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INTRODUCTION

Analysis of the chemical composition and bulk molar volume 
(or density) of ß uid inclusions in minerals has undergone major 
advances in recent years with the advent of new quantitative ana-
lytical techniques, with the growth of the experimental database 
on the pressure, temperature, molar volume, and compositional 
(P-T-Vm-x) properties of geological ß uids, and with the devel-
opment of theoretical methods to model these ß uids (for recent 
reviews see Andersen et al. 2001; Samson et al. 2003). Despite 
these advances, the analysis of saline aqueous inclusions that con-
tain appreciable amounts of volatile components (e.g., CO2, CH4, 
H2S, and N2), which are common in diagenetic, hydrothermal, 
metamorphic, and igneous rocks, remains problematic. This is 
because the available equations-of-state for elevated P-T condi-
tions are unable to link accurately high-T microthermometric 
measurements (homogenization temperatures) with low-tem-
perature observations. The calculation of bulk properties still 
relies on notoriously inaccurate optical estimates of the volume 

fractions of phases (e.g., liquid and vapor) within the inclusions. 
Uncertainty in the phase volume-fractions is usually the greatest 
single contributor to the overall uncertainty in bulk Vm � x proper-
ties of this important class of ß uid inclusions (Diamond 2003a). 
Moreover, for most ß uid-inclusion shapes, the magnitude of the 
uncertainty in volume fractions is unknown.

In addition to their use in calculating bulk inclusion proper-
ties, the volume fractions of phases in ß uid inclusions at room 
temperature are routinely estimated during fluid inclusion 
petrography to deduce whether assemblages of cogenetic inclu-
sions were originally trapped from a one-phase or a multi-phase 
pore ß uid (e.g., Diamond 2003b). Although the absolute values 
of the volume fractions are less important for this purpose, and 
although other checks on the uniformity of compositions and 
densities can be made via microthermometry, the uncertainties 
currently inherent in determining the relative differences between 
cogenetic inclusions may lead to erroneous interpretations.

For ß uids that ß uoresce in ultraviolet light, such as petro-
leum-bearing inclusions, Pironon et al. (1998) and Aplin et al. 
(1999) showed that phase volume-fractions can be determined 
with acceptable accuracy using scanning confocal ß uorescent * E-mail: bakker@unileoben.ac.at
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microscopy in reß ected-light mode. The method involves inte-
grating depth-series of two-dimensional images of individual in-
clusions, each with a very small optical depth-of-Þ eld. However, 
for the huge class of inclusions that do not contain ß uorescent 
hydrocarbon molecules, the problem of measuring volume frac-
tions remains unsolved. Phase contrasts in reß ected light are too 
weak for reliable scanning confocal microscopy, and so most 
workers attempt to estimate phase volume-fractions from the 
two-dimensional projection (i.e., from the phase area-fraction) 
that is obtained using a conventional petrographic microscope 
illuminated by transmitted white light. The conversion from 
area- to volume-fractions is commonly performed by compar-
ing the microscope image with published reference diagrams 
that display example inclusions with various three-dimensional 
shapes (e.g., Shepherd et al. 1985). Often a clue to the thickness 
of the inclusions along the z-axis can be obtained by varying the 
depth of focus within the sample, but on the whole the method 
is highly subjective and the results are at best semi-quantitative. 
As the petrographic microscope is still the most convenient 
instrument for routine ß uid inclusion studies, any progress in 
improving the accuracy of phase-volume estimates using this 
instrument, or at least in quantifying the uncertainties of these 
estimates, is highly desirable.

In view of the above situation, we re-evaluate in this study the 
use of the petrographic microscope to estimate volume fractions 
of liquid and vapor in two-phase inclusions at room temperature. 
Our aims are (1) to quantify the probable uncertainties and (2) 
to suggest measurement procedures that could minimize the 
uncertainties. We begin by deÞ ning the mathematical equations 
that relate phase volume-fractions to bulk composition and molar 
volume (density), and, using these equations, we demonstrate 
how errors in volume fractions propagate into bulk Vm � x 
analyses. After reviewing previous work on estimating phase 
volume-fractions, we explore the variability of the functional 
relationship between area fractions and volume fractions by 
simulating ß uid inclusions with well-deÞ ned geometrical shapes. 
The corresponding relationships that can result in real inclusions 
are then illustrated using measurements on synthetic inclusions 
with known bulk Vm � x properties. Here we compare results 
obtained by rotating individual inclusions on a spindle-stage 
with results from assemblages of inclusions viewed in Þ xed 
orientations. The empirical relationships between area fractions 
and volumes fractions are found to be systematic and predictable, 
and this opens the way for a reliable analytical methodology. 
The generalization of the results requires a simple, objective 
classiÞ cation of the shapes of ß uid inclusions. We therefore 
propose a new classiÞ cation based on parameters measurable 
from series of two-dimensional images of individual inclusions 
obtained at different angles of rotation under the microscope. 
Finally, we organize our Þ ndings into a set of recommendations 
for determining the uncertainties of phase volume-fraction mea-
surements during routine petrographic analysis.

Use of phase volume-fractions in calculating ß uid inclusion 
composition and molar volume

The Standard International (S.I.) symbol for volume fraction 
is used here, namely, one of the two lower-case Greek letters for 
phi or �f�, indicating �fraction� (Diamond 2003c). Older ß uid 

inclusion literature uses a variety of symbols and deÞ nitions, 
e.g., F for �degree of Þ ll�, meaning the extent to which the 
inclusion is Þ lled by liquid (the �vapor� being approximated by 
a vacuum); Fα for �volume fraction� of the subscripted phase; 
or Rα for �volume ratio� of the subscripted phase.

The volume fraction (φ) of a phase α in a ß uid inclusion is 
deÞ ned as:

ϕ
α

α =
Volume of phase 

Volume of inclusion
  where 0 ≤ φα ≤ 1. (1)

Accordingly, φα has the dimensions of volume/volume and 
therefore it is unitless. Because phases in multi-phase ß uid 
inclusions increase or diminish in size as a function of tem-
perature, it is necessary to specify the temperature at which a 
volume-fraction measurement is made. For example, φvap(20 °C) 
= 0.40 indicates that a vapor bubble occupies 40 vol% of the 
inclusion at 20 °C. In general, optical estimates of φα become 
even more complicated if more than two phases are present in 
an inclusion. Therefore, ß uid inclusions that contain more than 
two phases at room temperature are usually heated until only 
two phases become stable, and the estimate of φα is made at 
this temperature.

The phase volume-fraction may be used along with other data 
to calculate the bulk Vm � x properties of inclusions consisting of 
liquid and vapor. From Equation 1 it follows that:

φliq = 1 � φvap (2)

where φliq and φvap are the volume fractions of the liquid and 
vapor phases, respectively. Thus, the bulk molar volume, Vm (or 
bulk density, ρ) of the inclusion is given by:

1 1

V V Vm

vap

m
vap

vap

m
liq

= +
ϕ ϕ�

 (3a)

ρ = φvap ⋅ ρvap + (1 � φvap) ⋅ ρliq (3b)

where Vm
vap and Vm

liq are the individual molar volumes of the vapor 
and liquid phases, respectively, and ρvap and ρliq are the individual 
densities of the vapor and liquid phases, respectively. Values for 
the molar volumes of the individual phases must be obtained from 
independent sources and these must be valid for the temperature 
and pressure at which φvap is measured.

With bulk Vm now available from Equation 3a, the amount-of-
substance fraction (hereafter referred to as the �mole fraction�) of 
the vapor in the bulk inclusion, xvap, can be calculated from:

x
V V

V V
vap

m m
liq

m
vap

m
liq

=
−( )
−( ) . (4)

Finally, the concentration of each component i in the inclusion 
can be obtained from a mass-balance equation:

xi = xvapxi
vap + (1 � xvap) xi

liq (5)

where xi
vap is the mole fraction of component i in the vapor and 

xi
liq is the mole fraction of component i in the liquid. Values for 

these two parameters may be obtained from microthermometric, 
Raman spectroscopic, or other analytical methods. Equation 5 
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is solved repeatedly for each component, i. Examples of such 
calculations are given by Bakker and Diamond (2000) and 
Diamond (2003a). The program package of Bakker (2003) in-
corporates equations equivalent to Equations 3 to 5 above, and 
performs calculations based on input from microthermometry 
and Raman analysis.

The dependency of bulk properties on φvap can be illustrated by 
solving Equations 3 to 5 for a speciÞ c example. For a particularly 
simple, binary case, consider a CO2-H2O ß uid inclusion in which 
a liquid carbonic phase (car), a carbonic vapor, and an aqueous 
liquid (aq) are stable at low temperatures (e.g., 15 °C). This ex-
ample corresponds to one of the synthetic ß uid inclusions that is 
analyzed in a following section. The carbonic phases homogenize 
to liquid at 18 °C. At this temperature the internal pressure in 
the inclusion is 5.47 MPa, and Vm

car = 55.44 cm3/mol and Vm
aq = 

18.39 cm3/mol (all values from the EoS of Diamond and AkinÞ ev 
2003). If the measured volume fraction of the carbonic liquid is 
54%, then solution of Equations 3 to 5 yields xCO2

 = 30% and Vm 
= 28.87 cm3/mol. This example demonstrates that knowledge of 
the total homogenization temperature is not required to determine 
the bulk Vm � x properties if φvap can be measured.

As pointed out above, the uncertainties in φ estimates are 
generally unknown. If we assume for the present example that 
the uncertainty in φvap is ± 10% (relative to the measured φvap 

value), or even ± 20%, then Equations 3 to 5 can be solved again 
to obtain new values of xCO2

 and Vm. Figure 1 shows the results 
of such error-propagation calculations. An error of +20% in 
φvap, for instance, yields xCO2

 = 39% (cf. the true value of 30%) 
and Vm = 32.58 cm3/mol (cf. the true value of 28.87 cm3·mol�1). 
Errors of these magnitudes could have signiÞ cant consequences 
for the application of ß uid inclusion analyses in geochemical 
modeling.

Figure 2 shows the absolute errors in xCO2
 and Vm as a function 

of φvap, based on the same input data for Equations 3 to 5. It is 
clear that the example inclusion discussed so far is not necessarily 
a worst case. The propagated errors in bulk properties increase as 
φvap increases, reaching unacceptable levels as φvap exceeds 70%. 
However, at low values of φvap, for instance 5%, even a relative 
uncertainty of ±20% is unlikely to have serious consequences 
for geochemical applications of the result.

Statement of the problem

Figure 3 illustrates the problem faced in determining phase 
volume-fractions from two-dimensional projections of ß uid in-
clusions viewed through the petrographic microscope. In general, 
the microscope projection allows the area fraction (a) of a phase 
α to be measured, where

aa =
Area of phase 

Area of inclusion

α
 where 0 ≤ aα ≤ 1. (6)

FIGURE 1. Propagation of errors in phase-volume fractions. The black 
dots show the true composition x(CO2) and bulk molar volume (Vm) of 
an example CO2-H2O inclusion that consists of liquid and vapor phases 
at room temperature. The curves show the effects on these calculated 
properties caused by errors in determining the volume fraction of the 
vapor phase (φvap). Relative errors on the order of ±20% are realistic for 
traditional methods of determining φvap.

