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Abstract 

The grade uncertainty is one of the critical aspects that could determine the viability of a mining 

operation, especially in underground mines. The mining planning uses as input the geological 

block model usually estimated by the kriging technique, which is the most widely method used 

to develop the block model. Nevertheless, the smoothing effect generates deviations in ore 

grade reserves, which produce deviations between planned and executed ore grades. The 

present work will explain a suitable proposal to overcome the grade uncertainty in mining 

operations and define a short-term production planning using geostatistical simulation as well 

as a metaheuristic approach. 

The first chapter explains the main problems generated by geological uncertainty in an 

underground mine operation as well as the proposed solution. 

The second chapter defines the general concepts for the stochastic mine planning required to 

be able to understand the different theories used to estimate, simulate and optimize the block 

models. 

The third chapter exemplifies the methodology followed to be able to develop a method to 

generates a short-term production plan considering geological uncertainty. Furthermore, will 

be detailed the new heuristic approach developed to be able to define a mining extraction 

scheduling in a short time for the "room and pillar" mining method. 

The fourth chapter presents the implementation and execution of the project itself in a 

controlled environment, developing, assessing, valuating and classifying a set of different 

equiprobable block models, to subsequently develop the short-term production program. It was 

shown that the kriging estimate had a “high” geological risk and a “moderate” economic 

potential, so it was chosen among 50 realizations, to work with simulation 19, which had a 

“low” geological risk and a “high” economic potential. 

The fifth and sixth chapters refer to the discussion of the results obtained in each step and the 

conclusions achieved. 
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1 Introduction 

Mining planning is an activity that consists of establishing the form (mining method) and 

sequence (scheduling) of mineral extraction as effective and economical as possible, using as 

input the geological block model.  

Considering that the geological uncertainty generates deviations in the ore reserve estimate, 

which, according to Butler (1994), is the most important parameter to evaluate in mining 

projects, it is extremely important to measure and evaluate this uncertainty. 

In the present work, a suitable proposal will be explained to overcome the grade uncertainty in 

mining operations using the conditional simulation and developing a short-term planning 

scheduling in an appropriate amount of time through the genetic algorithm. 

1.1 Definition of the Problem 

Mining planning focus on developing a production sequence in which the in-situ ore variability 

is well addressed, having as an outcome homogeneous products (Benndorf 2020). The 

fulfilment of this homogeneity can be threatened by geological uncertainty, which can cause a 

series of problems that condition negatively affect the functioning of the mining operation. 

These problems are manifested mainly in the following aspects: 

• Mistrust in the block model 

• Mistrust in mine planning 

• Increase in operational improvisation to meet the daily requirement of the processing 

plant. 

The direct effects of not meeting the estimated grades are complex. Having lower grades will 

cause higher tonnage to be mined, often called unplanned production, which will lead to a 

reduction of the annual production, an increase of unit operating costs, and reducing the LOM 

(Butler 1994). 

Long-term planning uses the block model as a baseline to be able to develop the reserves 

calculation and thereby define an optimal mining that allows obtaining the highest possible 

NPV. This plan is implemented by short- and medium-term planning, which is responsible for 

guiding the operation to achieve the defined objectives, which are, mainly, to accomplish with 

the planned tonnage and ore grade. Therefore, it is of paramount importance to evaluate and 

control the grade variability, aiming to avoid significant plan variations (Benndorf 2020).  

Not meeting the expected reserves grade is not an uncommon problem. Baker and Giacomo 

(2001) collect the information from the deviation between estimated and executed reserves 

grade, comparing a period of 9 to 12 months in 48 mining projects in Australasia, revealing 

that 60% of these projects were overestimated or underestimated with a minimum deviation of 

15%, as is detailed in Figure 1. 
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Figure 1: Reserve Grade Deviation (Baker and Giacomo 2001) 

There are various sources of information indicating that several mines around the world have 

failed due to not meeting ore grade expectations (Appleyard 2001). 

Focusing on underground operations, because of the different constraints and challenges 

within the operation that limit the flexibility to modify the infrastructure, the design and planning 

activities must be highly detailed and precise. Unfavorable conditions in underground mines 

are intensified when there are especially significant deviations in the expected ore grade 

(Nelson 2011).  

