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Abstract

Consider the online convex optimization problem, in which a player has to choose ac-
tions iteratively and suffers corresponding losses according to some convex loss functions,
and the goal is to minimize the regret. In the full-information setting, the player after
choosing her action can observe the whole loss function in that round, while in the bandit
setting, the only information the player can observe is the loss value of that action. Design-
ing such bandit algorithms appears challenging, as the best regret currently achieved for
general convex loss functions is much higher than that in the full-information setting, while
for strongly convex loss functions, there is even a regret lower bound which is exponentially
higher than that achieved in the full-information setting. To aim for smaller regrets, we
adopt a relaxed two-point bandit setting in which the player can play two actions in each
round and observe the loss values of those two actions. Moreover, we consider loss functions
parameterized by their deviation D, which measures how fast they evolve, and we study
how regrets depend on D. We show that two-point bandit algorithms can in fact achieve
regrets matching those in the full-information setting in terms of D. More precisely, for
convex loss functions, we achieve a regret of O(

√
D), while for strongly convex loss func-

tions, we achieve a regret of O(lnD), which is much smaller than the Ω(
√
D) lower bound

in the traditional bandit setting.
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1. Introduction

A fundamental problem in machine learning is the online convex optimization problem, in
which a player has to make repeated decisions for a number of T rounds in the following
way. In round t, the player chooses an action xt from a convex feasible set K ⊆ Rn, and
then suffers a loss of ft(xt) according to some convex loss function ft : K → R. In the full
information setting, the player gets to know the entire loss function ft after choosing the
action, while in the bandit setting, the player knows only the loss value ft(xt) of the action.
The goal of the player is to minimize her regret, defined as the difference between the total
loss she suffers and that of the best fixed action in hindsight.

Many results are known in the full information setting. For general convex loss func-
tions, a regret of O(

√
nT ) can be achieved (Zinkevich, 2003), while for strongly convex loss
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functions, a smaller regret of O (n lnT ) becomes possible (Hazan et al., 2007). These two
results, as well as many others, considered only the worst-case scenario, in which the loss
functions have no pattern or are even generated in a malicious way. However, the environ-
ments we are in may not always be adversarial, so a research direction is to identify natural
patterns or properties of loss functions and to design online algorithms with smaller regrets
for them. For loss functions which are linear (and can be seen as vectors), Hazan and Kale
(2008) considered a measure called variation, defined as V =

∑T
t=1 ∥ft − µ∥22, where µ is

the average of the loss functions, and they provided an algorithm achieving a regret of
O(

√
V ). In another work, Hazan and Kale (2009a) considered the online portfolio manage-

ment problem (Cover, 1991) and achieved a logarithmic regret in terms of a similar measure.
Note that loss functions with small variation can be seen as basically centered around their
average, which models a stationary environment with loss functions coming from some fixed
distribution. Chiang et al. (2012) introduced a more general measure called deviation which
models a dynamic environment that usually evolves gradually, including examples such as
weather conditions and stock markets. More precisely, Chiang et al. (2012) considered not
only linear functions but also convex functions, and defined the deviation as

D =

T∑
t=1

max
x∈K

∥∇ft(x)−∇ft−1(x)∥22 , (1)

using the convention that f0 is the all-0 function, where ∇fτ (x) denotes the gradient of fτ
at x. With this, they provided algorithms achieving a regret of O(

√
D) for convex functions

and a smaller regret of O(n lnD) for strongly convex loss functions. Since one can show
that D ≤ O(V ) but not the other way around (Chiang et al., 2012), results with regrets in
terms of D are arguably stronger than those in terms of V .

The bandit setting appears much more challenging. For linear functions, Abernethy et al.
(2008) achieved a regret of O(n

√
ϑT lnT ) using a somewhat involved method of ϑ-self-

concordant barriers, while Bubeck et al. (2012) slightly improved the regret to O(n
√
T lnT )

but with an inefficient algorithm. For general convex functions, the best regret currently
achieved is O(T 2/3(lnT )1/3) by Saha and Tewari (2011), which is far from the O(

√
nT ) re-

gret achieved in the full-information setting. Even worse, for strongly convex functions,
there is actually an Ω(

√
T ) regret lower bound in the bandit setting (Jamieson et al.,

2012), compared to the O (n lnT ) regret upper bound achievable in the full information
case. For linear functions with variation V , Hazan and Kale (2009b) achieved a regret of
O(n

√
ϑV lnT ), but no such result is known for convex functions or strongly convex ones.

None is known either for loss functions with small deviation, even for linear functions.
Our goal is to have bandit algorithms for loss functions with small deviation, but it

turns out to be difficult as we discuss next. The standard approach for designing a bandit
algorithm is to run a full-information algorithm and replace the information it needs by
estimated one. For loss functions with small deviation, we would like to apply this to
the full-information algorithm of (Chiang et al., 2012), and what it needs in round t is
the gradient of the loss function at the action it plays, denoted as ℓt. To have a bandit
algorithm, a natural attempt is to replace ℓt by an estimator gt using bandit information,
which would achieve regrets in terms of

∑
t ∥gt − gt−1∥22. However, this deviation of the

estimated gradients can be large even when the deviation of the true gradients is small. The
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reason is that in most previous works, such as (Flaxman et al., 2005; Abernethy et al., 2008;
Abernethy and Rakhlin, 2009; Bubeck et al., 2012), the estimator gt typically takes the form
of ctut for some value ct ∈ R and some vector ut sampled independently in each round from
a set which spans Rn. As a result, ut and ut−1 are very different with high probability,
and so are gt and gt−1, even when ℓt and ℓt−1 are close. A possible way around this is to
use estimators of a different form. For linear loss functions with small variation, with loss
functions centering around their average, Hazan and Kale (2009b) considered estimators of
the form gt = ctut + µ̃t where µ̃t is an estimator of the average, and their success relies on
the fact that the average can be estimated accurately with high probability by an online
algorithm. This suggests us to use estimators of the form gt = ctut + g̃t−1 where g̃t−1 is an
estimator of ℓt−1, but it is not clear if it is possible to have an accurate estimator for each
ℓt−1 with high probability as each loss function may only appear once. Another issue is the
choice of the exploration scheme. Take that of (Flaxman et al., 2005) as an example. In
each round, it explores randomly in a neighborhood of diameter δ in order to get a good
estimator, but this adds to the regret a term (corresponding to the length of the estimator)
which is proportional to 1/δ2 as well as a term which is proportional to δ. Then no good
choice of δ can lead to a regret characterized by D instead of by T .