FIGURE 2. Propagation of errors in bulk ß uid properties as a function 
of φvap. The curves marked �true� shows the true (a) composition and 
(b) bulk molar volume of ß uid inclusions with the indicated φvap values 
(see text for data used in calculations). The dot represents the synthetic 
CO2-H2O inclusions used in this study. The curves marked �20 and 
+20 show the effects of propagating a relative error of ±20% in the 
determination of φvap.
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Because aα has the dimensions of area/area, it is unitless. 
Similarly to φα, a measurement of aα is only meaningful if 
the temperature of the inclusion at the time of measurement is 
known. 

Although area fractions can be measured readily using mod-
ern digital software, their relationship to volume fractions is not 
obvious. The difÞ culty arises from a combination of two oppos-
ing effects. On the one hand, the liquid lying above and below 
the bubble is invisible in two-dimensional projection, and hence 
it is not accounted for in the area fraction. The region of invisible 
liquid is marked with �minus� symbols in Figure 3c, indicating 
that its contribution to the volume fraction is generally underes-
timated. On the other hand, the inclination of the inclusion walls 

is not evident in projection, so the apparent amount of liquid is 
exaggerated in the area fraction. That is, some of what appears 
to be liquid is actually host crystal. The relevant area in Figure 
3c is labeled with �plus� symbols to indicate that its contribution 
to the volume fraction is implicitly overestimated.

The situation in reality is much worse than suggested by 
Figure 3, because ß uid inclusions display a huge range of shapes 
in the third (z) dimension, and because they usually have no 
axes of symmetry. Therefore, the relative weights of �plus� and 
�minus� regions, when integrated over three dimensions, can 
take on almost any value.

From the above considerations the area fraction appears to 
be a function of three variables: inclusion orientation, inclusion 
shape, and volume fraction. Thus, 

avap = f (orientation, shape, φvap). (7)

Our problem boils down to a search for a method that accounts 
for, or at least minimizes, the dependencies on orientation and 
shape, such that φvap can be estimated with useful accuracy.

Previous studies

Earlier workers have recognized the pitfalls in estimating 
phase volume-fractions in ß uid inclusions from the two-di-
mensional projections of phase area-fractions. Roedder (1967, 
1972), based on the work of Saylor (1965), pointed out that such 
projections may grossly underestimate bubble volumes owing 
to the curved upper surface of the inclusions acting as a strong 
negative lens. To illustrate this point, he showed how faceted 
inclusions may project different apparent diameters of the same 
bubble (Plate 11, Figs. 7�8 of Roedder 1972). Roedder (1967, 
Fig. 12.7) also calculated the difference between the projected 
area-fraction of a bubble and its true volume-fraction in the 
hypothetical cases of inclusions that are ß at and circular or per-
fectly spherical. Depending on which case applies, the same area 
fraction corresponds to signiÞ cantly different volume fractions. 
For avap = 34.1%, for example, the ß at, circular inclusion has 
φvap = 34.1% whereas its spherical counterpart has φvap = 20% 
(see Fig. 12.7 in Roedder 1967 for other examples). This Þ nding 
for the spherical model has often been adopted by subsequent 
workers as a rule that applies to all inclusion shapes. Projected 
area fractions are therefore widely assumed to overestimate the 
true volume fractions when the three-dimensional shape of the 
inclusion is unknown. Although Roedder (1984) warned that 
measurements of partly ß attened or distorted bubbles yield only 
very crude and inconsistent estimates of phase volumes, and that 
visual estimates can be very inaccurate, no methods of quantify-
ing the uncertainties have appeared in the literature so far.

The problem was highlighted again by Bodnar et al. (1985), 
who sketched a hypothetical ß uid inclusion assemblage as it 
might be viewed through a petrographic microscope at room tem-
perature. The sketch shows that many different values of avap may 
be observed if the inclusions have different orientations, even 
though the inclusions have similar shapes and exactly the same 
volume-fraction of vapor. That the phase-volume fractions are 
in fact uniform is demonstrable, in principle, if the assemblage 
shows a narrow range of homogenization temperatures. Never-
theless,  the sketch shows a variation in avap of 31% to 100%, 

FIGURE 3. Summary of the problem faced in determining phase 
volume fractions from two-dimensional projections of ß uid inclusions in 
the petrographic microscope. (a) Perspective view of hypothetical ß uid 
inclusion with negative-crystal shape, in which the volume fraction of 
vapor is 27% (remaining 73 vol% is liquid). (b) When viewed parallel 
to z the area-fraction of vapor is 37%, which is a severe overestimate of 
the volume fraction. (c) Cross-section parallel to xz shows why the area 
fraction in (b) is a poor estimate of the true volume fraction of vapor; 
regions of liquid (�minus symbols�) are overlooked in projection (b), 
and regions of host-crystal (�plus symbols�) are implicitly attributed to 
liquid in projection (b). The divergence of the area fraction from the 
volume fraction is due to the relative weights of �plus� and �minus� 
areas when integrated over three dimensions.
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implying that optical estimates of the volume fractions would 
have an enormous uncertainty if no information were obtainable 
on the thickness and shape of the inclusions in the z-axis. One 
could easily infer from this diagram that optical estimates of 
phase volume-fractions are too unreliable to be useful. 

In recognition of the need for information on the shapes and 
thicknesses of inclusions in the z-axis, Anderson and Bodnar 
(1993) developed a spindle stage, which allows inclusion-bearing 
samples to be rotated about a horizontal axis and simultaneously 
viewed through the petrographic microscope at moderate magni-
Þ cation (e.g., using 40× or 36× long working-distance objective 
lenses). Although this stage has since been applied to character-
ize single inclusions for sophisticated analytical techniques, its 
application to determining phase volume-fractions in routine 
petrography has been limited. For the normal case, in which 
thick sections that contain many inclusions need to be examined 
prior to performing microthermometry, the optical clarity obtain-
able with the spindle stage usually restricts viewing to angles of 
rotation of less than 60°. This restriction is critical; it precludes 
the most obvious approach to solving the volume-fraction prob-
lem, namely of viewing individual inclusions at 90° intervals 
of rotation and then integrating to obtain volumes. A proven 
methodology of how to conduct volume-fraction measurements 
under routine, sub-optimal conditions is lacking.

Geometrical modeling of volume fractions

In a Þ rst step towards quantifying the dependency of area 
fraction on inclusion orientation and shape (according to Eq. 
7), we explore the behavior of simple symmetrical shapes as 
models of ß uid inclusions under the microscope. The aim of 
this exercise is to search for any promising systematic features 
or �rules of thumb� that may be exploited in a methodology for 
real asymmetrical inclusions. 

The simplest case is when the inclusions are perfectly ß at.  
Such inclusions pose no problems for determining phase volume 
fractions from two-dimensional projections, because as inclusion 
thickness (z) approaches zero,

lim
z 0

vap vap→
⎡
⎣

⎤
⎦ =a ϕ . (8)

This relationship holds true even if the inclusions are not 
oriented perpendicular to the optical axis of the microscope. 
The accuracy of the φvap estimate therefore depends only on 
the certainty to which �ß atness� can be recognized, and on the 
accuracy of the area measurements themselves.

Most inclusions have a Þ nite thickness, and indeed gas-bear-
ing aqueous inclusions, which are our main interest in this study, 
tend to have shapes that are more equant than those of gas-free 
aqueous inclusions (gas-bearing ß uids wet mineral surfaces less 
readily). As demonstrated by Roedder (1967, 1972), spherical 
inclusions are also easy to deal with (see below), but they are  rare 
in nature. Therefore, in addition to the spherical case we present 
numerical simulations of the relationships between avap and φvap 

for four hypothetical, geometrical shapes. The Þ ve models have 
been chosen to illustrate how different these relationships can 
be; they are not intended to cover all possible shapes of natural 
ß uid inclusions.

Each model inclusion consists of a vapor bubble surrounded 

by liquid. Conceptually, the vapor is considered to expand pro-
gressively until it Þ lls the inclusion completely. At each step in 
the expansion the orthogonally projected area fraction of the 
bubble (avap) is calculated and plotted against the corresponding 
volume fraction of the bubble (φvap). No account is taken of pos-
sible lens affects due to non-orthogonal refraction, as mentioned 
by Roedder (1972). In other words, the host crystal and the two 
ß uid phases within the inclusion are all assumed to have the 
same index of refraction. 

A spherical ß uid inclusion has been modeled in Figure 4 so 
as to familiarize the reader with our choice of graphical display 
using a well-known example (cf. Roedder 1967). The vapor 
bubble is also assumed to be spherical, corresponding to minimal 
surface free-energy, therefore projections in any direction are 
equivalent; they all result in the same values of avap. The bubble 
is able to maintain its spherical form over all values of φvap, i.e., 
it is never deformed by the walls of the inclusion. In Figure 4 
the curve labeled �s� lies entirely above the short-dashed 1:1 
reference line, indicating that avap is always an overestimate of 
φvap (in a real inclusion the meniscus between vapor and liquid 
would probably become invisible at φvap > 90%, owing to internal 
refraction of the transmitted light at the inclusion walls). The 
maximum relative divergence between avap and φvap, deÞ ned 
as (avap � φvap )/φvap, occurs at a low value of φvap (< 10 vol%), 
whereas the maximum absolute divergence (avap � φvap = +14.8%) 
occurs at 30 vol%. 

A cylindrical inclusion terminated by hemispheres (Fig. 4) 
reveals a different correlation between avap and φvap. In the pro-
jection parallel to the long axis of this inclusion (a in Fig. 4), 
both the inclusion and the bubble have circular outlines. For the 
inclusion dimensions chosen for this example, the bubble is able 
to expand spherically up to 22.2 vol% without being constrained 
by the walls of the inclusion (zone 1 in Fig. 4). At 22.2 vol% the 

FIGURE 4. Volume fraction vs. area fraction diagram of the vapor 
bubble in spherical and cylindrical ß uid inclusions. The cylinder has 
a relative length of 28 and a radius of 6. The ends of the cylinder are 
hemispheres with a radius of 6. The spherical inclusion projects equally 
in all directions (s), whereas the cylindrical inclusion appears spherical 
in the a projection and elongate in the b projection. See text for further 
details.
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bubble makes contact with the inclusion walls along its entire 
projected perimeter, and so the projection parallel to a results 
in avap equal to 100%. No further changes in avap are visible in 
this projection as jvap increases above 22.2 vol% (zone 2, Fig. 
4). Figure 4 thus shows that all values of avap on curve a are ex-
treme overestimates of the corresponding jvap. In any projection 
perpendicular to a, such as b in Figure 4, the elongate shape of 
the inclusion is revealed, and the bubble may be observed to 
expand steadily along the length of the cylinder at φvap greater 
than 22.2%. Curve b shows that the values of avap correspond 
closely to those of φvap, although they remain slight overestimates. 
As found for the spherical inclusion, the relative divergence of 
avap from φvap reaches its maximum value at low φvap (in zone 1), 
though this value is much lower than for spherical inclusions. For 
the ratios of inclusion dimensions in this example, the absolute 
divergence reaches a maximum of +4.8% at 11 vol%.