1.2 Proposed Solution 

Currently, the most common technique used in the world to estimate ore resources and 

develop the block model is the Kriging method (Sotoudeh et al. 2019). This technique is 

considered the Best Linear Unbiased Estimator (BLUE). However, it only generates a single 

and deterministic estimation, which is not adequate for rational decision making (Rendu 2002). 

Consequently, the optimization is developed, and with it, the mining plans. However, the 

smoothing effect, generated by the Kriging technique, affects the quality of the planning and 

scheduling especially in stopes with an average grade close to the cut-off, which produces 

problems in daily operation and sensible deviations in short-term planning. 

Once the limitations of the kriging method are understood, it is possible to address and quantify 

the geological risk before the exploitation using the Conditional Simulation method, specifically 

using the Sequential Gaussian Simulation technique. One of the advantages of conditional 

simulations is that it provides a set of equiprobable models called realizations that keep the 

spatial variability of the original data set and reproduces the histogram as well (Abzalov 2016).  

These properties are crucial for proper planning because knowing that the block model is the 

core of the whole mining planning in all its phases, being able to manage the grade uncertainty 

will be highly beneficial to the operation itself, since it will reduce the technical risk generated 

by deviations in the expected ore grade and tonnage (Dimitrakopoulos et al. 2002). 

To define the sequence of extraction block by block, is necessary to develop the mining 

scheduling. However, developing this in a manual and traditional way with several block 

models is nor efficient nor productive, therefore a new optimization approach is proposed using 

as a baseline the heuristic approach, the genetic algorithm method. 
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In general, the genetic algorithm method is a stochastic technique that provides equiprobable 

solutions in an acceptable period of time. Developing and conditioning this method in the 

mining scenario, it will allow developing mining plans in a short amount of time. Depending on 

the mining method, the cut-off grade and the values to maximize or minimize it is possible to 

develop a logical sequence of extraction block by block. 

Once the mining sequence is obtained for each of the simulated block models, these are 

evaluated by assigning them a valuation, related to the Gaussian properties, considering the 

economic potential (financial expectation of NPV) and the geological risk (metallic content). 

The valuation will allow to classify each simulated and estimated block model into a risk matrix 

in which it will be possible to visualize the risk and potential and develop a risk assessment for 

each block model using their respective valuations. Applying all this information it will be 

possible to select the one with lower geological risk and higher economical value. 

The short-term mining plan is developed using the genetic algorithm in the block model 

selected which will provide us with a short-term production plan considering the geological risk, 

which will allow us to have a more reliable and feasible plan. 

1.3 Research Question 

• How to contemplate the geological grade uncertainty inside of the mining planning in 

order to reduce and manage deviations in short-term planning. 

• How do deterministic and stochastic block models compare. 

• How to select a mining plan most likely to be achieved meeting the production targets. 

• How to develop different mining scheduling for different block models without high time 

consumption.  

• How to classify a block model based on geological risk and economic potential. 

1.4 Objectives 

1.4.1 General Objectives 

Develop a short-term mining plan that considers the uncertainty in the ore grade and, at the 

same time, can present outcomes in a brief period of time.  

1.4.2 Specific Objectives 

Develop stochastic model simulations using Sequential Gaussian Simulation of an extraction 

level of the deposit considered in this study case. 

Development of a new approach to optimize the mining extraction scheduling using as a 

baseline the Genetic Algorithm theory. 

Test the optimization algorithm developed in a controllable environment and validate the 

outcomes of the mining scheduling. 

Evaluation and classification of geological risks and economic potential of medium-term mining 

plans. 

Development of short-term production mining plan using as input the best medium-term model.  
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2 General Concepts in Stochastic Mine Planning 

This chapter will explain the basic concepts necessary to understand the process of estimation, 

simulation and optimization developed in this work. This section is divided into 3 parts. The 

first refers to the kriging estimation part, in which the formulas and concepts behind the 

development of this technique will be developed, especially delving into ordinary kriging, which 

was the chosen method to develop the estimates of grades in the deposit in study. The second 

part will cover the topic of stochastic simulation, mainly explaining the method and execution 

procedure of the sequential Gaussian simulation (SGSIM). Finally, the optimization process 

will be presented, in which its objectives and definitions will be expressed, as well as the steps 

to be able to develop the Genetic Algorithm (GA) method, which will be used to obtain mining 

sequences quickly to be able to develop the risk assessment. 