To avoid some of the difficulties, we consider the relaxed two-point bandit setting of
(Agarwal et al., 2010), in which one can play two actions, instead of just one, in a given
round and get to know their respective loss values, while their average is counted as the loss
of that round. In fact, such a relaxation is necessary if we want to achieve a regret compara-
ble to that in the full-information setting for strongly convex functions (Hazan et al., 2007),
according to the lower bound of (Jamieson et al., 2012). In such a two-point bandit setting,
Agarwal et al. (2010) showed that regrets close to those in the full-information setting can
indeed be achieved: O(n2

√
T ) for convex functions and O(n2 lnT ) for strongly convex func-

tions. One may wonder if their results can be generalized to having regrets characterized by
the more refined measure D, instead of simply by T , just as those of (Chiang et al., 2012)
in the full-information setting.

We answer this affirmatively. That is, we provide two-point bandit algorithms which
achieve regrets close to the full-information ones in (Chiang et al., 2012). For linear func-
tions, our regret is O(n3/2

√
D). For convex functions, our regret is O(n2

√
D + lnT ),

which becomes O(n2
√
D) when D ≥ Ω(lnT ). For strongly convex functions, our regret is

O(n2(ln(D+lnT )), which becomes O(n2 lnD) when D ≥ Ω(lnT ). Note that the dependen-
cies on D in our regret bounds match those of (Chiang et al., 2012) in the full-information
setting. Compared to the regrets of (Agarwal et al., 2010) in the two-point bandit setting,
we recover their results in the extreme case with D = Ω(T ), but our regrets become much
smaller when D is much smaller than T . The contrast to regrets in the (one-point) ban-
dit setting is even sharper, as the regret of (Saha and Tewari, 2011) for convex functions
is substantially higher than ours, while for strongly convex functions, there is actually an
Ω(

√
D) lower bound1 which is exponentially higher than our upper bound. Moreover, all of

our algorithms are simple and efficient, which again demonstrates the power of two-point
bandit algorithms. Finally, as our algorithms are based on the full-information ones of

1. Such a lower bound can be easily modified from that of (Jamieson et al., 2012).
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(Chiang et al., 2012), we inherit their nice property that all our algorithms can be derived
from one single meta algorithm and their regrets can all be analyzed in one single framework.

2. Preliminaries

Let N denote the set of positive integers and R the set of real numbers. For n ∈ N, let [n]
denote the set {1, 2, · · · , n} and Rn the set of n-dimensional vectors over R. For vectors
x, y ∈ Rn, denote the inner product of x and y by ⟨x, y⟩ and the Euclidean norm of x by
∥x∥2. For a convex set X ⊆ Rn and some y ∈ Rn, let PX (y) = argminx∈X ∥x− y∥2, which
we call the projection of y onto X . Let {e1, · · · , en} be the set of standard basis for Rn.

We consider the online convex optimization problem with two-point bandit feedback, in
which an online algorithm must play T rounds in the following way. In each round t, it
plays two actions wt and w′

t from a convex feasible set K ⊆ Rn, and after that, it receives
the loss information ft(wt) and ft(w

′
t) and suffers a loss of 1

2 (ft(wt) + ft(w
′
t)) according to

some convex loss function ft : K → R. The goal is to minimize the expected regret :

E

[
T∑
t=1

1

2

(
ft(wt) + ft

(
w′
t

))]
−min

π∈K

T∑
t=1

ft(π), (2)

which is the expected total loss of the online algorithm minus that of the best offline
algorithm playing a fixed action π ∈ K for all T rounds, where the expectation is over the
randomness of the algorithm.

As in (Flaxman et al., 2005), we assume that the feasible set satisfies the condition
that rB ⊆ K ⊆ RB, for some positive constants r ≤ R, where B = {x ∈ Rn : ∥x∥2 ≤ 1} is
the unit ball centered at 0. We assume that each loss function ft has bounded gradient
∥∇ft(x)∥2 ≤ G for any x ∈ K, where ∇ft(x) denotes the gradient of ft at x, and note that
this implies the G-Lipschitz condition: |ft(x)− ft(y)| ≤ G ∥x− y∥2 for any x, y ∈ K. As in
previous works, we also assume that each loss function is λ-smooth:

∥∇ft(x)−∇ft(y)∥2 ≤ λ ∥x− y∥2 . (3)

In addition, we will also consider loss functions which are H-strongly convex. Formally, a
function f : K → R is called H-strongly convex, for some H > 0, if

∀x, y ∈ K : f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ H

2
∥x− y∥22 . (4)

Finally, we will need the following two simple facts, which we prove in Appendix A.

Proposition 1 (a) For m ∈ N and a1, . . . , am ∈ R, (
∑m

t=1 at)
2 ≤ m

∑m
t=1 a

2
t . (b) For

n ∈ N and x, y ∈ Rn, ∥x+ y∥22 ≤ 2 ∥x∥22 + 2 ∥y∥22 .

3. Meta Algorithm

All the algorithms in the coming sections are based on the following Meta algorithm, given
in Algorithm 1. It is in turn based on the full-information algorithm of (Chiang et al., 2012),
which follows the gradient descent algorithm to update xt+1 = PX (xt − ηℓt) after seeing ℓt,
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but plays x̂t+1 = PX (xt+1 − ηℓt) instead in round t + 1, where ℓt = ∇ft(x̂t). The idea is
that in the case of small deviation, one could use ℓt as an approximation of the next ℓt+1,
and play x̂t+1 which moves further in the direction of −ℓt, and this can indeed be shown
to achieve regrets in terms of the deviation

∑
t ∥ℓt − ℓt−1∥22. In the bandit setting, we do

not have ℓt available, and the standard approach is to feed the full-information algorithm
with an estimator for ℓt using the bandit information. An easy way to estimate ℓt based
on that of (Agarwal et al., 2010) is to choose a standard basis vector eit randomly, play
two actions wt = x̂t + δeit and w′

t = x̂t − δeit , compute vt,it =
1
2δ (ft(wt)− ft(w

′
t)), and use

g̃t = (nvt,it)eit as the estimator. It can be shown that E [g̃t] is close to ℓt. If we feed this
estimator g̃t to the algorithm of (Chiang et al., 2012), we obtain regret bounds in terms of∑

t ∥g̃t − g̃t−1∥22, which unfortunately may be much larger than deviation. The reason is

that even when ∥ℓt − ℓt−1∥22 is small, ∥g̃t − g̃t−1∥22 =
∥∥(nvt,it)eit − (nvt−1,it−1)eit−1