Figures 5, 6, and 7 illustrate the calculated avap � φvap relation-
ships for model inclusions with the shape of a tetragonal prism, 
a truncated cone, and a hexagonal prism (the latter terminated 
either by hexagonal pyramids or by pinacoids). These diagrams 
are to be interpreted in the same way as Figure 4. In projections 
parallel to the long axis (a), where the inclusions appear in their 
smallest dimensions, avap increases rapidly with increasing φvap 
so long as the bubble is free to expand, unconstrained by the 
walls of the inclusions (zone 1). Once the bubble has expanded 
to the point where it can increase in size only by deviating from 
a spherical cross-section parallel to a (zone 2), the projected 
avap along a remains constant, and strongly overestimates φvap. 
In orientations where the maximum total area of the inclusions 
is projected through the microscope (curve b in Figure 6 and 
curves c in Figures 5 and 7), the values of avap initially lie close 
to φvap. However, as the volume of the bubble increases beyond 
about 60%, avap becomes increasingly smaller than φvap. In 
Figure 7, the elongate form of a hexagonal prism terminated by 
hexagonal pyramids (a shape approaching the common habit of 

a quartz crystal) is shown by the continuous curves b and c. If 
the hexagonal prism is terminated by pinacoids (a common habit 
of tourmaline, for example), then the correlations between avap 
and φvap (long-dashed curves in Fig. 7) more closely approach 
those of the tetragonal prism in Figure 5 (a common shape of 
inclusions in ß uorite and halite, for example).

The segments of curves in Figures 5, 6, and 7 with avap values 
smaller than φvap are explained by the relative position of the 
bubble within the inclusion: the bubble always occupies the 

FIGURE 5. Volume fraction vs. area fraction diagram of the vapor 
bubble in an inclusion with the shape of a tetragonal prism (elongate 
block shape with six faces and 90° interfacial angles). The relative 
dimensions of the prism are 28 × 12 × 12. Projections in the directions 
a, b, and c have various sizes. Projection c is oriented 45° to b and 
perpendicular to a.

FIGURE 6. Volume fraction vs. area fraction diagram of the vapor 
bubble in an inclusion with the shape of a truncated cone. The relative 
length of the cone is 28, the top radius is 3, and bottom radius is 6. The 
inclusion appears spherical in the a projection and elongate in the b 
projection. 

FIGURE 7. Volume fraction vs. area fraction diagram of the 
vapor bubble in an inclusion with the shape of a �negative� quartz 
crystal (hexagonal prism with hexagonal pyramids). Each face of 
the hexagonal prism has a relative size of 28 × 4√3. The hexagonal 
pyramids that terminate the prism have a relative length of 6. Projections 
in the directions a, b, and c have various sizes. The c projection lies 
perpendicular to a prism face, and the b projection bisects the 120° 
angle between prism faces. Long-dashed curves show the corresponding 
relationships for a hexagonal prism terminated by pinacoids. See the 
text for further details.
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largest three-dimensional region within the inclusion, where it 
may approach a spherical shape and thereby minimize its surface 
free-energy. The liquid phase occupies narrower and ß atter parts 
of the inclusion, thus exaggerating its area fraction and causing 
a relatively large underestimation of φvap in two-dimensional 
projections. 

Although the results for the non-spherical models plotted 
in Figures 5 to 7 are strictly valid only for the chosen inclusion 
dimensions, several very useful conclusions can be drawn. First, 
the Þ gures clearly invalidate the common assumption that avap 
always overestimates φvap. The value of avap may be greater than 
or less than φvap, depending on the shape and orientation of the 
inclusion. Second, the divergence between avap and φvap appears to 
be minimized, in general, when the inclusions are oriented such 
that their largest areas are projected through the microscope. This 
is the systematic �rule of thumb� that was sought at the outset 
of this section and which will be exploited in following sections 
where avap measurements are made of real inclusions.

Geometrical modeling of area fractions

Among the experimental results presented below are mea-
surements of projected inclusion areas (Atot) as a function of 
sample rotation angle (θ). To aid interpretation of the ensuing 
Atot-θ graphs, the theoretical behavior of several geometrical 
shapes has been calculated and plotted in Figure 8. Again, no 
account has been taken of non-orthogonal optical effects in the 
projections. 

The most extreme changes in projected area upon rotation 
are displayed by ß at inclusions (solid parabolas in Figs. 8a and 
8b). Spherical inclusions, in contrast, show no changes upon 
rotation (horizontal lines in Figs. 8a and 8b). A cylindrical 
inclusion terminated by hemispheres (Fig. 8a) with an aspect 
ratio (diameter/length) of 0.3 represents the inclusion modeled 
in Figure 4. Its maximum reduction in area is caused by rota-
tion about the y-axis (dashed parabola labeled y), whereas Atot 
remains constant upon rotation about the x or z-axes (horizontal 
line labeled x,y; coincident with the sphere). Consequently, a 
randomly oriented population of cylindrical inclusions with a 
Þ xed rotation axis (as in a thick section mounted on a spindle 
stage) will describe a family of curves that lie between these 
limiting cases (shaded area in Fig. 8a). The maximum changes 
in Atot for similar cylinders with aspect ratios of 0.5 and 0.8 are 
plotted in Figure 8a for comparison (dashed curves).

Figure 8b shows the changes in projected area of a tetrago-
nal prism terminated by pinacoids, as modeled in Figure 5 (the 
curves for ß at and spherical inclusions are also included for 
reference). The reduction in area upon rotation about the y-axis 
(dashed curves in Fig. 8b) exhibits the same parabolic behavior 
as perfectly ß at inclusions, whereas Atot remains constant if rota-
tion is about the z-axis. Again, rotation of a randomly orientated 
population of inclusions with this Þ xed shape and aspect ratio 
will describe a family of curves between the bounding cases. 
This example illustrates that a strong reduction in area upon 
rotation cannot be used alone as a criterion for identifying ß at 
inclusions. Essentially ß at inclusions are best recognized by 
the combined criteria of parabolic reduction in Atot according to 
cos(θ), plus nearly constant avap values. The projected areas of 
prisms upon rotation may follow the curve for ß at inclusions, 

but after a certain θ−interval a minimum in the Atot-θ curve is 
reached, and further rotation causes the area to increase again. 
For example, the dashed curves in Figure 8b show how a te-
tragonal prism oriented with one side up can be rotated by 45° 
before the parabolic trend of decreasing area is reversed (dashed 
curves in Fig. 8b).

The geometrical models in Figures 4, 5, 6, and 7 display the 
divergence of avap from φvap along projections parallel to the prin-
cipal dimensions of the inclusions, without any rotation. Figures 
8c and 8d illustrate for the same models the variation of avap with 
respect to the angle α between the longest dimensions of the 
inclusions and a rotation axis. Calculations have been made for 
inclusions with φvap of 25%, 50%, and 75%. The inclusions are 
oriented such that their largest areas are projected, i.e., parallel 
to projection b in Figure 4 and projection c in Figures 5 and 7. 
The cylindrical inclusion undergoes a monotonic increase in avap 
with increasing α (solid curves in Fig. 8c), whereas the tetragonal 
prism passes through minima at 18° for φvap = 25%, at 34° for φvap 
= 50%, and at 40° for φvap = 75% (dashed curves in Fig. 8c). At 
high φvap the tetragonal prism projects avap values that underes-
timate φvap over a large range of α, whereas the cylinder always 
projects overestimated values. The dashed curves in Figure 8d 
show that the degree of overestimation of φvap is even greater 
in the case of a hexagonal prism terminated by pyramids (same 
shape as modeled in Fig. 7). A hexagonal prism terminated by 
pinacoids displays a behavior between that of a cylinder and a 
tetragonal prism (solid curves in Fig. 8d).

EXPERIMENTAL METHOD
The above modeling suggests that, if symmetrical ß uid inclusions are oriented 

such that their largest areas are projected in the microscope, the relationship between 
avap and φvap is simpliÞ ed. To investigate to what extent this rule is valid for real 
asymmetrical inclusions, test samples are required with known φvap values. Fluid 
inclusions were synthesized for this purpose according to the method of Bodnar 
and Sterner (1987) by healing fractures (induced by thermal shock) in rods of 
natural, inclusion-free, Brazilian quartz. In a Þ rst synthesis, pure H2O was held in 
contact with the quartz for one week at 580 °C and 79 MPa, yielding inclusions 
with critical molar volume (56.0 cm3·mol�1 or 0.322 g·cm�1). In a second synthesis, 
pure H2O inclusions were made in nine days at 544 °C and 445.5 MPa, yielding 
inclusions with a molar volume of 21.8 cm3/mol (0.826 g/cm). In a third synthesis, 
pure H2O and silver oxalate were used to generate a homogeneous H2O-CO2 ß uid 
containing 30 mol% CO2. This ß uid was maintained in contact with the quartz for 
four weeks at 600 °C and 500 MPa, producing inclusions with a molar volume of 
28.87 cm3/mol (0.894 g/cm). 

After the experiments, the quartz rods were cut into disks and polished on both 
sides to allow microscopic observation and microthermometry. The inclusions from 
the shorter experiments (pure H2O) generally have irregular, ß at shapes, but some 
regular, equant inclusions are also present. At room temperature (20 °C) all the 
inclusions in the Þ rst synthesis contain a vapor bubble that is calculated to be 67.8 
vol%, the remainder being liquid water (the equation of state of Wagner and Pruss 
2002 was used for the calculations). The inclusions homogenize between 373 and 
375 °C via the critical phase transition. In the second sample of H2O inclusions 
the vapor bubble is calculated to Þ ll 17.4 ± 0.07 vol% of the inclusions at room 
temperature, and homogenization occurs via a bubble-point transition between 
230.4 and 231.4 °C. The H2O-CO2 inclusions from the third experiment generally 
have more regular shapes and are equant, some of them approaching the shape of 
a �negative� quartz crystal. The CO2 phases homogenize to liquid CO2 between 
16.2 and 18.0 °C, such that at room temperature (20 °C) they contain one bubble 
of liquid CO2 (calculated to be 53.8 ± 0.25 vol%; see example above using Eqs. 
3 to 5 and the listed input data), rimmed by aqueous liquid. These two phases in 
turn homogenize to a liquid phase between 280.9 and 287.3 °C. For simplicity, the 
room-temperature phase assemblage of these inclusions (dense aqueous liquid + 
less-dense CO2 liquid) is hereafter referred to simply as liquid + �vapor�.