2.1 Estimation 

In general, estimation refers to the process of inferring unknown values. From a geostatistical 

point of view, is a concept used to predict a realization of a random function at an unsampled 

location (Olea 1991). 

Considering that the precision of the estimates depends on different factors such as the 

number, quality and position of the samples, the distance between the samples and spatial 

continuity of the variable, the kriging method is suitable to develop the estimation since it 

considers all these factors in its process (Armstrong 1998). 

2.1.1 Spatial Estimation: Kriging 

Kriging is a local estimation technique that gives the linear unbiased estimator of a determined 

known characteristic in which it minimizes the variance. This technique is considered as an 

exact interpolator because is an estimation method that always returns the sample values as 

estimated values at sample points (Armstrong 1998). The Kriging technique allows obtaining 

estimated grades of a point by processing the weighted average of known samples grades 

(Matheron 1963).  

All of the different types of Kriging estimators are derivations of the following linear regression 

(Goovaerts 1997a). 

 

𝑍∗(𝑢) − 𝑚(𝑢) = ∑ 𝜆𝛼(𝑢) (𝑍(𝑢𝛼) − 𝑚(𝑢𝛼))

𝑛(𝑢)

𝛼=1

 (1) 

Where: 

• 𝑍∗(𝑢): Linear estimator 

• 𝑚(𝑢): Expectation of 𝑍(𝑢) 

• 𝑚(𝑢𝛼): Expectation of 𝑍(𝑢𝛼) 

• 𝜆𝛼: Assigned weights of 𝑍(𝑢𝛼) data 

• 𝑛(𝑢): number of data points in the local neighborhood 
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Knowing that kriging must comply with the unbiasedness requirement, which means that the 

error must be zero, considering that error is the average difference between estimated values 

and real values. In addition, it must also have a minimum estimation variance. (David 1977). 

Unbiasedness: 

 𝐸{𝑍∗(𝑢) − 𝑍(𝑢)} = 0 (2) 

 

Minimum estimation variance: 

 𝜎𝐸
2(𝑢) = 𝑉𝑎𝑟{𝑍∗(𝑢) − 𝑍(𝑢)} (3) 

For these conditions, Kriging is broadly considered as the Best Linear Unbiased Estimator - 

BLUE (Isaaks and Srivastava 1989). 

2.1.2 Kriging Techniques 

The random function 𝑍(𝑢) is expressed into the residual component 𝑅(𝑢) and trend component 

𝑚(𝑢). Depending on the assumption of the trend there are 3 different variations of kriging. 

 𝑍(𝑢) = 𝑅(𝑢) + 𝑚(𝑢) (4) 

2.1.3 Simple Kriging 

In this case the trend 𝑚(𝑢) of the random function is known and constant across the whole 

domain A. 

 𝑚(𝑢) = 𝑚, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛𝑑 𝑘𝑛𝑜𝑤𝑛          ∀ 𝑢 ∊ 𝐴 (5) 

2.1.4 Ordinary Kriging 

In this case the trend 𝑚(𝑢) of the random function is unknown and constant in the local 

neighborhood 𝑊(𝑢). 

 𝑚(𝑢′) = 𝑚, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛𝑑 𝑢𝑛𝑘𝑛𝑜𝑤𝑛          ∀ 𝑢′ ∊ 𝑊(𝑢) (6) 

2.1.5 Universal Kriging or Kriging with Trend 

In this case the trend 𝑚(𝑢) of the random function is unknown and not constant. The trend 

varies inside the local neighborhood according to a linear combination of functions 𝑓𝑘(𝑢). 𝑎𝑘 is 

unknown and constant in the local neighborhood 𝑊(𝑢). 

 

𝑚(′𝑢) = ∑𝑎𝑘(𝑢
′)

𝑘

𝑘=0

𝑓𝑘(𝑢
′),                     ∀ 𝑢′ ∊ 𝑊(𝑢)  (7) 

Among all the kriging methods, ordinary kriging is the most extensively used (Wackernagel 

2003). For this reason, in the present study, ordinary kriging was the method chosen to carry 

out the geostatistical estimates and will be the one described deeply. 
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2.1.6 Ordinary Kriging Theoretical Framework 

For this specific case of kriging method, the local variations of the mean within the domain are 

accounted by constraining the premise of a constant expectation to the local neighborhood; 

therefore, as an outcome, the mean will be constant only inside of the local neighborhood 𝑊(𝑢) 

(Goovaerts 1997a; Rossi and Deutsch 2014). 