∥∥2
2
may be

large if it ̸= it−1. Thus, in our algorithm, we only follow the idea of (Agarwal et al., 2010)
up to computing vt,it , in our first three steps, and then we use different estimators. Our key
observation is that in the regret term ∥ℓt − ℓt−1∥22 of (Chiang et al., 2012), ℓt comes from
using gradient descent to update xt+1, while ℓt−1 comes from using it as an approximation of
ℓt to move from xt to x̂t. Therefore, we distinguish the two different uses and compute two
different estimators for them, as shown in step 4 of our algorithm, with gt as an estimator of
ℓt which needs to have E [gt] close to ℓt, and with ĝt as an approximation of ℓt+1. Note that
gt and ĝt computed there are obtained from ĝt−1 by modifying only its it’th entry, where
ĝτ,i denotes the i’th entry of the vector ĝτ . Then we do the the update in step 5, which can
be seen as that of (Chiang et al., 2012) using the estimators gt and ĝt. The parameter ηt
is the learning rate, which will be chosen differently for different classes of loss functions in
the following sections.

Algorithm 1 Meta algorithm

Let X = (1− µ)K. Let x1 = x̂1 = 0 and ĝ0 = 0.
In round t ∈ [T ]:
1: Choose it uniformly from [n].
2: Play two actions wt = x̂t + δeit and w′

t = x̂t − δeit .
3: Observe partial information ft(wt) and ft(w

′
t). Let vt,it =

1
2δ (ft(wt)− ft(w

′
t)).

4: Compute

gt = n (vt,it − ĝt−1,it) eit + ĝt−1 and ĝt = (vt,it − ĝt−1,it) eit + ĝt−1.

5: Update
xt+1 = PX (xt − ηtgt) and x̂t+1 = PX (xt+1 − ηt+1ĝt).

Next, we derive a general regret bound for our algorithm. Following (Agarwal et al.,
2010), we consider a smaller feasible set X = (1− µ)K for x̂t, with µ = δ/r, so that wt and
w′
t played in step 2 are feasible points in K, according to Observation 3.2 of (Flaxman et al.,

2005). As in (Agarwal et al., 2010), we can choose an arbitrarily small δ > 0, which is the
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advantage one can have in the two-point bandit setting2; for our purpose, any δ such that
δ(λGRn2/r) ≤ o(1/T ) suffices. Similarly to (Agarwal et al., 2010), to bound the regret of
our algorithm against π̄ = argminx∈K

∑T
t=1 ft(x), which is the best fixed action in K, it

suffices to bound the regret according to the actions x̂t’s against π = argminx∈X
∑T

t=1 ft(x),
which is the best fixed action in X . This is established by the following lemma, which we
prove in Appendix B.

Lemma 2
∑T

t=1

(
1
2 (ft(wt) + ft(w

′
t))− ft(π̄)

)
≤
∑T

t=1 (ft(x̂t)− ft(π)) + o(1).

This allows us to turn our attention to bound the sum
∑T

t=1 (ft(x̂t)− ft(π)). Recall that
ℓt = ∇ft(x̂t) and let ℓt,i denote the i’th entry of the vector ℓt which equals ∇ift(x̂t), where
∇ift(x̂t) denotes the i’th entry of ∇ft(x̂t). Note that ft(x̂t) − ft(π) is at most ⟨ℓt, x̂t − π⟩
for convex ft and at most ⟨ℓt, x̂t − π⟩ − H

2 ∥x̂t − π∥22 for H-strongly convex ft. Thus, we
have the following.

Lemma 3 Let Ct = 0 for convex ft and Ct =
H
2 ∥x̂t − π∥22 for H-strongly convex ft. Then

we have ft(x̂t)− ft(π) ≤ ⟨ℓt, x̂t − π⟩ − Ct.

Next, recall that the update rule of our algorithm can be seen as that of Chiang et al.
(2012) using gt as an estimator of the gradient ℓt and using ĝt as an approximation of ℓt+1.
Then we have the following from (Chiang et al., 2012); for completeness, we provide the
proof in Appendix C.

Lemma 4 Let St = ηt ∥gt − ĝt−1∥22, At = 1
2ηt

∥π − xt∥22 − 1
2ηt

∥π − xt+1∥22, and Bt =
1
2ηt

∥xt+1 − x̂t∥22 +
1
2ηt

∥x̂t − xt∥22. Then we have ⟨gt, x̂t − π⟩ ≤ St +At −Bt.

To connect Lemma 3 with Lemma 4, we rely on the following, which we prove in Ap-
pendix D. Note that this justifies our use of gt as an estimator of ℓt.

Lemma 5 E [⟨ℓt, x̂t − π⟩] ≤ E [⟨gt, x̂t − π⟩] + o(1/T ).

Finally, by taking expectation on the bound in Lemma 2 and combining the bounds in
the previous three lemmas, we have the following theorem.

Theorem 6 The expected regret of the Meta algorithm is

E

[
T∑
t=1

(
1

2

(
ft(wt) + ft(w

′
t)
)
− ft(π̄)

)]
≤ E

[
T∑
t=1

(St +At −Bt − Ct)

]
+ o(1).

In the following sections, we will consider different classes of loss functions and instanti-
ate the Meta algorithm accordingly, and then concrete regret bounds will be derived. Note
that the key term in the regret bound of Theorem 6 is the sum of St = ηt ∥gt − ĝt−1∥22, as it
is related to the deviation according to the following lemma, which we prove in Appendix E.

2. This is because the estimator gt now can have a bounded length, unlike the (one-point) bandit setting
in which the estimator’s length and consequently the regret grows proportionally to 1/δ2.
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Lemma 7 For any t ∈ [T ], let αt be the smallest integer such that 0 ≤ αt < t and iτ ̸= it
for any αt < τ < t, and let D̂t = (ℓt,it − ℓαt,it)

2. Then, ∥gt − ĝt−1∥22 ≤ n2D̂t + o(1/T ).

Note that D̂t is related to the difference between two gradients t − αt rounds away,
which is related to the deviation accumulated through those rounds. Thus, to have a small
D̂t, we would like to have αt close to t. This leads us to adopt the exploration scheme of
(Agarwal et al., 2010) but modify it to sample each ei with equal probability, so that t−αt

can be shown to have a small expected value.