Following microthermometry the quartz disks were glued to a metal stub that 
was Þ xed magnetically to a spindle stage (Anderson and Bodnar 1993), and im-
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mersed in a cell containing oil with a refractive index similar to those of quartz. 
The assembly was mounted on a microscope with a 40× long-working-distance 
objective lens Þ tted with an adjustable cover-slip correction cap. The face of the 
objective lens was situated in air, above the upper level of immersion oil in the 
sample cell. The samples were viewed with a sub-stage condenser lens inserted 
into the light path. In this conÞ guration the convergent transmitted light entered 
the immersion oil from below the sample. The light then traversed the inclusion-
bearing quartz sample, passed through the overlying oil, and exited into air before 
entering the objective lens. The spindle stage was thus used in the exactly the same 
way as described by Anderson and Bodnar (1993). 

Each inclusion selected for area measurement was aligned approximately along 
the rotation axis of the spindle stage. The sample was then rotated in intervals of 5° 
and the inclusion was photographed digitally in each position. The value of avap in 
each microphotograph was measured by tracing digitally around the outside edges 
of the shadows that deÞ ne the perimeters of the bubble and the inclusion. Tests 
showed that tracing around the outside edges yielded the greatest reproducibility in 
avap, especially when different workers measured the same inclusion. Presumably 
the outermost outline best represents the true projection of the three-dimensional 
inclusion. Areas were integrated with the NIH image software package (version 
1.63) or its successor, ImageJ (http://rsb.info.nih.gov/).

Owing to optical effects related to depth-of-focus and refraction, the clarity of 
the outlines of the inclusions and their bubbles varied with orientation of the disk. 
To help account for this inherent uncertainty, the avap measurements were repeated 
three times for each microphotograph. The Þ rst trace was performed in a clockwise 
direction, the second anticlockwise, and then the photograph was enlarged by 
200% and traced a third time. In addition, the total area and the perimeter of each 
inclusion were measured from each microphotograph.

Several target inclusions had such irregular shapes that their entire outlines 
could not be brought into focus at any one vertical position of the microscope 
stage. Photographs were unsuitable in these cases, therefore the inclusion and 
bubble outlines were traced by hand using a projection tube mounted above the 

trinocular head of the microscope. The scale drawings were then digitized and 
thereafter treated in the same way as the photographs.

RESULTS

Within each of the three synthetic ß uid inclusion samples, 
several inclusions representing a variety of shapes were selected 
for analysis. The aim was to search for reproducible patterns in 
the relationships of projection angle, ß uid inclusion area, and avap, 
with respect to φvap. The results for three representative inclusions 
from each sample are presented in the following. Additional re-
sults are available on the authors� websites (http://ß uids.unileoben.
ac.at/ and www.geo.unibe.ch/diamond). As a complement to the 
analyses of individual ß uid inclusions, measurements of avap were 
also made on assemblages of inclusions in each sample, with 
the quartz disks in Þ xed orientations. All measurements, on both 
individual inclusions and assemblages, were made at 20 °C.

Measurements of individual synthetic H2O inclusions with 
67.8 vol% vapor

Figure 9 summarizes measurements on a slightly conical 
inclusion. Figures 9a�c show the view through the microscope 
at three angles of rotation (θ), with the axis of the spindle stage 
oriented parallel to the short dimension of the printed page. Thus, 
the long axis of the inclusion lies at about 70° from the axis of the 
spindle-stage (this is the angle α plotted in Figs. 8c and 8d). A θ 
value of zero is assigned to the horizontal position of the ß uid 

FIGURE 8. Calculated projections 
of the geometrical inclusions in Figures 
4 to 7. The arrow marked p shows the 
projection direction. (a) Projected total 
areas of flat, spherical, and cylindrical 
inclusions vs. angle of rotation θ (e.g., on 
a spindle stage) along axes x, y, and z. (b) 
Projected total areas of a tetragonal prism 
vs. angle of rotation, θ, along axes x, y, and 
z. (c) Projected area fractions of the vapor 
bubble in cylindrical (solid curves) and 
tetragonal-prism (dashed) inclusions, vs. 
the angle α between the longest dimension 
of the inclusion and a spindle-stage rotation 
axis. (d) Same as (c) but calculated for 
inclusions shaped like �negative� quartz 
crystals: hexagonal prisms terminated by 
pinacoids (solid curves) or by hexagonal 
pyramids (dashed).
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inclusion sample in the spindle stage, a positive sign indicates 
rotation in a clockwise direction, and a minus sign denotes an 
anticlockwise rotation; for example, Figure 9a shows the inclu-
sion after 55° anticlockwise rotation, whereas Figure 9c shows 
the same inclusion after 5° clockwise rotation.

Figures 9a�c are not perfectly sharp. Certain segments of the 
outlines in Figures 9a and 9c are fuzzy, and an optical artifact 
(a Becke line) is visible as a bright rim along the left side of 
the inclusion in Figure 9a and as a dark shadow in Figure 9b. 
The quality of the images is evidently less than optimal for area 
measurements, but it is typical of all the inclusions studied here, 
and it is typical of most ß uid inclusions in natural samples.

Figure 9d displays the projected area of the inclusion, Atot, as 
a function of rotation angle. The ranges of the triplicate measure-
ments (in absolute values of μm2; see scale on left-hand ordinate) 
are indicated by the error bars, and the mean of each triplicate 

is plotted as a circle. Because the quality of the images varies 
from one rotation position to another, the length of the error bars 
also varies in a  unpredictable way. The entire set of data was 
regressed to a best-Þ t polynomial function to smooth the trends 
(solid curve, labeled �abs.�). It is obvious that the inclusion ap-
pears smallest near 10° and that the projected area increases as 
the inclusion is rotated to �55°. The maximum projected area 
according to the Þ tted curve lies around �52° (marked by an 
arrow in Fig. 9d).

The mean values of the absolute areas plotted in Figure 9d 
have been recalculated relative to the maximum datum found at 
�55°. The square symbols in Figure 9d show these recalculated 
values (see scale on right-hand ordinate), and the dashed curve 
labeled �rel.� represents a best-Þ t polynomial function to the 
mean of each set of triplicate data. Thus, the largest mean area 
plots at 100% and the smallest area (found at 10° rotation) plots 

FIGURE 9. Projected areas of a slightly conical, synthetic H2O inclusion in quartz, containing 67.8 vol% vapor. (a, b, c) Microscope projections 
of the inclusion at three different angles of rotation (θ) in the spindle stage (numbers indicate angles). The axis of rotation is schematically illustrated. 
(d) Absolute projected area of the inclusion (left-hand ordinate scale) and area relative to the maximum area (right-hand scale), both vs. θ. The arrow 
marks the angle at which the maximum area of the inclusion is projected. (e) Area fractions of the vapor bubble as a function of θ. The horizontal 
reference line indicates the volume fraction of vapor (67.8%). The solid curve shows the absolute values of the area fraction (with respect to the 
left-hand ordinate scale). The dashed curve (with respect to the right-hand scale) shows the relative divergence of the area fraction from the known 
volume fraction [(avap � φvap)/φvap]. The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is �1.5 vol% (arrow).
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at 54%. By comparison with Figure 8a, the form of the dashed 
Atot-θ curve conÞ rms that the inclusion is neither spherical (the 
line would be horizontal) nor perfectly ß at (the curve would drop 
to around 71% at 45° from the maximum, whereas the curve in 
Fig. 9d drops to only 76%). Also, the dashed curve undergoes 
no inß ections upon 45° of rotation, as would be the case if the 
inclusion had a tetragonal shape (cf. Fig. 8b).

Figure 9e displays avap as a function of rotation angle. The 
ranges of triplicate measurements are shown by the error bars 
and the mean values are indicated by circles, all with respect 
to the scale on the left-hand ordinate. The solid curve labeled 
�af.� shows the best-Þ t polynomial function. To illustrate the 
relationship between avap and φvap, the value of φvap (67.8%) is 
marked by the thick horizontal line, with respect to the same 
ordinate scale as avap. It is obvious that avap grossly overestimates 
φvap at θ values near 10°, but after more than �35° rotation the 
mean values of avap drop slightly below φvap. This behavior is 
reminiscent of the symmetrical cone plotted in Figure 6. For an 
inclusion with φvap equal to 67.8%, avap along the a projection 
(compare inset diagram a in Fig. 6 with Fig. 9c) lies well above 
the true φvap value, whereas along the b projection the value of 
avap underestimates φvap (compare inset diagram b in Fig. 6 with 
Fig. 9a). However, it is obvious that the inclusion in Figures 
9a,b,c is not a perfectly symmetrical cone and that the rotation 
axis of the photographed inclusion is probably oriented between 
the a and b axes in Figure 6. The similarities between Figures 6 
and 9 are therefore only qualitative. 

The object of plotting the analyses in Figure 9 is to reveal 
any systematic relationships between avap and φvap. Although the 
avap-θ curve in Figure 9e intersects the φvap reference line at ap-
proximately �35°, this fortunate angle cannot be deduced solely 
from the curves in Figure 9d; they show no special features at 
this angle. The only features of the curves that can be identiÞ ed 
objectively are the maxima. Figure 9e shows that, at the angle of 
these maxima (marked by the arrow at �52°), avap is still equal to 
φvap within the reproducibility of the measurements.

The mean relative divergence of avap from φvap is indicated in 
Figure 9e by the square symbols and by the dashed curve (both 
with respect to the scale on the right-hand ordinate). Thus, the 
mean avap at 10° rotation is seen to overestimate φvap by 18%, 
whereas at �52° rotation (arrow in Figure 9e), the mean avap 
underestimates φvap by only 2%.

Several of the regular-shaped inclusions analyzed below show 
a close match between avap and φvap at the rotation angle at which 
the maximum area of the inclusions is projected. For further 
reference this special angle is denoted by the symbol θ* and the 
corresponding value of avap by the symbol avap*. The position of 
θ* in each of the following Atot-θ and avap-θ diagrams is marked 
with heavy arrows.