 𝑚(𝑢) =  𝑚(𝑢𝛼) = 𝑚 (8) 

The equation (1) can be written in the following form: 

 

𝑍∗(𝑢) = ∑ 𝜆𝛼(𝑢) 

𝑛(𝑢)

𝛼=1

𝑍(𝑢𝛼) + [ 1 − ∑ 𝜆𝛼(𝑢) 

𝑛(𝑢)

𝛼=1

] .𝑚(𝑢) (9) 

In order to filter out the unknown mean, the sum of the kriging weights is limited to sum 1.0 

 

∑ 𝜆𝛼
𝑂𝐾(𝑢) 

𝑛(𝑢)

𝛼=1

= 1 (10) 

Replacing (10) in (9) the Ordinary Kriging estimator is expressed as follows 

 

𝑍𝑂𝐾
∗ (𝑢) = ∑ 𝜆𝛼

𝑂𝐾(𝑢) 

𝑛(𝑢)

𝛼=1

𝑍(𝑢𝛼) (11) 

 Because of equation (10), the requirement of unbiasedness is achieved 

 

𝐸{𝑍𝑂𝐾
∗ (𝑢) − 𝑍(𝑢)} = ∑ 𝜆𝛼

𝑂𝐾(𝑢) 𝑚(𝑢) − 𝑚(𝑢)

𝑛(𝑢)

𝛼=1

 

 

=  𝑚(𝑢) − 𝑚(𝑢) = 0 

(12) 

Knowing that the estimation variance is 

 𝜎𝐸
2 = 𝐸[(𝑍∗(𝑢) − 𝑍(𝑢)2)] (13) 

Aiming to satisfy the requirement of minimum variance error the following function must be 

minimized. To accomplish this, the Lagrange parameter is added to the developed of equation 

(13): 

 

𝜎𝐸
2 = 𝐶𝑅(𝑢𝛼 − 𝑢) + ∑  

𝑛(𝑢)

𝛼=1

∑ 𝜆𝛼
𝑂𝐾𝜆𝛽

𝑂𝐾𝐶𝑅(𝑢𝛼 − 𝑢𝛽)

𝑛(𝑢)

𝛽=1

− 2∑ 𝜆𝛼
𝑂𝐾𝐶𝑅(𝑢𝛼 − 𝑢)

𝑛(𝑢)

𝛼=1

+ 2𝜇𝑂𝐾 (∑ 𝜆𝛼
𝑂𝐾(𝑢) 

𝑛(𝑢)

𝛼=1

− 1) 

(14) 

Where: 

• 𝜇𝑂𝐾: Lagrange parameter 

• 𝐶𝑅(ℎ): Covariance of the residual function 
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By reducing the estimation variance to the minimum using the restriction on the weights, the 

following ordinary kriging system is obtained: 

 

(

 
 
 

𝐶(𝑢1 − 𝑢1)……𝐶(𝑢1 − 𝑢𝑛)   1
          .                              .              .
          .                              .              .
          .                              .              .
𝐶(𝑢𝑛 − 𝑢1)……𝐶(𝑢𝑛 − 𝑢𝑛)   1
          1                              1           0)

 
 
 

(

 
 
 

𝜆1
𝑂𝐾

.

.

.
𝜆𝑛
𝑂𝐾

𝜇𝑂𝐾)

 
 
 

 = 

(

 
 
 

𝐶(𝑢1 − 𝑢)
.
.
.

𝐶(𝑢𝑛 − 𝑢)
1 )

 
 
 

 (15) 

The solve of the previous matrix give the next solution: 

 

∑ 𝜆𝛽
𝑂𝐾(𝑢) 

𝑛(𝑢)

𝛽=1

𝐶𝑅(𝑢𝛼 − 𝑢𝛽) + 𝜇𝑂𝐾(𝑢) =  𝐶𝑅(𝑢𝛼 − 𝑢) ,    𝛼 = 1,… , 𝑛(𝑢) 

∑ 𝜆𝛽
𝑂𝐾(𝑢) 

𝑛(𝑢)

𝛽=1

= 1 

(16) 

Considering that in practice of ordinary kriging the residual covariance is equal to the global 

covariance function deduced from all data available, the next expression is achieved: 