4. Linear Loss Functions

In this section, we consider linear loss functions. The deviation of such a sequence of loss
functions according to (1) now turns into D =

∑T
t=1 ∥ℓt − ℓt−1∥22 =

∑T
t=1 ∥ft − ft−1∥22 ,

where we let f0 = ℓ0 be the all-0 vector 0. To instantiate the Meta algorithm, we set
ηt = η for all t, for some η be chosen later.

To bound the expected regret of our algorithm, we know from Theorem 6 that it suffices
to bound

E

[
T∑
t=1

(St +At −Bt − Ct)

]
≤ E

[
T∑
t=1

St

]
+ E

[
T∑
t=1

At

]
,

asBt ≥ 0 and Ct = 0 for linear functions. Note that withAt =
1
2η ∥π − xt∥22−

1
2η ∥π − xt+1∥22,

we have by telescoping that

T∑
t=1

At =
1

2η
∥π − x1∥22 −

1

2η
∥π − xT+1∥22 ≤

R2

2η
,

as ∥π − x1∥22 ≤ R2 and ∥π − xT+1∥22 ≥ 0. It remains to bound E
[∑T

t=1 St

]
.

We know from Lemma 7 that St = η ∥gt − ĝt−1∥22 ≤ ηn2D̂t + o(1/T ), where D̂t =
(ℓt,it − ℓαt,it)

2, which is related to the difference between two loss functions several rounds
away, instead of just between two consecutive ones as used by the definition of deviation.
To bridge the gap, we need the following.

Lemma 8 For t ∈ [T ] and i ∈ [n], let ρt,i = max{τ2 − τ1 : 0 ≤ τ1 < t ≤ τ2 ≤ T and iτ ̸=
i for any τ1 < τ < τ2}. Then,

T∑
t=1

D̂t ≤
T∑
t=1

n∑
i=1

ρt,i (ℓt,i − ℓt−1,i)
2 .

Proof From the definition, αt is the most recent round before round t such that iαt = it,
or αt = 0 if there is no such round. Then for any t ∈ [T ] and i ∈ [n] such that it = i, we
can rewrite D̂t = (ℓt,i − ℓαt,i)

2 as(
t∑

τ=αt+1

(ℓτ,i − ℓτ−1,i)

)2

≤ (t− αt)

t∑
τ=αt+1

(ℓτ,i − ℓτ−1,i)
2 =

t∑
τ=αt+1

ρτ,i (ℓτ,i − ℓτ−1,i)
2 ,
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where the inequality follows from Proposition 1(a), and the equality follows from the fact
that ρτ,i = (t− αt) for any αt + 1 ≤ τ ≤ t. Therefore,

T∑
t=1

D̂t =
n∑

i=1

∑
t:it=i

D̂t ≤
n∑

i=1

∑
t:it=i

t∑
τ=αt+1

ρτ,i (ℓτ,i − ℓτ−1,i)
2 ≤

n∑
i=1

T∑
τ=1

ρτ,i (ℓτ,i − ℓτ−1,i)
2 ,

where the last inequality holds since for any i, the intervals [αt+1, t], for t with it = i, have
no intersection, according to the definition of αt.

With this lemma, we can have the following, which links regret to deviation.

Lemma 9 E
[∑T

t=1 D̂t

]
≤ 2nD.

Proof From Lemma 8, we know that

E

[
T∑
t=1

D̂t

]
≤

n∑
i=1

T∑
t=1

E
[
ρt,i (ℓt,i − ℓt−1,i)

2
]
=

n∑
i=1

T∑
t=1

E [ρt,i] (ℓt,i − ℓt−1,i)
2 ,

where the last equality follows from the fact that the gradient of a linear function does
not depend on where it is taken, so each (ℓt,i − ℓt−1,i)

2 is a fixed value independent of the
randomness of the expectation. It remains to bound E [ρt,i]. Recall the definition of ρt,i,
and suppose ρt,i = τ2 − τ1 where 0 ≤ τ1 < t ≤ τ2 ≤ T and iτ ̸= i for τ1 < τ < τ2. Then
we can write the random variable ρt,i as the sum of two random variables t− τ1 and τ2 − t,
and observe that both can be bounded by a geometric random variable, denoted by Z, with
Pr [Z = k] = (1/n)(1 − 1/n)k−1 for k ≥ 1 and E [Z] = n; in fact, t − τ1 = min{Z, t} ≤ Z
and τ2 − t = min{Z − 1, T − t} ≤ Z. Thus,

E [ρt,i] = E [t− τ1] + E [τ2 − t] ≤ 2n. (5)

Consequently, we have

E

[
T∑
t=1

D̂t

]
≤

n∑
i=1

T∑
t=1

E [ρt,i] (ℓt,i − ℓt−1,i)
2 ≤ 2n

n∑
i=1

T∑
t=1

(ℓt,i − ℓt−1,i)
2 = 2nD.

Since E
[∑T

t=1 St

]
≤ ηn2E

[∑T
t=1 D̂t

]
+ o(1) ≤ 2ηn3D + o(1), we can conclude that the

expected regret of our algorithm is at most

2ηn3D +
R2

2η
+ o(1) ≤ O

(
Rn3/2

√
D
)
,

by choosing η = R/
√
n3D, which gives us the following.

Theorem 10 Suppose the loss functions are linear and have deviation D. Then the ex-
pected regret of our algorithm is at most O(Rn3/2

√
D).
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5. Convex Loss Functions

In this section we consider convex loss functions. The deviation D of loss functions is
measured by (1), which is

∑T
t=1maxx∈K ∥∇ft(x)−∇ft−1(x)∥22 . To instantiate the Meta

algorithm for such loss functions, we again set ηt = η for all t, for some η to be chosen later.
To bound the expected regret of our algorithm, we know from Theorem 6 that it suffices

to bound

E

[
T∑
t=1

(St +At −Bt − Ct)

]
= E

[
T∑
t=1

St

]
+ E

[
T∑
t=1

At

]
− E

[
T∑
t=1

Bt

]
, (6)

as Ct = 0 for convex functions. As in Section 4, we have
∑T

t=1At ≤ R2

2η . On the other hand,

we will need the help of E
[∑T

t=1Bt

]
here. The following lemma from (Chiang et al., 2012)

provides a lower bound for it; for completeness, we give the proof in Appendix F.