Figure 10 illustrates an elongate inclusion with a roughly 
cylindrical shape. The long axis of the inclusion is oriented at 
about 40° to the axis of the spindle stage. The cylindrical nature 
of the inclusion is demonstrated by its similar appearance over 
60° of rotation (compare Fig. 10a at �30° with Fig. 10b at 0° and 
Fig. 10c at 30°). The Atot-θ curves in Figure 10d show maxima 
at �27° rotation. The dashed curve in Figure 10d, showing the 
area of the inclusion relative to its maximum area, is somewhat 

similar to the dashed curve in Figure 8a, which represents a 
symmetrical cylinder with aspect ratio of 0.4; both curves fall to 
about 80% upon 45° rotation from θ*. As shown in Figure 10e, 
the measurements of avap for this inclusion are not very reproduc-
ible (e.g., at �25° the range is from 64% to 71%). However, the 
regressed polynomial function (solid curve) provides a smooth 
trend. At +35°, where the inclusion displays its smallest area 
(cf. Fig. 10d), the value of avap strongly overestimates φvap (by 
14% on the relative scale). This is not unlike the behavior of the 
symmetrical cylinder shown in Figure 4 (curve a) and Figure 8c 
(dashed curve 50 vol%), even though the axes of rotation are 
not quite comparable. Between 5° and �35° the avap-θ curve in 
Figure 10e ß attens out and lies very close to φvap, again similar 
to the behavior of a symmetrical cylinder (cf. curve b in Fig. 4). 
At θ*

 
(�27°), avap* matches φvap to well within the uncertainty 

of the measurements. 
Figure 11 shows measurements for an approximately 

equant inclusion with a distinct �negative-crystal� shape (most 
obvious in Figure 11a). The longest axis of the inclusion is 
oriented parallel to the axis of rotation of the spindle-stage. 
As in Figures 9 and 10, avap overestimates φvap at the rotation 
angle corresponding to the smallest observed projection of the 
inclusion (�35°). This is expected from qualitative comparison 
with the geometrical model in Figure 7 (projection b), even 
though the minimum area of the inclusion was not found in the 
analyses (the Atot-θ curves in Fig. 11d do not exhibit minima). 
Near the maxima in the Atot-θ curves (θ* = 35°), the values of 
avap level off at about 60%, strongly underestimating φvap (�12% 
divergence on the relative scale of Fig. 11e). Thus, in contrast 
to the regular-shaped inclusions in Figures 9 and 10, avap* is a 
very poor estimate of φvap.

A large, highly irregular, ladle-shaped inclusion is displayed 
in Figure 12. The complexity of the shape in three dimensions 
made it impossible to focus the entire inclusion in the micro-
scope at one time (cf. Figs. 12a, 12c). To provide more accurate 
outlines, drawings were made of the inclusion (see Experimental 
Method) by varying the focus level of the microscope (e.g., Fig. 
12a' and 12c'). The open symbols in Figures 12d and e show 
triplicate measurements made from the set of partly focused 
photographs. The solid symbols in Figure 12e show avap mea-
surements made on the drawings (one per 5° rotation interval). 
Between �55° and +10° rotation the results from the drawings 
are lower than those from the photographs, but the trend reverses 
at higher θ. The avap values from the drawings are probably more 
accurate. Their reproducibility compared to the photographic 
method cannot be assessed, because only one drawing was made 
per rotation interval. At θ* (�27°), as over much of the measured 
θ range, avap* underestimates φvap by 22% on the relative scale 
(dashed curve labeled �m� in Figure 12e). Evidently, the amount 
of liquid in the handle of the ladle is strongly exaggerated in the 
projections, similarly to the regions marked with plus symbols 
in Figure 3. The open arrows in the photographs in Figures 12b 
and c point to a rim of liquid between the vapor bubble and the 
inclusion wall. The drawings (Fig.12c�), however, show that this 
�rim� is an optical artifact (caused by non-orthogonal refraction 
of the transmitted light), and that the bubble actually extends to 
the inclusion wall.
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Measurements of individual synthetic H2O inclusions with 
17.4 vol% vapor

The results for a small equant inclusion are shown in Figure 
13. The longest dimension of the inclusion is oriented roughly 
perpendicular to the axis of the spindle stage. The photographs 
at high angles of rotation (Fig. 13a and 13c) are of poor deÞ ni-
tion, which hinders accurate measurement of Atot and avap. Figure 
13a shows strong double-refraction (a blurred duplicate image 
of the inclusion appears to the left of the central image), which 
could not be eliminated entirely using a sub-stage polarizer. The 
difÞ culty in deÞ ning the inclusion outlines is reß ected in the 
large error bars of the avap measurements at high and low values 
of θ (Fig. 13e). Also, the Atot values for �20° and �25° (marked 
by black symbols in Figs. 13d and 13e) diverge strongly from 
the general trend, again owing to optical problems, and so these 
data were omitted from the set Þ tted by polynomial curves. The 
dashed Atot-θ curve in Figure 13d falls to 78% of its maximum 
upon 45° of rotation, proving that the inclusion is neither ß at 
nor spherical (cf. Fig. 8a). Indeed, the inclusion is difÞ cult to 
compare with any of the geometrical shapes shown in Figures 4 

to 7. Probably a cylinder is closest, as all the avap values in Figure 
13e are greater than φvap, similar to projections a and b in Figure 
4. The maxima of the Atot-θ curves lie at �15° and the mean avap* 
overestimates φvap by 8% on the relative scale. However, φvap lies 
within 1.33σ of the 3 triplicate avap data near θ*, where σ is the 
standard deviation (see also Table 1).

Figure 14 shows a pinched cylindrical inclusion with its long 
axis oriented at a small angle to the spindle stage. The inclusion 
is slightly bent, judging from the difference in orientation of its 
longest axis between Figures 14a and b. The dashed Atot-θ curve 
in Figure 14d falls to 78% of its maximum upon 45° of rotation 
(at θ = 55° or �35°), which is similar to the behavior of a cylinder 
with an aspect ratio of 0.3, as shown in Figure 8a. The synthetic 
inclusion is not quite symmetrical; it appears somewhat ß atter 
in Figure 14a that in Figures 14b or 14c. Nevertheless, like the a 
projection of the symmetrical cylinder modeled in Figure 4, avap 
is greater than φvap at angles of rotation where the projected inclu-
sion areas are small. At angles where the projections are largest, 
avap is either very close to φvap (similar to projection b in Figure 
4) or less than φvap. At θ* (10°), avap* underestimates φvap by 4% 

FIGURE 10. Projected areas of an elongate synthetic H2O inclusion in quartz, containing 67.8 vol% vapor. See caption to Figure 9 for description. 
The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is 0.4 vol% (arrow in e).
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FIGURE 11. Projected areas of a synthetic H2O inclusion in quartz, containing 67.8 vol% vapor. The shape in (a) is crystallographically 
controlled (�negative crystal�). See caption to Figure 9 for description. The mean absolute divergence at the angle of the maximum projected area 
(avap* � φvap) is �7.8 vol% (arrow in e).

TABLE 1. Area and shape measurements of individual, synthetic fl uid inclusions
Sample Inclusion φvap a*vap  (area %) Δ* Rel. Δ* Shape class
  (vol%) Mean 1σ 1.5σ (%) (%) 

Perim.

4

2

tot
πA

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟  major/minor 

H2O crit. Fig.9 67.8 66.34 1.53 2.30 –1.46 –2.15 1.32 2.18 Regular-elongated
 Fig.10 67.8 68.15 2.10 3.15 0.35 0.52 2.10 4.79 Regular-elongated
 e1 67.8 68.60 1.36 2.04 0.80 1.18 2.56 5.66 Regular-elongated
 e5 67.8 70.20 1.97 2.96 2.40 3.54 1.61 2.32 Regular-elongated
 e6 67.8 65.62 1.46 2.19 –2.18 –3.22 1.21 1.67 Regular-equant
 Fig.11 67.8 60.05 2.43 3.65 –7.75 –11.43 1.05 1.09 Regular-Neg.-crystal
 Fig.12 67.8 54.64 0.73 1.10 –13.16 –19.41 4.12 3.66 Irregular-elongated
 e2 67.8 57.53 2.05 3.08 –10.27 –15.15 4.45 4.37 Irregular-elongated
 e3 67.8 57.43 2.61 3.92 –10.37 –15.29 2.84 1.48 Irregular-equant
 e4 67.8 64.89 3.40 5.10 –2.91 –4.29 2.11 1.88 Irregular-equant
H2O Fig.13 17.4 18.57 0.88 1.32 1.17 6.72 1.07 1.33 Regular-equant
 Fig.14 17.4 16.78 0.72 1.08 –0.62 –3.56 3.56 7.79 Regular-elongated
 Fig.15 17.4 12.17 0.23 0.35 –5.23 –30.06 3.18 4.00 Irregular-elongated
H2O-CO2  Fig.16 53.8 54.24 2.16 3.24 0.44 0.82 1.07 1.09 Regular-equant
 Fig.17 53.8 54.08 1.82 2.73 0.28 0.52 1.15 1.42 Regular-equant
 Fig.18 53.8 47.49 1.07 1.61 –6.31 –11.73 3.56 4.31 Irregular-elongated
Notes: φvap = volume fraction of vapor in liquid + vapour inclusion; a*vap = area fraction of vapour at the rotation angle of maximum projected inclusion area; σ = 
standard deviation of mean; Δ* = divergence = mean a*vap – φvap; Rel. Δ* = relative divergence = (mean a*vap – φvap)/ φvap.
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on the relative scale. However, the scatter in the measurements 
is large, and therefore φvap is best described as lying within 0.86σ 
of the Þ ve triplicate avap data near θ* (see also Table 1).

An irregular, slipper-shaped inclusion is shown in Figure 
15. Similarly to Figure 12, the complexity of the shape does 
not allow the entire inclusion to be focused. The dashed Atot-θ 
curve in Figure 15d falls to 74% of its maximum upon 45° of 
rotation, approaching the behavior of a ß at inclusion (Fig. 8a), 
but the inclusion deÞ es comparison with any of the geometrical 
shapes modeled in Figures 4 to 7. All the values of avap markedly 
underestimate φvap (Figure 15e). In this case the reproducibility 
of the avap measurements is very good. There is no doubt that at 
θ* (0°), avap* underestimates φvap by 30% on the relative scale. 
This gross underestimation is comparable to that of the irregular-
shaped inclusion in Figure 12. 

Measurements of individual synthetic CO2-H2O inclusions 
with 53.8% �vapor�

Figure 16 shows a highly equant inclusion. The dashed Atot-θ 
curve in Figure 16d falls to only around 80% of its maximum 
upon 45° of rotation, which in comparable to a cylinder with 
aspect ratio of 0.4, as shown in Figure 8a. Also the qualitative 
behavior of the avap-θ curves in Figure 16e is similar to the 
hypothetical cylinder modeled in Figure 4; at high angles of 
rotation, avap overestimates φvap by up to 14% on the relative 
scale. However, at θ* (10°) the mean value of avap* matches 
φvap perfectly.