 

∑ 𝜆𝛽
𝑂𝐾(𝑢) 

𝑛(𝑢)

𝛽=1

𝐶(𝑢𝛼 − 𝑢𝛽) + 𝜇𝑂𝐾(𝑢) =  𝐶(𝑢𝛼 − 𝑢) ,    𝛼 = 1,… , 𝑛(𝑢) 

∑ 𝜆𝛽
𝑂𝐾(𝑢) 

𝑛(𝑢)

𝛽=1

= 1 

(17) 

Replacing equation (17) in (14) the ordinary kriging estimation variance is reduced to the 

following expression: 

 

𝜎𝑂𝐾
2 = 𝐶(0) − ∑ 𝜆𝛼

𝑂𝐾(𝑢) 

𝑛(𝑢)

𝛼=1

𝐶(𝑢𝛼 −  𝑢) − 𝜇𝑂𝐾(𝑢) (18) 

2.2 Geostatistical Simulation 

There are many differences between estimation and simulation methods. While the estimation 

generates a unique set of estimated values and produces the smoothing effect because of the 

overstatement of the spatial continuity, the simulation, being a stochastic approach, creates a 

number of different realizations that keep the statistical and spatial variability of the data 

samples (Khosrowshahi and Shaw 2001). The simulation reproduces the spatial structure of a 

data set as a complete group, instead of giving optimum local estimates of the attributes (Ersoy 

and Yünsel 2006). The simulated realizations that, at a sample location, have a value that 

matches with the experimental values are called conditional (Goovaerts 1997a). 

2.2.1 Conditional Simulation 

The Conditional simulation is a Monte Carlo method that generates a number of equally 

probable scenarios of the grade estimation of the deposit, each of which reflexes the 

distribution and spatial variability of the data samples (Glacken and Snowden 2001). As 

mentioned before, a simulation is named conditional if not only the dispersion characteristics 
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are reproduced (mean and covariance) but also when the simulated values honors and match 

with the sampled points (Ersoy and Yünsel 2006; Chiles and Delfiner 1999). 

Considering the random function 𝑍(𝑥) known at N sample points 𝑥𝑖, 𝑖 = 1,2,… , 𝑁 and the non-

conditional simulation 𝑍𝑆(𝑥) which, is independent of 𝑍(𝑥) but with the same covariance. The 

conditioning indicates that the simulated values also match the sample points. This conditioned 

function will be represented as 𝑍𝐶𝑆(𝑥). 

The random function 𝑍(𝑥) can be expressed as follows at the point 𝑥 at the data 𝑍(𝑥𝑖): 

 𝑍(𝑥) =  𝑍𝐾
∗ (𝑥) + {𝑍(𝑥) − 𝑍𝐾

∗ (𝑥)}  (19) 

Where: 

• 𝑍(𝑥): True value 

• 𝑍𝐾
∗ (𝑥): Kriging estimator 

• 𝑍(𝑥) − 𝑍𝐾
∗ (𝑥): Kriging error 

Because the 𝑍(𝑥) is not known, the kriging error is unknown as well. However, when the same 

principle is applied to simulation function 𝑍𝑆(𝑥) in the sample point 𝑥𝑖, where the simulated 

value is known as well as the kriging estimation value, the following relation will be obtained: 

 𝑍𝑆(𝑥) =  𝑍𝑆𝐾
∗ (𝑥) + {𝑍𝑆(𝑥) − 𝑍𝑆𝐾

∗ (𝑥)} (20) 

Where: 

• 𝑍𝑆(𝑥): Simulated value 

• 𝑍𝐾
∗ (𝑥): Kriging estimator of simulation 𝑍𝑆(𝑥) 

• 𝑍𝑆(𝑥) − 𝑍𝑆𝐾
∗ (𝑥) : Simulation of kriging error. 

In equation (20) the kriging error is known; therefore, it is possible to substitute this value and 

the kriging estimator from equation (19) to define the conditioned function 𝑍𝐶𝑆(𝑥). 

 𝑍𝐶𝑆(𝑥) =  𝑍𝐾
∗ (𝑥) + {𝑍𝑆(𝑥) − 𝑍𝑆𝐾

∗ (𝑥)}  (21) 

Because of the unbiasedness condition of kriging the random function 𝑍𝑆(𝑥) has the same 

expectation as 𝑍(𝑥). 