Lemma 11 E
[∑T

t=1Bt

]
≥ 1

4ηE
[∑T

t=1 ∥x̂t − x̂t−1∥22
]
−O(1).

Next, to bound E
[∑T

t=1 St

]
, we again turn to bound E

[∑T
t=1 D̂t

]
, as St ≤ ηn2D̂t +

o(1/T ). Note that unlike a linear function, the gradient of a convex function now depends
on where the gradient is taken, and Lemma 9, which works for linear functions, does not
work here for convex functions. As in previous works, we assume that each ft satisfies the
λ-smoothness condition given in (3), and note that according to the discussion in Section
5 of (Chiang et al., 2012), the smoothness condition is in fact necessary in order to achieve
a regret bound in terms of deviation. To obtain a cleaner bound, let us assume that
the parameters λ and R are constants, while the parameters T and D are large, with
T,D ≥ n, λ,R. Our key lemma is the following.

Lemma 12 E
[∑T

t=1 D̂t

]
≤ O(n2D) +O(n lnT ) · E

[∑T
t=1 ∥x̂t − x̂t−1∥22

]
.

Proof We know from Lemma 8 that

T∑
t=1

D̂t ≤
T∑
t=1

n∑
i=1

ρt,i (ℓt,i − ℓt−1,i)
2 .

By definition, (ℓt,i − ℓt−1,i)
2 = (∇ift(x̂t)−∇ift−1(x̂t−1))

2, which does not correspond to
a term in deviation because the gradients are taken at different points. To relate it to
deviation, let ℓ̂t−1 = ∇ft−1(x̂t) with ℓ̂t−1,i = ∇ift−1(x̂t), and rewrite (ℓt,i − ℓt−1,i)

2 as

(ℓt,i − ℓ̂t−1,i + ℓ̂t−1,i − ℓt−1,i)
2, which is at most 2(ℓt,i − ℓ̂t−1,i)

2 + 2(ℓ̂t−1,i − ℓt−1,i)
2 by

Proposition 1(a). Then

E

[
T∑
t=1

D̂t

]
≤ 2E

[
T∑
t=1

n∑
i=1

ρt,i

(
ℓt,i − ℓ̂t−1,i

)2]
+ 2E

[
T−1∑
t=0

n∑
i=1

ρt,i

(
ℓ̂t,i − ℓt,i

)2]
. (7)

The first expectation in (7) is now related to deviation since (ℓt,i− ℓ̂t−1,i)
2 = (∇ift(x̂t)−

∇ift−1(x̂t))
2, with the two gradients taken at the same point. However, unlike in the case

9
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of linear functions, (ℓt,i − ℓ̂t−1,i)
2 is now itself a random variable, which depends on the

randomness of the expectation and has correlation with ρt,i. To overcome this problem, we
use the upper bound (

ℓt,i − ℓ̂t−1,i

)2
≤ ∥∇ft(x̂t)−∇ft−1(x̂t)∥22 ≤ Dt,

where Dt = maxx∈K ∥∇ft(x)−∇ft−1(x)∥22 is a fixed value. Then the first expectation in
(7) can be bounded from above by

E

[
T∑
t=1

n∑
i=1

ρt,iDt

]
=

T∑
t=1

n∑
i=1

E [ρt,i]Dt ≤
T∑
t=1

n∑
i=1

(2n)Dt = 2n2D,

where the first inequality uses the inequality (5) from Section 4, and the second equality
uses the fact that D =

∑T
t=1Dt.

The second expectation in (7) is slightly harder to bound. As before, the complication
comes from the correlation between the two random variables ρt,i and (ℓ̂t,i− ℓt,i)

2, but here

we do not have a fixed upper bound for (ℓ̂t,i− ℓt,i)
2 which is good enough. Instead, we turn

to bound ρt,i. Let ρ̄ = 4n lnT and let Q denote the bad event that ρt,i > ρ̄ for some t ∈ [T ]
and i ∈ [n], which only happens with probability

Pr [Q] ≤ Tn

(
1− 1

n

)4n lnT

≤ Tn · e−4 lnT =
n

T 3
.

Then the second expectation in (7) can be expressed as

Pr [¬Q] · E

[
T−1∑
t=0

n∑
i=1

ρt,i

(
ℓ̂t,i − ℓt,i

)2 ∣∣∣∣∣¬Q
]
+ Pr [Q] · E

[
T−1∑
t=0

n∑
i=1

ρt,i

(
ℓ̂t,i − ℓt,i

)2 ∣∣∣∣∣Q
]
,

where the first term is at most

Pr [¬Q] · ρ̄ · E

[
T−1∑
t=0

n∑
i=1

(
ℓ̂t,i − ℓt,i

)2 ∣∣∣∣∣¬Q
]
≤ ρ̄ · E

[
T−1∑
t=0

n∑
i=1

(
ℓ̂t,i − ℓt,i

)2]
,

and the second term is at most

Pr [Q] · T · E

[
T−1∑
t=0

n∑
i=1

(
ℓ̂t,i − ℓt,i

)2 ∣∣∣∣∣Q
]
.

Note that by the definition of ℓ̂t and by the λ-smoothness condition,

n∑
i=1

(
ℓ̂t,i − ℓt,i

)2
= ∥∇ft(x̂t+1)−∇ft(x̂t)∥22 ≤ λ2 · ∥x̂t+1 − x̂t∥22 ,

with ∥x̂t+1 − x̂t∥2 ≤ 2R. Thus, the second expectation in (7) is at most

ρ̄ · λ2 · E

[
T−1∑
t=0

∥x̂t+1 − x̂t∥22

]
+

n

T 3
· T 2λ24R2 ≤ O(n lnT ) · E

[
T∑
t=1

∥x̂t − x̂t−1∥22

]
+ o(1).

10
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Finally, by combining the bounds for the two expectations in (7), we have the lemma.

With this lemma, we obtain

E

[
T∑
t=1

St

]
≤ O(ηn4D) +O(ηn3 lnT ) · E

[
T∑
t=1

∥x̂t − x̂t−1∥22

]
+ o(1).

For some η ≤ O(1/(n2
√
D + lnT )), we can have O(ηn3 lnT ) ≤ 1

4η so that the second term

above is at most E
[∑T

t=1Bt

]
+O(1) by Lemma 11, and the expected regret of our algorithm,

according to (6), can be bounded from above by

O

(
ηn4D +

1

η

)
≤ O

(
n2

√
D + lnT

)
.

As a result, we have the following theorem.