Figure 17 presents results for an essentially equant inclusion 
that is slightly elongated and ß attened compared to the inclusion 
in Figure 16. The long axis of the inclusion is oriented at about 
30° to the rotation axis of the spindle stage. Similarly to Figure 

FIGURE 12. Projected areas of an irregular shaped synthetic H2O inclusion in quartz, containing 67.8 vol% vapor. See caption to Figure 9 for 
description. (a) Inclusion at �60° rotation, photographed in one Þ xed plane of focus. (a') Scale drawing of the projected inclusion at �60° rotation, 
for which the focus of the microscope was optimized at each point on the inclusion perimeter. A similar scale drawing is illustrated for the +20° 
rotation (c and c'). (e) Filled symbols represent area fractions measured on scale drawings such as (a') and (c'). Open symbols show area fractions 
measured on photographs such as (a) and (c). The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is �13.6 
vol% (solid arrow in e).
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13, strong double-refraction produces a blurred duplicate image 
in Figure 17a, hindering accurate measurement at higher angles 
of rotation. The form of the Atot-θ curves (Fig. 17d) is similar 
to that in Figure 16. The difference in shape is reß ected by the 
avap-θ curves (Fig. 17e), which are concave-down and which cut 
across the φvap line (cf. Fig. 16e). Nevertheless, the mean avap* 
(at θ* = 3°) is still a good estimate of φvap, exceeding the true 
value by only 3% on the relative scale.

Figure 18 summarizes measurements from one of the rarer 
irregular-shaped CO2-H2O inclusions. This inclusion displays 
only minor changes in projected area upon rotation between �20° 
and +30° (e.g., Figs. 18a and b), demonstrating that it actually 
has the shape of a club in three dimensions. The vapor bubble 
resides in the most equant portion of the inclusion (the head of the 
club). This broadly resembles the calculated geometrical models 
in which the bubble occupies the widest portion of elongate 
inclusions, such as curve b in Figure 6 (cone morphology) and 
curve c in Figure 7 (hexagonal prism). In contrast to the equant 
inclusions in this sample (Figs. 16 and 17), the avap-θ curves lie 
far below φvap. At θ* (13°), the mean avap* underestimates φvap 

by �12% on the relative scale. This large negative divergence is 
strikingly similar to that found in the two other inclusions with 
highly irregular shapes: the �ladle� (Fig. 12) and the �slipper� 
(Fig. 15).

Measurements of assemblages of synthetic inclusions 
without rotation

Figures 19, 20, and 21 show the projected areas (Atot) vs. avap 
of large numbers of inclusions in the three synthetic samples. The 
measurements were made with the quartz disks in Þ xed horizontal 
positions (no rotation). Because all the inclusions in each sample 
were synthesized at the same experimental conditions, they all 
have essentially the same φvap at room temperature, regardless 
of the variation in their shapes and sizes. 

Figure 19 (H2O inclusions with φvap = 67.8%) reveals a range 
of avap values between 56% and 77%, the scatter being indepen-
dent of the apparent size (projected area) of the inclusions. The 
majority of the inclusions have avap values lower than φvap, but the 
mean of the data is 64.1%, which is quite close to φvap. In Figure 
20 (CO2-H2O inclusions with φvap = 53.8 ± 0.25%) the smaller 

FIGURE 13. Projected areas of an equant, synthetic H2O inclusion in quartz, containing 17.4 ± 0.07 vol% vapor. See caption to Figure 9 for 
description. Filled symbols represent measurements where double refraction created strong optical artifacts. These data were ignored during curve-
Þ tting. The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is 1.2 vol% (arrow in e).
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inclusions show a wide range of avap (between 45% and 64%) 
but the range is centered on φvap. The spread in avap decreases 
progressively as the size of the inclusions increases. The largest 
inclusions display avap values that only slightly underestimate 
φvap. It is noteworthy that the mean of all the 99 avap data is 53%, 
which again is very close to φvap.

The inclusions plotted in Figures 19 and 20 were chosen for 
measurement indiscriminately, without regard to shape or to the 
petrographically distinguishable assemblages in the samples. In 
contrast, the 89 inclusion measurements reported in Figure 21 
(H2O inclusions with φvap = 17.4 ± 0.07%) are sorted according 
to assemblages: three healed fractures (each of which has a 
slightly different orientation within the sample), and a swarm 
of inclusions along the rim overgrowth of the quartz disk. 
The healed-fracture assemblages contain more or less regular 
inclusions, in which avap (varying between 16 and 25.9 vol%) 
tends to overestimate φvap (cf. Figs. 9, 10, 13, and 16). The rim 
assemblage contains regular and irregular inclusions, many of 
which are much larger than inclusions in the healed fractures. 
The avap values partly overestimate φvap (regular inclusions) and 
partly underestimate φvap (irregular inclusions), with a mean at 
17.6%, which yet again is remarkably close to φvap. 

Overall, these samples demonstrate that the mean avap of 

assemblages consisting of small numbers of inclusions may 
signiÞ cantly overestimate φvap. It may be presumed, judging 
from the wide ranges of avap values observed, that the mean avap 
in other samples could just as easily underestimate φvap. How-
ever, the mean avap values of very large numbers of cogenetic, 
homogeneously trapped inclusions yield good estimates of φvap 
(within ±4% on a relative scale).

DeÞ nition and classiÞ cation of ß uid inclusion shapes

The above results on individual inclusions show that rotation 
of inclusions to the position where their largest areas are projected 
largely accounts for the dependency of avap on inclusion orienta-
tion. The functional relationship we are searching for (Eq. 7) is 
thus reduced by one variable:

avap = f (shape, φvap) (9)

The results also show a clear difference in behavior between 
regularly shaped and irregularly shaped inclusions and between 
elongate and equant inclusions. To quantify this dependency, an 
objective classiÞ cation of two-dimensional shapes is required, 
including reproducible boundaries between what we qualitatively 
term �regular,� �irregular,� �elongate,� and �equant.�

FIGURE 14. Projected areas of an elongate, synthetic H2O inclusion in quartz, containing 17.4 ± 0.07 vol% vapor. See caption to Figure 9 for 
description. The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is �0.6 vol% (arrow in e).
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Inclusion shapes that are controlled by the crystallography of 
the host mineral (so-called �negative-crystals� in the ß uid inclu-
sion literature) are quite amenable to quantiÞ cation. Often crystal 
faces can be indexed and the relative dimensions of the inclu-
sions can be measured. For non-geometrical inclusion shapes, 
however, there is no precise nomenclature. Terms such as round, 
spiked, tabular, tubular, etc., are suitable for many problems 
addressed in the literature, but for present purposes they are too 
qualitative and too subjective. Given the lack of an appropriate 
scheme, we propose in the following a quantitative, objective 
classiÞ cation of ß uid inclusion shapes in two-dimensional projec-
tion. The classiÞ cation is very simple, the aim being to describe 
the coarse features of shapes in terms of two parameters, rather 
than to discriminate the huge variety of detailed shapes found 
in natural inclusions.

The shapes of projected inclusions have several measurable 
properties that can be quantiÞ ed numerically with digital image-
processing software (e.g., NIH Image version 1.63, ImageJ). 
The perimeter and the area of a given shape provide a Þ rst-order 
means of differentiating it from other shapes. For example, a 
circle of any size has a perimeter of 2πr and an area of πr2, where 
r is the radius. Consequently, the ratio of the square of the perim-
eter and the area multiplied by 4π is always equal to 1 (Fig. 22). 
The same ratio applied to a square of any size always gives the 
number 1.2732 (Fig. 22). Increasingly more �irregular� shapes 
are characterized by increasingly higher values of this ratio. The 

ratio (perimeter)2/(4π·area) therefore serves as a quantitative 
measure of �irregularity� and it is used as an axis parameter in 
Figure 22. We have arbitrarily set the boundary between what 
we deÞ ne as �regular� and �irregular� at a ratio of 1.75.

NIH Image and ImageJ have the capacity to Þ t an ellipse 
to any two-dimensional shape. The ratio of the lengths of the 
major and minor axes of this best-Þ t ellipse serves as the second 
parameter deÞ ning the shape of an inclusion (ordinate in Fig. 
22). In principle, this ratio quantiÞ es the amount of �elongation� 
of both regular and irregular inclusions. Within the resulting 
two-parameter space (Fig. 22), we have set an arbitrary bound-
ary at a major/minor ratio of 2 to distinguish between �equant� 
and �elongate� shapes. Similarly, we have chosen the line that 
traces the elongation of a four-pronged star (star4) as the arbitrary 
boundary between �regular� and �irregular� shapes, as deÞ ned 
by the following equation:

y = (x � 1.76)0.3 � 2.2618 + 1.5 ⋅ x + 1.1 ⋅ ln(x) (10)

where x is the ratio (perimeter)2/(4π·area), and y is the ratio (major 
axis length)/(minor axis length). Applying both chosen boundaries 
to Figure 22 divides the Þ eld of possible shapes into four regions, 
or classes: (1) equant and regular, (2) equant and irregular, (3) 
elongate and regular, and (4) elongate and irregular.

The geometrical models presented in Figures 4 (cylinder), 6 
(truncated cone), and 7 (�negative quartz-crystal�) are plotted 

FIGURE 15. Projected areas of an irregularly shaped, synthetic H2O inclusion in quartz, containing 17.4 ± 0.07 vol% vapor. See caption to Figure 
9 for description. The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is �5.2 vol% (arrow in e).
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in Figure 22 and labeled by the encircled symbols Þ 4, Þ 6, and 
Þ 7, respectively. The geometrical model in Figure 5 (tetragonal 
prism) coincides with the dashed curve labeled �rectangles�. The 
thick line segments illustrate how the inclusions change their 
projected shapes upon rotation. These examples show that one 
inclusion can span different two-dimensional shape classes, ac-
cording to the angle at which it is projected. Likewise, inclusions 
that have identical three-dimensional shapes may be assigned to 
different shape classes, depending on their orientation within the 
microscope thick-section. It is also worth noting that, because 
only two parameters are used to quantify shapes in this scheme, 
inclusions that look  different in detail may actually plot on the 
same point in Figure 22. The ß uid inclusions from Figures 9�18 
are plotted in a copy of this diagram (Fig. 23) at their θ* rotation 
positions. The positions of the additional inclusions listed in 
Table 1 are also plotted in Figure 23 (labeled e1 to e6). The dis-
tribution of points in Figure 23 shows that what we qualitatively 
perceive as different inclusion shapes (regular vs. irregular, etc.) 
are nicely discriminated by the two chosen parameters. 

DISCUSSION

Table 1 summarizes the essential results of area and shape 
analyses of the individual, synthetic ß uid inclusions presented 

above. The listed data include the mean of three avap* determina-
tions for each of the analyzed inclusions, along with the standard 
deviation (σ) of the Þ ve triplicate avap measurements (i.e., 15 
data) nearest to θ*. Values of 1.5σ are also given. The tabulated 
divergences at θ* (Δ*) are calculated as Δ* = mean avap* � φvap. In 
addition, the �irregularity� and �elongation� parameters are listed 
with the resulting shape classiÞ cations based on Figure 23.