 E[𝑍𝐾
∗ (𝑥)] = 𝐸[𝑍(𝑥)] (22) 

 𝐸[𝑍𝑆𝐾
∗ (𝑥)] = 𝐸[𝑍𝑆(𝑥)] (23) 

Because equations (22) and (23) 

 E[𝑍𝐶𝑆(𝑥)] = 𝐸[𝑍(𝑥)] (24) 

Therefore, at location 𝑥𝑖 

 𝑍𝐶𝑆(𝑥𝑖) = 𝑍(𝑥𝑖),             𝑖 = 1,… , 𝑛 (25) 

Where: 

• 𝑍(𝑥𝑖) : Experimental value of the random function 𝑍(𝑥) at location 𝑥𝑖  
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2.2.2 Sequential Simulation 

Is based in the decomposition of the multivariate probability function of random function 𝑍(𝑥) 

with a probability density function (pdf) 𝑓(𝑥1, … , 𝑥𝑁; 𝑧1, … , 𝑧𝑁) in univariate conditionals 

distribution functions (cdf). This is possible using the Bayes theorem which indicates that the 

multivariate, with N-dimensional distribution, can be decomposed into a product of N 

sequentially following univariate conditional distributions. The result of every generation is 

used to condition the next univariate distribution (Goovaerts 1997a; Gómez-Hernández and 

Srivastava 2021; Smith and Dimitrakopoulos 1999). 

The following expression shows the decomposition of the multivariate conditional probability 

density function (cpdf) in N univariate cpdfs. 

 𝑓(𝑥1, … , 𝑥𝑁; 𝑧1, … , 𝑧𝑁|𝛬0) = 𝑓(𝑥1; 𝑧1|𝛬0). 𝑓(𝑥2; 𝑧2|𝛬1)…𝑓(𝑥𝑁; 𝑧𝑁|𝛬𝑁−1) (26) 

Where: 

• 𝛬0 = {𝑑𝑛} = {𝑑(𝑥𝛼), 𝛼 = 1,… , 𝑛}, original data or conditional data 

• 𝛬𝑖 = 𝛬𝑖−1 ∪ {𝑍(𝑥𝑖)}  

The basic steps to execute conditional sequential simulation are the follows (Gotway and 

Rutherford 1994): 

• Define a random path across all grid nodes to establish the sequence in which the 

conditional univariate distribution will be created.   

• Draw a simulated value for the first node, given the N conditioning data.  

• Add this simulated value to the conditioning data set. 

• Draw a simulated value for the following node, given the N conditioning data and 

previously simulated values. 

• Repeat until all nodes are simulated. 

2.2.3 Normal Score Transformation 

Given the fact that most of the earth sciences data do not present symmetric gaussian 

histograms (Deutsch and Journel 1998), to apply correctly the SGSIM method, it is necessary 

to transform the data into a gaussian distribution.  

The normal score transformation aims to transform the RF 𝑍(𝑥) into a new RF 𝑌(𝑥) with a 

standard normal histogram. The transform is achieved by matching the cumulative distribution 

function of both Random functions. The process is well explained by Goovaerts (1997). 

Considering 𝜙() as the normal score transform function, the following expression is obtained: 

 𝑌(𝑥) = 𝜙(𝑍(𝑥)) (27) 

The transform 𝑌(𝑥) = 𝜙(𝑍(𝑥)), indicates the cumulative probabilities corresponding to 𝑍(𝑥) 

and 𝑌(𝑥) in 𝑝 quantiles, reflecting that the distribution has the same value. 

 𝐺(𝑦𝑝) = 𝐹(𝑧𝑝) = 𝑝,            ∀𝑝 ∊ [0,1] (28) 

Having 𝐹(𝑧) and 𝐺(𝑦) as the cumulative distribution functions of the original RF 𝑍(𝑥) and the 

standard normal RF 𝑌(𝑥) respectively. 
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𝐹(𝑧) = 𝑃𝑟𝑜𝑏{𝑍(𝑥) ≤ 𝑧} 

𝐺(𝑦) = 𝑃𝑟𝑜𝑏{𝑌(𝑥) ≤ 𝑦} 

The following expression represent the transform from the RF 𝑍(𝑥) to RF 𝑌(𝑥) 

 𝑌(𝑥) = 𝐺−1[𝐹(𝑍(𝑥))] (29) 

 𝑍(𝑥) = 𝐹−1[𝐺(𝑌(𝑥))] (30) 

Where: 

• 𝐹: Cumulative distribution function of 𝑍(𝑥) 

• 𝐺: Standard normal cumulative distribution function of 𝑌(𝑥) 

2.2.4 Sequential Gaussian Simulation (SGSIM) 

In general, SGSIM performs kriging at every location, from which a simulated value is obtained. 