Theorem 13 When the loss functions are convex and have deviation D, the expected regret
of our algorithm is at most O

(
n2

√
D + lnT

)
, where the hiding constant factor is a small

polynomial of the constants λ and R.

6. Strongly Convex Loss Functions

In this section we consider H-strongly convex functions. That is, we suppose that for some
constant H > 0, each loss function ft is H-strongly convex, so that

ft(x̂t)− ft(π) ≤ ⟨ℓt, x̂t − π⟩ − H

2
∥π − x̂t∥22 . (8)

The deviation D of the loss functions is again measured by (1). To instantiate the Meta
algorithm for such loss functions, now we choose the learning rate

ηt = 1

/(
1 +

H

2
+

H

2γ

t−1∑
τ=1

∥gτ − ĝτ−1∥22

)
,

with γ = 5n2G2 so that γ ≥ ∥gt − ĝt−1∥22 for any t ∈ [T ].3 It is easy to verify that ηt+1 can
be computed at the end of round t for updating x̂t+1, as gt and ĝt−1 are available then.

To bound the expected regret of our algorithm, we know from Theorem 6 that it suffices
to bound

E

[
T∑
t=1

(St +At −Bt − Ct)

]
= E

[
T∑
t=1

(St +At − Ct)

]
− E

[
T∑
t=1

Bt

]
,

where Ct =
H
2 ∥π − x̂t∥22 for H-strongly convex functions. With the help of such Ct, we can

reduce the regret down to only logarithmic in D. Our key lemma is the following, and we
give the proof in Appendix G, which follows closely a similar one in (Chiang et al., 2012).

3. From Lemma 7, we know that ∥gt − ĝt−1∥22 ≤ n2 ∥ℓt − ℓαt∥
2
2 + o(1/T ), which by Proposition 1(b) is at

most n2
(
2 ∥ℓt∥22 + 2 ∥ℓαt∥

2
2

)
+ o(1/T ) ≤ 5n2G2, as each gradient is assumed to have L2-norm at most G.

11
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Lemma 14
∑T

t=1 (St +At − Ct) ≤ 4γ
H ln

(
1 + H

2γ

∑T
t=1 ∥gt − ĝt−1∥22

)
+O(1).

From Lemma 7, we know that ∥gt − ĝt−1∥22 ≤ n2D̂t + o(1/T ). Furthermore, as in
Section 5, we assume that each ft satisfies the λ-smoothness condition given in (3), so we

can use the upper bound for E
[∑T

t=1 D̂t

]
in Lemma 12. As before, to obtain a cleaner

bound, we assume that the parameters λ,R,G,H are all constants, and the parameters
T,D are large, with T,D ≥ n, λ,R,G,H. Then since the logarithm function is concave,

E

[
T∑
t=1

St +At − Ct

]
≤ 4γ

H
ln

(
1 +

H

2γ
E

[
T∑
t=1

∥gt − ĝt∥22

])
+O(1)

≤ 4γ

H
ln

(
O(n2D) +O(n lnT ) · E

[
T∑
t=1

∥x̂t − x̂t−1∥22

])
,

by Lemma 12. If E
[∑T

t=1 ∥x̂t − x̂t−1∥22
]
≤ O(1), we immediately have

E

[
T∑
t=1

St +At − Ct

]
≤ 4γ

H
ln
(
O(n2D + n lnT )

)
≤ O(γ ln(D + lnT )).

Thus, let us assume otherwise. Then, we have

E

[
T∑
t=1

St +At − Ct

]
≤ 4γ

H
ln

(
O(n2D + n lnT ) · E

[
T∑
t=1

∥x̂t − x̂t−1∥22

])

≤ O(γ ln(D + lnT )) +
4γ

H
lnE

[
T∑
t=1

∥x̂t − x̂t−1∥22

]
.

The second term above may be large, and to cancel it, we rely on the following lemma,
which we prove in Appendix H.

Lemma 15 E
[∑T

t=1Bt

]
≥ 1

4E
[∑T

t=1 ∥x̂t − x̂t−1∥22
]
−O(1).

Let W = E
[∑T

t=1 ∥x̂t − x̂t−1∥22
]
, and note that 1

4W ≥ 4γ
H lnW when W ≥ ( γ

H )c for some

constant c, which implies that 4γ
H lnW − 1

4W ≤ O(γ ln γ). Thus, we can conclude that

E

[
T∑
t=1

St +At − Ct −Bt

]
≤ O (γ ln (D + lnT )) +O (γ ln γ) ≤ O(n2 ln(D + lnT )).

As a result, we have the following theorem.

Theorem 16 When the loss functions are H-strongly convex and have deviation D, the
expected regret of our algorithm is at most O(n2 ln(D + lnT )), where the hiding constant
factor is a small polynomial of the constants λ, R, G, and 1/H.
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Appendix A. Proof of Proposition 1

To prove (a), we let u be the all-1 vector and v the vector (a1, . . . , am), and by the Cauchy-
Schwarz inequality, we have (

∑m
t=1 at)

2 = ⟨u, v⟩2 ≤ ∥u∥22 ∥v∥
2
2 = m

∑m
t=1 a

2
t . To prove (b),

simply note that 2 ∥x∥22 + 2 ∥y∥22 − ∥x+ y∥22 = ∥x− y∥22 ≥ 0.

Appendix B. Proof of Lemma 2

Observe that it suffices to prove that both
∑T

t=1

(
1
2 (ft(wt) + ft(w

′
t))− ft(x̂t)

)
≤ o(1) and∑T

t=1 (ft(π)− ft(π̄)) ≤ o(1) hold.
First, from theG-Lipschitz condition, ft(wt)−ft(x̂t) ≤ G ∥wt − x̂t∥2 ≤ Gδ, and similarly,

ft(w
′
t)− ft(x̂t) ≤ Gδ. Thus

T∑
t=1

(
1

2

(
ft(wt) + ft

(
w′
t

))
− ft(x̂t)

)
≤ TGδ ≤ o(1).

Next, following the idea in (Flaxman et al., 2005), we know that as a convex function,
ft((1− µ) π̄) = ft((1− µ) π̄ + µ0) ≤ (1− µ) ft(π̄) + µft(0) = ft(π̄) + µ (ft(0)− ft(π̄)),
where the second term is at most µGR ≤ o(1/T ). By summing over t, we have

T∑
t=1

ft(π) ≤
T∑
t=1

ft((1− µ) π̄) ≤
T∑
t=1

ft(π̄) + o(1),

where the first inequality holds since (1− µ) π̄ ∈ X and π = argminx∈X
∑T

t=1 ft(x). This

implies that
∑T

t=1 (ft(π)− ft(π̄)) ≤ o(1), and we have the lemma.