Inspection of the Δ* values in Table 1 reveals a systematic 
dependency on shape class, which invites generalization: regular 
inclusions, whether equant or elongate, have small Δ* values, 
whereas irregular inclusions and the one regular inclusion with 
a negative-crystal-shape (Fig. 11) have large negative Δ* values. 
The functional relationship expressed in Equations 7 and 9 is 
thus reduced to one variable, as originally desired: 

avap = f (φvap) (11)

In the following we explore the potential of this shape depen-
dency as a means to determine φvap in natural ß uid inclusions, 
addressing regular, irregular, and negative-crystal shapes in 
turn. Finally, we discuss the utility of avap measurements from 
inclusion assemblages and compare this to the avap-θ approach 
for individual inclusions.

FIGURE 16. Projected areas of an equant, synthetic CO2-H2O inclusion in quartz, containing 53.8 ± 0.25 vol% vapor. See caption to Figure 9 
for description. The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is 0.4 vol% (arrow in e).
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Regular-shaped inclusions

Table 1 demonstrates that, for all the analyzed �regular� inclu-
sions, whether equant or elongate, the mean avap* values match 
the known φvap values to within 1.5 times the standard deviation 
of the measurements (i.e., |Δ*| < 1.5σ). The one exception is the 
inclusion with a negative-crystal shape (Fig. 11). It therefore 
seems justiÞ ed, on a purely empirical basis, to propose this re-
lationship as a means to estimate φvap of natural ß uid inclusions 
that are regular but do not have negative-crystal shapes: thus, 
φvap = mean avap* ±1.5σ. The uncertainty in the determinations 
(1.5σ) corresponds to ±4% relative to avap*.

The cause of this consistent relationship between avap* and 
φvap is not completely clear. Regular inclusions have no axes of 
symmetry, and a less predictable relationship might be expected 
considering the effects illustrated in Figure 3. One possible ex-
planation is that, by rotating the inclusion to the angle where the 
maximum surface area is projected, most of the asymmetry in the 
inclusion is captured by the avap measurement in the x-y plane. 
The minor diameter of the inclusion then lies in the z-axis, and in 
this orientation it seems that the �plus� and �minus� contributions 
deÞ ned in Figure 3 generally cancel each other out.

Nonetheless, it is difÞ cult to imagine that this canceling of 
competing effects would be exact in all cases. It is probable that 
there are real differences between the analyzed inclusions, but 
that these differences fall within the uncertainty of the replicate 
avap measurements. Therefore, although replicate measurements 
of certain favorable natural inclusions (those that are large and 
situated close to the sample surface) may show smaller scatter 
than those in Figures 9, 10, 13, 14, 16, and 17, it seems prudent 
for the time being to apply the global ±4% relative uncertainty 
found in the present study. More precise avap measurements may 
actually imply higher real errors in estimating φvap.

Irregular-shaped inclusions

In contrast to the �regular� inclusions, Table 1 shows that the 
mean avap* values of �irregular� inclusions systematically under-
estimate φvap, even taking into account measurement uncertain-
ties. Owing to wetting properties, the liquid phase preferentially 
Þ lls the narrow arms and tails that give this class of inclusions 
their mathematical �irregularity,� while the vapor bubble sits in 
the more bulbous regions within the inclusions. It follows that 
the more irregular the shape, the more the �plus� regions deÞ ned 

FIGURE 17. Projected areas of a rather ß at, equant, synthetic CO2-H2O inclusion in quartz, containing 53.8 ± 0.25 vol% vapor. See caption to 
Figure 9 for description. The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is 0.3 vol% (arrow in e).
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in Figure 3 will dominate avap. This trend is borne out by the 
measurements plotted in Figure 23 for irregular inclusions with 
67.8 and 53 vol% vapor. The closer the inclusions plot to the 
regular/irregular boundary, the smaller is the relative divergence 
between avap* and φvap; compare inclusions e4 (rel. Δ* =  �4.3%) 
with e3 (�15%) and 18 (�12%) with e2 (�15%) and 12 (�19%). 
In fact, as indicated in Figure 23, the magnitude of Δ* appears 
to follow contours (labeled �10% and �20%) that lie parallel to 
the regular/irregular boundary. This systematic behavior suggests 
that the following rule could be applied: φvap = avap*+ Δ* ± 1.5σ. 
On the other hand, the slipper-shaped inclusion (number 15), 
which contains 17.4 vol% vapor, does not fall on the tentative 
contours in Figure 23. Although its relative Δ* is negative, its 
value is �30%, whereas the contours imply it should be approxi-
mately �10%. It seems that the correction contours for irregular 
inclusions are a function of φvap itself, not just of inclusion shape. 
Although more experiments could be conducted to deÞ ne this 
function and to Þ t contours for a range of φvap values, it is not 
yet clear how this could be applied objectively to natural inclu-
sions. Accordingly, we propose that the new method to estimate 
φvap should be applied only to regular inclusions, for which no 
additional Δ* correction is necessary.

Negative-crystal-shaped inclusions

The only measured regular inclusion that does not follow the 
rule of φvap = avap* ± 1.5σ happens to be the only inclusion with 

FIGURE 18. Projected areas of an irregularly shaped, synthetic CO2-H2O inclusion in quartz, containing 53.8 ± 0.25 vol% vapor. See caption 
to Figure 9 for description. Dark blebs in the photographs of the inclusions are dust particles on the sample surface, not solid phases within the 
inclusions. The mean absolute divergence at the angle of the maximum projected area (avap* � φvap) is �6.3 vol% (arrow in e).

FIGURE 19. Projected area fractions vs. total areas of 60 synthetic 
H2O inclusions in quartz, each containing 67.8 vol% vapor (horizontal 
reference line). The measurements were made with the sample in a Þ xed 
orientation (no rotation). The mean area fraction is 64.1%.
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a shape that is strongly controlled by the crystallography of the 
host quartz (i.e., a �negative crystal�; Fig. 11). This result is as 
expected from the geometrical model in Figure 7, viewed from 
the angle of largest projected area (curve c in zones 2 and 3): 
the �plus� regions in Figure 3 strongly outweigh the �minus� 
regions when the inclusion is shaped like a negative quartz 
crystal with φvap > 25% (note that Fig. 3b itself corresponds to 
a b-type projection, for which avap > φvap). Unfortunately, the 
inclusion dimensions modeled in Figure 7 do not mimic inclu-
sion 11 well, and consequently curve c overestimates the true 
φvap by 15% (relative). However, calculation of a new curve c 
speciÞ cally for the dimensions of inclusion 11 yields φvap = 68 
to 70% for the measured mean avap* of 60%, which is acceptably 
close to the true φvap value of 67.8%. This example suggests that 
speciÞ c calculations such as those in Figures 5 and 7 could be 
used to estimate φvap for natural �regular� inclusions that exhibit 
crystallographically controlled faces. No universally applicable 
graphs for this problem are presented here.

Assemblages of ß uid inclusions

Figures 19 and 20 show that the mean of a large number of 
avap measurements is a reasonable estimate of φvap. The question 
arises as to whether the same approach could be applied to natural 

FIGURE 20. Projected area fractions vs. total areas of 100 synthetic 
CO2-H2O inclusions in quartz, each containing 53.8 ± 0.25 vol% vapor 
(horizontal reference line). Measurements were made with the sample in 
a Þ xed orientation (no rotation). The mean area fraction is 53%.

FIGURE 21. Projected area fractions vs. total areas of 89 synthetic H2O 
inclusions in quartz, each containing 17.4 ± 0.07 vol% vapor (horizontal 
reference line). Measurements were made with the sample in a Þ xed 
orientation (no rotation). The inclusions are sorted according to petrographic 
assemblages. The mean area fraction of all 89 inclusions is 17.6%.

FIGURE 22. Objective shape-classification diagram for two-
dimensional projections of ß uid inclusions. The abscissa shows the 
ratio of (perimeter)2/(4π·area), the ordinate shows the length ratio of 
major/minor axes of a best-Þ tting ellipse. Simple geometric shapes 
are plotted for reference. NA: not accessible. The intersection of the 
boundaries labeled �regular/irregular� and �equant/elongate� divides the 
Þ eld of accessible shapes into four arbitrary classes (shaded): equant and 
regular, elongate and regular, equant and irregular, elongate and irregular. 
Lines Þ 4, Þ 6, and Þ 7 represent the geometrical models illustrated in 
Figures 4, 6, and 7. 

FIGURE 23. Objective shape-classiÞ cation diagram (see Figure 22 for 
description) showing positions of the synthetic ß uid inclusions analyzed 
in this study. Numbers 9 to 18 correspond to inclusions shown in Figures 
9 to 18. Labels e1 to e6 are additional inclusions. Inclusions that plot in 
the regular classes and which do not have negative-crystal shapes (open 
circles) follow the rule φvap = avap* ± 4%. The one analyzed inclusion 
with a negative-crystal shape (number 11) is distinguished by a Þ lled 
hexagon. Inclusions that plot in the irregular classes (Þ lled circles) are 
labeled with their respective mean relative divergences (avap* � φvap) in 
vol%. These follow the rule φvap = avap* + Δ ± 4%, where the magnitude 
of Δ depends on distance from the regular/irregular boundary and on 
φvap. See text for further explanation.
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ß uid inclusions. It is important to realize that the plotted data in 
Figures 19 and 20 represent several petrographic assemblages 
lumped together. This is a valid treatment for synthetic ß uid 
inclusions in which all inclusions in all assemblages can be 
demonstrated to have the same φvap. In natural samples, how-
ever, it cannot be assumed a priori that every assemblage will 
have the same φvap value, even if the assemblages belong to the 
same generation (e.g., Diamond 2003a). Moreover, often only 
small numbers of inclusions can be assigned unequivocally to 
a unique assemblage in natural samples. If only small numbers 
of inclusions are available per assemblage, then, as illustrated 
by Figure 21, there appears to be no means of knowing whether 
the mean avap value actually overestimates or underestimates φvap, 
and whether the error is large or small.

The results in Figure 21 can be explained in light of what has 
been learned above from the avap-θ plots of individual inclusions. 
Inclusions within the same assemblage often show similarities 
in shapes at any given orientation of the sample, and therefore 
it is likely that their divergences from φvap are also similar. For 
example, the majority of the inclusions in the assemblage marked 
by Þ lled dots in Figure 21 (which are mostly �regular� accord-
ing to optical examination) are evidently not oriented such that 
their largest surfaces are projected through the microscope. By 
rotating the samples and measuring avap at each angle of rota-
tion, presumably an angle could be found at which many of the 
inclusions project their largest surfaces, and the mean of the avap 
values may then yield a good estimate of φvap. However, the effort 
required for these hundreds of measurements vastly exceeds that 
required to obtain the same answer from one inclusion within the 
assemblage of interest. Therefore, no proÞ t appears to be gained 
from measuring the avap values of entire assemblages.

