372, 396, 40, 2) (374, 372, 333, 44, 7) (374, 373, 347, 102, 9)
(377, 376, 403, 49, 3) (380, 379, 400, 18, 1) (381, 380, 406, 24, 3) (381, 380, 435, 53, 1) (385, 384, 410, 24, 3)
(386, 384, 55, 27, 5) (389, 387, 353, 32, 3) (389, 388, 413, 40, 2) (390, 388, 353, 62, 7) (390, 389, 414, 42, 3)
(391, 390, 423, 69, 4) (393, 392, 49, 67, 4) (395, 393, 350, 20, 4) (400, 399, 373, 26, 1) (401, 400, 50, 67, 4)
(402, 400, 369, 13, 2) (403, 401, 357, 21, 4) (403, 402, 31, 30, 4) (403, 402, 439, 34, 5) (404, 403, 429, 40, 3)
(404, 403, 437, 69, 3) (405, 404, 376, 104, 8) (406, 405, 431, 39, 3) (407, 404, 353, 29, 5) (408, 407, 378, 26, 2)
(409, 408, 29, 29, 1) (409, 408, 436, 25, 3) (411, 410, 381, 33, 2) (416, 415, 445, 95, 6) (416, 415, 450, 69, 3)
(417, 409, 483, 14, 2) (423, 422, 387, 33, 1) (423, 422, 461, 38, 1) (427, 425, 392, 14, 2) (428, 425, 380, 43, 6)
(431, 430, 369, 60, 3) (433, 432, 379, 43, 5) (434, 433, 473, 38, 1) (435, 434, 466, 45, 3) (437, 436, 400, 34, 5)
(442, 441, 463, 20, 1) (442, 441, 469, 26, 2) (450, 447, 394, 16, 2) (450, 449, 487, 37, 2) (454, 453, 425, 28, 1)
(462, 459, 236, 34, 3) (462, 461, 484, 20, 1) (462, 461, 500, 37, 2) (463, 462, 496, 90, 4) (464, 463, 431, 105, 9)
(465, 463, 507, 55, 3) (471, 468, 536, 22, 2) (473, 471, 354, 57, 6) (479, 476, 426, 44, 6) (479, 478, 445, 56, 3)
(481, 476, 545, 24, 2) (482, 480, 437, 31, 3) (485, 482, 552, 22, 2) (487, 484, 423, 16, 3) (487, 486, 519, 35, 2)
(489, 487, 529, 19, 3) (492, 489, 560, 23, 1) (493, 491, 541, 24, 1) (494, 493, 522, 72, 4) (495,494,249,115,17)
(496, 493, 544, 16, 1) (497, 496, 465, 131, 9) (499, 497, 452, 60, 8) (500, 499, 533, 35, 2) (503, 501, 551, 20, 1)
(503, 501, 552, 25, 1) (509, 508, 477, 29, 2) (510, 507, 559, 17, 1) (511, 510, 540, 72, 5) (512, 511, 32, 32, 1)
(513, 511, 465, 59, 8) (513, 512, 545, 26, 3) (514, 511, 560, 28, 3) (516, 513, 572, 36, 3) (519, 518, 37, 46, 2)
(521, 518, 462, 42, 6) (521, 519, 474, 22, 2) (523, 522, 553, 28, 3) (524, 522, 487, 15, 2) (528, 525, 575, 27, 2)
(530, 529, 553, 22, 1) (532, 530, 133, 66, 1) (536, 532, 461, 30, 5) (536, 532, 593, 39, 4) (538, 536, 67, 67, 3)
(553, 551, 514, 16, 2) (555, 553, 499, 27, 2) (563, 560, 613, 26, 3) (565, 563, 516, 23, 2) (576, 574, 619, 21, 2)
(577, 575, 525, 33, 4) (581, 579, 535, 27, 3) (586, 583, 520, 45, 6) (586, 584, 73, 65, 3) (594, 592, 547, 28, 3)
(599, 597, 652, 30, 2) (608, 606, 521, 39, 3) (610, 607, 153, 48, 6) (627, 625, 573, 23, 3) (637, 635, 546, 40, 3)
(641, 639, 690, 21, 3) (654, 652, 595, 23, 4) (662, 660, 621, 17, 2) (668, 663, 739, 39, 4) (670, 667, 607, 20, 2)
(677, 674, 738, 55, 3) (681, 677, 742, 28, 2) (681, 678, 509, 53, 8) (687, 685, 735, 95, 5) (692, 690, -53, 27, 2)
(694, 692, 63, 63, 2) (695, 693, 652, 18, 2) (697, 686, 572, 18, 4) (697, 695, 746, 95, 5) (706, 704, 755, 48, 2)
(707, 705, 756, 47, 3) (719, 717, 652, 60, 7) (729, 726, 545, 56, 10) (730, 728, 781, 95, 5) (737, 734, 668, 62, 8)
(737, 735, 683, 25, 2) (740,738,687,103,10) (741, 738, 808, 54, 4) (742, 740, 695, 45, 3) (750, 747, 823, 24, 2)
(752, 749, 820, 54, 4) (752, 749, 844, 31, 2) (756, 754, 809, 95, 4) (758, 755, 851, 31, 1) (764,762,709,101,10)
(768, 765, 698, 21, 2) (777, 773, 703, 61, 7) (794, 789, 904, 22, 1) (795, 793, 737, 32, 3) (801, 796, 912, 22, 1)