Appendix C. Proof of Lemma 4

We remark that our proof is a simplification of the more general one given in (Chiang et al.,
2012) with Rt (x) =

1
2ηt

∥x∥22.
Let us rewrite ⟨gt, x̂t − π⟩ as ⟨gt, x̂t − xt+1⟩+ ⟨gt, xt+1 − π⟩ which equals

⟨gt − ĝt−1, x̂t − xt+1⟩+ ⟨ĝt−1, x̂t − xt+1⟩+ ⟨gt, xt+1 − π⟩ . (9)

The first term above is at most ∥gt − ĝt−1∥2 ∥x̂t − xt+1∥2, by the Cauchy-Schwarz inequality,
which is at most ηt ∥gt − ĝt−1∥22 = St by the next proposition.

Proposition 17 ∥x̂t − xt+1∥2 ≤ ηt ∥gt − ĝt−1∥2 .

Proof Let ϕ (w) = ∥w − (xt − ηtĝt−1)∥22 so that x̂t = argminw∈X ϕ (w). Then by the
optimality criterion in convex optimization (see pages 139–140 of (Boyd and Vandenberghe,
2004)), we have ⟨∇ϕ (x̂t) , xt+1 − x̂t⟩ ≥ 0, with ∇ϕ (x̂t) = 2 (x̂t − (xt − ηtĝt−1)), which
implies that

⟨x̂t − (xt − ηtĝt−1) , xt+1 − x̂t⟩ ≥ 0.

Similarly, by letting ϕ (w) = ∥w − (xt − ηtgt)∥22 so that xt+1 = argminw∈X ϕ (w), we have

⟨xt+1 − (xt − ηtgt) , x̂t − xt+1⟩ ≥ 0.
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Adding these two inequalities together, we have

⟨(x̂t − xt+1) + ηt (ĝt−1 − gt) , xt+1 − x̂t⟩ ≥ 0,

which implies that

⟨x̂t − xt+1, x̂t − xt+1⟩ ≤ ⟨ηt (ĝt−1 − gt) , xt+1 − x̂t⟩ ≤ ∥ηt (ĝt−1 − gt)∥2 ∥x̂t − xt+1∥2 ,

by the Cauchy-Schwarz inequality. As ⟨x̂t − xt+1, x̂t − xt+1⟩ = ∥x̂t − xt+1∥22, we can divide
both sides of the inequality above by ∥x̂t − xt+1∥2, and the proposition follows.

To bound the other two terms in (9), we need the following.

Proposition 18 Suppose η > 0, g ∈ Rn, u ∈ X , and v = argminx∈X ∥x− (u− ηg)∥2.
Then for any w ∈ X ,

⟨g, v − w⟩ ≤ 1

2η

(
∥w − u∥22 − ∥w − v∥22 − ∥v − u∥22

)
.

Proof Let ϕ (x) = ∥x− (u− ηg)∥22 so that v = argminx∈X ϕ (x). Then from the optimality
criterion, ⟨∇ϕ (v) , w − v⟩ ≥ 0, with ∇ϕ (v) = 2 (v − (u− ηg)) = 2 ((v − u) + ηg), which im-
plies that ⟨g, v − w⟩ ≤ 1

η ⟨v − u,w − v⟩ . By a straightforward calculation, ⟨v − u,w − v⟩ =
1
2(∥w − u∥22 − ∥w − v∥22 − ∥v − u∥22), and the proposition follows.

From Proposition 18, we have

⟨ĝt−1, x̂t − xt+1⟩ ≤ 1

2ηt

(
∥xt+1 − xt∥22 − ∥xt+1 − x̂t∥22 − ∥x̂t − xt∥22

)
and

⟨gt, xt+1 − π⟩ ≤ 1

2ηt

(
∥π − xt∥22 − ∥π − xt+1∥22 − ∥xt+1 − xt∥22

)
.

Adding the two inequalities above, we get that ⟨ĝt−1, x̂t − xt+1⟩+ ⟨gt, xt+1 − π⟩ is at most

1

2ηt

(
∥π − xt∥22 − ∥π − xt+1∥22

)
− 1

2ηt

(
∥xt+1 − x̂t∥22 + ∥x̂t − xt∥22

)
= At −Bt.

Combining this with ⟨gt − ĝt−1, x̂t − xt+1⟩ ≤ St derived before, we have the lemma.

Appendix D. Proof of Lemma 5

Let vt,i = 1
2δ (ft(x̂t + δei)− ft(x̂t − δei)) so that vt,it = 1

2δ (ft(wt)− ft(w
′
t)) and gt =

n (vt,it − ĝt−1,it) eit + ĝt−1.
Let us first consider any fixed choice of i[t−1] = (i1, . . . , it−1), which has x̂t, ℓt = ∇ft(x̂t),

and ĝt−1 fixed, with it still left random. Let Et [·] denote the expectation over the random
it, conditioned on the fixed i[t−1]. Note that

Et [gt] = Et [nvt,iteit ]− Et [(nĝt−1,it) eit − ĝt−1] ,
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where the second term above is zero since it is chosen uniformly over [n], and the first term
above is

Et [nvt,iteit ] =

n∑
i=1

vt,iei =

n∑
i=1

1

2δ
(ft(x̂t + δei)− ft(x̂t − δei)) ei.

Then our goal becomes to show that the above is close to ℓt = ∇ft(x̂t), and for that it
suffices to show that each vt,i is close to ℓt,i = ∇ift(x̂t). Note that by Taylor’s expansion,
ft(x̂t + δei)− ft(x̂t − δei) = ⟨∇ft(ξt,i), 2δei⟩ for some ξt,i on the line between x̂t + δei and
x̂t − δei, which implies that

vt,i =
1

2δ
⟨∇ft(ξt,i), 2δei⟩ = ∇ift(ξt,i).