CONCLUSIONS

The above discussion leads to a straightforward and largely 
objective procedure to determine φvap in individual �regular� 
inclusions that consist of liquid and vapor phases. Details of the 
six step procedure are given in Appendix 1, including a method 
for adjusting the room-temperature estimate of φvap to obtain 
values of φvap at other temperatures. Careful execution of these 
steps needs about two hours. The only remaining subjective 
step, in practice, is deciding when a �regular� inclusion is also a 
�negative crystal,� and when it is not. According to our results so 
far, any inclusion that displays faces with clear crystallographic 
control, and with sharp (not rounded) interfacial angles, should be 
treated as a �negative crystal.� Although such inclusions plot in 
the �regular� Þ eld in Figure 23, the rule φvap = avap* ± 4% does not 
apply to them. Until a generalized approach becomes available 
for �negative crystals,� we suggest that calculations should be 
done to model φvap for each individual inclusion under study. 

The procedure outlined in Appendix 1 allows φvap of indi-
vidual �regular� inclusions to be determined with a relative 
uncertainty of ±4%. Thus, an inclusion with φvap = 0.3, for 
example, can be determined to within ± 0.018 absolute. At this 
stage it seems that improved precision in measuring avap will 
not improve the overall accuracy of the φvap estimates, since the 
method probably does not discriminate small differences in the 
shape of inclusions parallel to the z-axis of the microscope. It 
should be recalled that the new method takes no account of the 

�negative lens� (non-orthogonal light diffraction) effects dis-
cussed by previous workers. This is not to say that such effects 
do not occur; instead, it seems that they are incorporated within 
the overall ±4% relative uncertainty of the method.

Relative accuracies better than ±4% can be obtained if the 
results of several inclusions are considered simultaneously. For 
example, Table 1 lists mean avap* values for Þ ve �regular� inclu-
sions in the H2O sample with 67.8% vapor. Selecting the lowest 
upper estimate (avap* + 4%) and the highest lower estimate (avap* 
� 4%) of these data constrains the value of φvap to lie between 
67.4% and 68.2%, which corresponds to a relative uncertainty of 
only ±0.6%. Clearly, in the case of natural samples, this reÞ ned 
approach can only be applied to inclusions that belong to the same 
homogeneously trapped assemblage. In practice, the additional 
effort to obtain such high accuracy (e.g., 10 h measurement time 
to reach ±0.6% vs. 2 h for ±4%) may not be justiÞ ed by the appli-
cation of the results. Errors do not propagate dramatically at low 
absolute values of φvap (Fig. 1) and most available equations of 
state for gas-bearing aqueous ß uids, which are used to calculate 
isochores, have signiÞ cantly higher uncertainties. Nevertheless, 
the new method permits highly accurate determinations of φvap 
when required.

Application of the φvap estimates in calculating bulk Vm � x 
properties of ß uid inclusions, e.g., via Equations 3 to 5, is sub-
ject to additional uncertainties associated with determining the 
compositions and molar volumes of the individual liquid and 
vapor phases. Despite these cumulative uncertainties, the Þ nal 
estimates of bulk Vm � x properties can be very useful in solving 
geochemical and petrologic problems. Moreover, the new method 
allows the uncertainties in volume fractions to be quantiÞ ed and 
propagated through subsequent calculations, which is a signiÞ -
cant advance over earlier approaches.
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APPENDIX 1: RECOMMENDED PROCEDURE TO MEASURE 
THE VOLUME FRACTION OF PHASES IN INDIVIDUAL 

INCLUSIONS CONSISTING OF LIQUID AND VAPOR

Five steps are given below to determine the value of φvap at 
room temperature. A sixth step explains how to adjust this value 
to estimate φvap at other temperatures. It is assumed that the reader 
has studied the main body of this article.

Selection of target inclusions for measurement

Qualitative optical estimates of avap should be used, accord-
ing to traditional practice, to distinguish homogeneous from 
heterogeneous entrapment of individual petrographic assem-
blages. For homogeneously trapped inclusions, quantitative φvap 
determinations from only one to three inclusions per assemblage 
are sufÞ cient, in principle, to deÞ ne φvap. For heterogeneously 
trapped inclusions, more measurements may have to be made 
per assemblage to Þ nd the extreme values of φvap in the liquid-
rich and gas-rich end-members (e.g., Diamond 2003b). For 
both homogeneously and heterogeneously trapped assemblages, 
optimal inclusions for measurement are (1) large (the errors in 
measuring avap are minimized), (2) regular in shape (irregular 
inclusions cannot be quantiÞ ed with the current methodology), 
and (3) situated near the surface of the sample (the clarity of 
inclusions upon rotation is maximized). 

Rotation of inclusion samples

Mount the sample on the spindle stage and center the axis of 
rotation on the target inclusion. Using the highest microscope 
magniÞ cation possible (usually a 36× or a 40× long working-
distance objective lens), take digital photographs of the inclu-
sion at 5° intervals of rotation (+ and �), over as large a range 
of angles as permitted by the clarity of the images. Record the 
orientation of the spindle-stage axis and the length scale (in μm) 
of the photographs (for routine analysis, pixels are sufÞ cient). 

For each photograph, record the angle of rotation. Use a polarizer 
below the sample to reduce double refraction at high angles of 
rotation. For inclusions that are not entirely focused at a given 
position, photographs are unsuitable for area measurements. 
Better accuracy is obtained by making a drawing of the inclusion 
while optimizing the focus at each point along the perimeters of 
the inclusion and the vapor bubble. Drawings can be made using 
a projection tube mounted on the microscope or by tracing on 
a clear plastic sheet placed over the inclusion image displayed 
on a computer screen.

Measurement of Atot and avap

Import the digital photographs or scanned drawings into 
ImageJ (freeware obtainable at http://rsb.info.nih.gov/). Use 
the Polygon Selections tool to measure the length scale of the 
photograph in pixels. Then within the Analyze menu, select 
the Set Scale option and enter this pixel length to deÞ ne the 
scale of the photographs (typically around 6 pixel/μm for a 
40× objective lens). In the Set Measurement option, select the 
parameters for measurement (Area, Perimeter, Fit Ellipse) and 
specify their precision to three decimal places. For each image, 
use the Polygon Selection tool to draw around the perimeter of 
the inclusion, then from the Analyze menu execute Measure to 
record the values of the parameters. Repeat the measurements for 
the vapor bubble. Care must be taken to trace around the outside 
edges of the dark shadows that deÞ ne the inclusion and bubble 
perimeters; these correspond most closely to the true projection 
of the inclusion. To enhance accuracy, the measurements should 
be repeated at least thrice; we recommend tracing once clockwise 
then once anticlockwise, then the image should be enlarged to 
200% and traced again. Calculate the area fraction of the vapor 
(avap) for each image.

Initial Estimate of avap

Plot the inclusion areas, Atot, and the calculated avap values 
as a function of rotation angle θ, as shown in Figures 9 to 18. 
Fit the data sets to polynomial functions by least-squares re-
gression. If the Atot-θ  function displays a maximum, locate the 
corresponding avap value at this angle. This particular value of 
avap is denoted avap*. For a range of angles near avap* (e.g., the 
Þ ve nearest sets of triplicate avap measurements, corresponding 
to 15 data), calculate the local standard deviation (σ) of avap with 
respect to the polynomial Þ t. This procedure yields the initial 
estimate (avap* ± σ).

Discrimination of inclusion shapes and estimation of φvap 

Spherical inclusions. If the Þ tted Atot-θ function is ß at, the 
inclusion is spherical, and so the avap-θ function should also be 
essentially constant. In this case, a selection of the Þ ve triplicate 
sets of avap measurements that were made under the best observa-
tion conditions (clarity of inclusion and bubble outlines) can be 
used to calculate the mean and standard deviation of avap. The 
resulting mean avap ± σ can now be plotted on curve s in Figure 
4 to determine φvap ± σ.

Flat inclusions. The inclusion can be identiÞ ed as being 
ß at if (1) the avap-θ curve is nearly constant and (2) the Atot-θ 
curve is closely described by the function Atot = 100·cosθ over 
at least 45° of rotation (i.e., Atot falls to 71% of its maximum 
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upon 45° of rotation). If these two criteria are fulÞ lled, then 
φvap = avap* ± σ.

�Negative-crystal� inclusions. Examine the photographs to 
identify whether the inclusion shape is strongly controlled by 
the crystallography of the host mineral. Such �negative-crystals� 
have straight facet outlines in projection, and sharp (not rounded) 
interfacial angles. Inclusion outlines that are only partly faceted 
in this way also qualify for the present purposes as negative 
crystals (cf. Fig. 11). Calculate the theoretical volume of the 
inclusion by assuming it to be a perfect geometrical body (e.g., 
hexagonal prism with pyramids for quartz; cube for ß uorite) 
with outer dimensions as observed in the series of photographs. 
For elongate negative-crystal shapes, identify the maximum 
angle between the longest axis of the inclusion and the rotation 
axis of the spindle stage (αmax, see also Fig 8c and d). Taking 
the geometrical effect of αmax into account, calculate theoretical 
avap* values for a range of model φvap values and plot them in 
a new avap*-φvap curve, similar to c in Figure 7. The measured 
mean avap* ± σ can now be plotted on the new curve to obtain 
φvap ± σ of the inclusion.

Other inclusion shapes (i.e., those that are not spherical, 
ß at, or negative-crystals)

Using the Area, Perimeter, and Fit Ellipse measurements 
performed in step 4, plot the position of the inclusion on the 
shape-classiÞ cation diagram (Fig. 23). For all inclusions that 
fall in the regular Þ eld (whether elongate or equant; Eq. 10), 
check that 1.5σ < (avap* ± 4%). If so, the recommended global 
uncertainty of ±4% (relative to avap*) can be applied with con-
Þ dence; thus φvap = avap* ± 4%. If 1.5σ > (avap* ± 4%), which 

reß ects optical conditions worse than those found in the present 
study, the best estimate to use is φvap = avap* ± 1.5σ. Inclusions 
that plot in the irregular Þ eld cannot be analyzed accurately with 
the present methodology.

Estimation of φvap at temperatures above or below room 
temperature

The current design of the spindle stage (Anderson and Bod-
nar 1993) does not permit inclusions to be heated or cooled; all 
measurements must be performed at room temperature. If φvap is 
required at another temperature (e.g., to perform calculations of 
bulk Vm � x properties), then the room-temperature estimate of 
φvap obtained using the above method can be roughly adjusted by 
measuring the change in radius (r) of the vapor bubble between 
room temperature (T1) and the target temperature (T2). Thus, for 
a spherical bubble (assuming that the volume of the total inclu-
sion remains constant):
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For example, if φvap(20 °C) = 0.2 and rvap(20 °C) = 4 μm, 
and if the radius of the spherical bubble increases to 5 μm upon 
cooling to �20 °C, then φvap(�20 °C) = 0.2 · (53 / 43) = 0.39. 
Similarly, for a ß at bubble:
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For deformed bubbles with shapes between spherical and 
ß at, no simple solution is offered other than the upper and lower 
bounds imposed by Equations 12 and 13.