(804, 802, 747, 27, 2) (808, 806, 749, 33, 3) (811, 808, 203, 66, 1) (816, 814, 771, 19, 2) (822, 817, 936, 23, 1)
(833, 830, 899, 73, 4) (839, 836, 902, 21, 1) (847, 845, 725, 81, 5) (850, 846, 773, 33, 3) (852, 849, 920, 71, 4)
(853, 851, 806, 20, 2) (855, 853, 794, 103, 9) (857, 854, 921, 22, 1) (884, 882, 821, 103, 9) (913, 911, 978, 90, 4)
(914, 911, 782, 45, 1) (921, 919, 858, 29, 2) (923, 920, 839, 32, 3) (931, 927, 696, 55, 3) (933, 930, 856, 39, 4)
(933,931,866,105,10) (943,939,1057,58,12) (943,941,876,104,10) (944, 942, 877, 56, 4) (978, 976, 911, 29, 2)
(986, 981, 875, 20, 4) (986, 984, 937, 21, 2) (993, 989, 900, 62, 8) (995, 991, 1085, 54, 4) (996, 992, 1093, 24, 1)
(1005, 1003, 1062, 72, 4) (1005, 1003, 1171, 81, 1) (1006, 1002, 1097, 54, 5) (1008, 1006, 943, 129, 11)
(1009, 1006, 918, 24, 4) (1009, 1007, 944, 131, 10) (1014, 1012, 1073, 29, 1) (1017, 1015, 948, 37, 3)
(1022, 1020, 957, 44, 3) (1027, 1025, 976, 22, 2) (1031, 1029, 1091, 29, 2) (1039, 1036, 1112, 47, 2)
(1039, 1037, 972, 127, 11) (1046, 1044, 975, 38, 3) (1064, 1061, 986, 25, 2) (1069, 1066, 1135, 41, 3)
(1072, 1069, 1146, 50, 2) (1076, 1073, 1164, 29, 2) (1088, 1085, 1164, 94, 6) (1089, 1086, 1166, 25, 1)
(1094, 1091, 1015, 102, 10) (1095, 1092, 1171, 48, 2) (1102, 1099, 1170, 40, 2) (1104, 1101, 1181, 97, 6)
(1109, 1105, 278, 67, 1) (1110, 1107, 1187, 48, 3) (1113, 1109, 279, 67, 1) (1136, 1133, 1054, 102, 10)
(1151, 1147, 1035, 27, 2) (1155, 1152, 1072, 26, 2) (1170, 1167, 1087, 52, 5) (1260, 1255, 1374, 55, 4)
(1273, 1270, 1351, 26, 1) (1282, 1279, 1373, 93, 4) (1293, 1290, 1372, 27, 1) (1319, 1316, 1225, 51, 5)
(1349, 1345, 1470, 30, 1) (1353, 1349, 1448, 46, 3) (1370, 1366, 1465, 97, 5) (1377, 1372, 1486, 36, 3)
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(1382, 1378, 1479, 95, 5) (1389, 1384, 1499, 72, 5) (1389, 1386, 1289, 108, 9) (1393, 1389, 1489, 49, 4)
(1428, 1425, 1336, 130, 10) (1460, 1457, 1360, 29, 2) (1471, 1468, 1376, 128, 11) (1472, 1469, 1594, 37, 2)
(1506, 1502, 1599, 41, 2) (1514, 1508, 1651, 55, 4) (1514, 1511, 1764, 81, 1) (1613, 1609, 1512, 46, 3)
(1645, 1640, 1494, 59, 7) (1647, 1643, 1529, 103, 10) (1654, 1648, 1785, 72, 4) (1667, 1661, 1799, 72, 5)
(1683, 1679, 1821, 69, 2) (1690, 1685, 421, 83, 5) (1694, 1689, 422, 84, 5) (1695, 1691, 1834, 70, 2)
(1741, 1736, 1861, 49, 3) (1760, 1755, 1882, 47, 2) (1773, 1768, 1897, 96, 5) (1812, 1808, 1941, 90, 4)
(1817, 1813, 1688, 104, 10) (1865, 1861, 1633, 44, 5) (1885, 1878, 235, 67, 3) (1921, 1914, 2073, 72, 4)
(1932, 1921, 2142, 37, 2) (1945, 1938, 2099, 72, 5) (1975, 1971, 2087, 72, 4) (1982, 1977, 1840, 103, 10)
(2173, 2166, 2346, 75, 5) (2199, 2191, 2373, 72, 4) (2248, 2242, 2405, 94, 6) (2259, 2251, 2438, 72, 6)
(2290, 2281, 1715, 63, 3) (2456, 2445, 1837, 53, 8) (2457, 2451, 2281, 51, 5) (2463, 2455, 2108, 44, 1)
(2487, 2479, 2685, 75, 5) (2519, 2514, 2935, 81, 1) (2560, 2555, 2709, 30, 1) (2894, 2884, 3125, 71, 4)
(2911, 2903, 2701, 101, 10) (2952, 2945, 3194, 70, 3) (3067, 3059, 3318, 69, 3) (3514, 3505, 3760, 96, 6)
(3602, 3593, 3344, 104, 9) (3616, 3607, 3357, 104, 9) (4148, 4139, 3107, 114, 5) (4457, 4441, 4810, 73, 4)
(4644, 4631, 4966, 48, 2) (10499,10471,11235,94,5) (12774,12742,11859,104,9)
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