Then by the λ-smoothness assumption, we have

|ℓt,i − vt,i| = |∇ift(x̂t)−∇ift(ξt,i)| ≤ ∥∇ft(x̂t)−∇ft(ξt,i)∥2 ≤ λ ∥x̂t − ξt,i∥2 ≤ λδ, (10)

which implies that

∥ℓt − Et [gt]∥22 = ∥ℓt − Et [nvt,iteit ]∥
2
2 =

n∑
i=1

(ℓt,i − vt,i)
2 ≤ n (λδ)2 ,

and thus by the Cauchy-Schwarz inequality,

⟨ℓt − Et [gt] , x̂t − π⟩ ≤ ∥ℓt − Et [gt]∥2 · ∥x̂t − π∥2 ≤
√
nλδ · 2R ≤ o(1/T ).

Finally, let us go back to have i[t−1] = (i1, . . . , it−1) randomly chosen, and let E[t−1] [·]
denote the expectation over the randomly chosen i[t−1]. Then, we have the lemma as

E [⟨ℓt, x̂t − π⟩]− E [⟨gt, x̂t − π⟩] = E[t−1] [⟨ℓt − Et [gt] , x̂t − π⟩] ≤ o(1/T ).

Appendix E. Proof of Lemma 7

Recall that
∥gt − ĝt−1∥22 = ∥n (vt,it − ĝt−1,it) eit∥

2
2 = n2 (vt,it − ĝt−1,it)

2 ,

and from the definition of αt, we know that ĝt−1,it = ĝαt,it = vαt,it . Thus, we have
(vt,it − ĝt−1,it)

2 = (vt,it − vαt,it)
2 , and we show next that it is close to (ℓt,it − ℓαt,it)

2.
Let ε = |vt,it − ℓt,it | + |ℓαt,it − vαt,it |, and note that ε ≤ 2λδ by inequality (10) in

Appendix D. Then we can express (vt,it − vαt,it)
2 as

((ℓt,it − ℓαt,it) + (vt,it − ℓt,it) + (ℓαt,it − vαt,it))
2 ≤ (|ℓt,it − ℓαt,it |+ ε)2 ,

which is

(ℓt,it − ℓαt,it)
2 + 2ε |ℓt,it − ℓαt,it |+ ε2 ≤ (ℓt,it − ℓαt,it)

2 + 8λδG+ (2λδ)2

where the last two terms are both o(1/(Tn2)). Then the lemma follows as

∥gt − ĝt−1∥22 = n2 (vt,it − vαt,it)
2 ≤ n2 (ℓt,it − ℓαt,it)

2 + o(1/T ).
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Appendix F. Proof of Lemma 11

Recall that Bt =
1
2η ∥xt+1 − x̂t∥22 +

1
2η ∥x̂t − xt∥22, so

T∑
t=1

Bt =
1

2η
∥x̂1 − x1∥22 +

1

2η

T∑
t=2

(
∥xt − x̂t−1∥22 + ∥x̂t − xt∥22

)
+

1

2η
∥xT+1 − x̂T ∥22

≥ 1

2η

T∑
t=2

(
∥xt − x̂t−1∥22 + ∥x̂t − xt∥22

)
≥ 1

4η

T∑
t=2

∥x̂t − x̂t−1∥22

by Proposition 1(b). Then the lemma follows as ∥x̂1 − x̂0∥22 ≤ R2 ≤ O(1).

Appendix G. Proof of Lemma 14

The lemma follows immediately from the following two lemmas.

Lemma 19
∑T

t=1 (At − Ct) ≤
∑T

t=1 St +O(1).

Proof Note that
∑T

t=1At can be rearranged as

1

2η1
∥π − x1∥22 +

T∑
t=1

(
1

2ηt+1
− 1

2ηt

)
∥π − xt+1∥22 −

1

2ηT+1
∥π − xT+1∥22 . (11)

The first term above is at most
(
1 + H

2

)
R2 = O(1), and let us drop the last term. For

the second term, note that 1
ηt+1

− 1
ηt

= H
2γ ∥gt − ĝt−1∥22 ≤ H

2 since γ ≥ ∥gt − ĝt−1∥22, and
moreover, 1

2 ∥π − xt+1∥22 = 1
2 ∥π − x̂t + x̂t − xt+1∥22 ≤ ∥π − x̂t∥22 + ∥x̂t − xt+1∥22 by Proposi-

tion 1(b). Thus, with Ct =
H
2 ∥π − x̂t∥22, we obtain

T∑
t=1

(At − Ct) ≤
T∑
t=1

H

2
∥x̂t − xt+1∥22 +O(1).

Since H
2 ≤ 1

ηt
and ∥x̂t − xt+1∥22 ≤ η2t ∥ĝt−1 − gt∥22 by the update rule of x̂t and xt+1 and by

Proposition 17, we have

T∑
t=1

(At − Ct) ≤
T∑
t=1

ηt ∥gt − ĝt−1∥22 +O(1) =
T∑
t=1

St +O(1),

which proves the lemma.

Lemma 20
∑T

t=1 St ≤ 2γ
H ln

(
1 + H

2γ

∑T
t=1 ∥gt − ĝt−1∥22

)
.
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Proof Recall that St = ηt ∥gt − ĝt−1∥22 where ηt = 1
/(

1 + H
2 + H

2γ

∑t−1
τ=1 ∥gτ − ĝτ−1∥22

)
.

Let V0 = 1 and Vt = 1 + H
2γ

∑t
τ=1 ∥gτ − ĝτ−1∥22 for t ≥ 1. Note that ηt ≤ 1

Vt
since γ ≥

∥gt − ĝt−1∥22. This implies that

St = ηt ∥gt − ĝt−1∥22 = ηt
2γ

H
(Vt − Vt−1) ≤

2γ

H

(
1− Vt−1

Vt

)
≤ 2γ

H
ln

Vt

Vt−1
,

where the last inequality holds since for any two real numbers a > b > 0, 1 − b
a ≤ ln a

b .
Therefore, by summing over t, we have

T∑
t=1

St =

T∑
t=1

ηt ∥gt − ĝt−1∥22 ≤
2γ

H

T∑
t=1

ln
Vt

Vt−1
=

2γ

H
ln

VT

V0
=

2γ

H
lnVT .

Appendix H. Proof of Lemma 15

Recall that Bt =
1
2ηt

∥xt+1 − x̂t∥22 +
1
2ηt

∥x̂t − xt∥22, and note that ηt ≤ 1 for every t ∈ [t].

Thus, if we let η = 1, then Bt ≥ 1
2η ∥xt+1 − x̂t∥22 +

1
2η ∥x̂t − xt∥22 for every t ∈ [T ], and the

lemma then follows from Lemma 11 (which works for any η > 0).
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