In order to ensure that the spatial correlation is kept between simulated points, the previously 

simulated values are used to condition successive simulated values. The simulation is 

performed sequentially this means that, at every node, the sample values, originally 

transformed to normal score, within a neighborhood as well as the previously simulated nodes 

in the neighborhood, are used to process the kriging estimate values and variance. Every node 

visited follows a random path in a random order created in each realization. (Ortiz 2020) 

Following the same terminology which has been used to describe the above methods, the RF 

𝑍(𝑥𝑖), 𝑥𝑖 ∊ 𝑅, 𝑖 = 1,… ,𝑁, indexed on a discrete grid 𝐷𝑁, and having a conditioning data 𝑑𝑛 =

{𝑧(𝑢𝛼), 𝛼 = 1,… , 𝑛}. Following the Conditional simulation and sequential simulation definitions 

and the kriging technique previously explained, the conditional moments of first and second 

order as well as the estimator are calculated (Dimitrakopoulos and Luo 2004). 

Conditional Expectation: 

 𝐸{𝑍(𝑥𝑖)|𝛬𝑖−1} = 𝑚𝑖 + 𝐶𝑖𝛬𝑖−1𝐶𝛬𝑖−1𝛬𝑖−1
−1(𝑍𝛬𝑖−1 −𝑚𝛬𝑖−1) (31) 

Conditional Variance: 

 𝑉𝑎𝑟{𝑍(𝑥𝑖)|𝛬𝑖−1} = 𝐶𝑖𝑖 + 𝐶𝑖𝛬𝑖−1𝐶𝛬𝑖−1𝛬𝑖−1
−1𝐶𝛬𝑖−1𝑖 (32) 

The realizations 𝑍(𝑥𝑖) are generated from the following operation 

 𝑍(𝑥𝑖|𝛬𝑖−1) ≈ 𝐸{𝑍(𝑥𝑖)|𝛬𝑖−1} + √𝑉𝑎𝑟{𝑍(𝑥𝑖)|𝛬𝑖−1}. 𝑤 (33) 

Where: 

• 𝑚𝑖: Prior expectation of 𝑍(𝑥𝑖) 

• 𝐶𝑖𝑖: Prior variance of 𝑍(𝑥𝑖) 

• 𝑚𝛬𝑖−1: Vector of prior means of the conditioned data 

• 𝐶𝛬𝑖−1𝛬𝑖−1
−1: Inverse matrix of prior covariance between data 

• 𝑍𝛬𝑖−1: Conditioning data set 𝛬𝑖−1 

• 𝐶𝑖𝛬𝑖−1: Vector of covariance between 𝑍(𝑥𝑖) and the conditioning data set 𝛬𝑖−1 
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• 𝑤: Random number ~N(0,1) independent distributed. 

Generally, the SGSIM algorithm involves de following steps: 

• The histogram of original data samples must be obtained 

• Because the original data from the deposit is not gaussian, the accumulated data is 

required to be transformed into a gaussian distribution (normalized). 

• The normalized experimental variogram is processed. This variogram should have the 

conditions of mean, variance and sill equal to 0, 1 and 1 respectively. Subsequently, 

the experimental variogram model is obtained. 

• The SGSIM is developed considering the number of realizations to generate. 

• Following a random path every node is visited 

• Using equation (33) every node obtains a simulated value assigned 

• This simulated value is added to the conditioning data set 

• The simulation continues until every node is simulated 

• The realizations obtained are back transformed to their original units 

• It is reviewed that the Exploratory Data Analysis, histogram and variogram are similar 

to the original data set.    

It should be noted that so far these simulations have been developed on a point scale.  

2.3 Optimization 

The general definition of optimization refers to maximizing or minimizing an objective function 

considering some specific restriction in the development of the process (Belegundu and 

Chandrupatla 2019). Applying this concept to engineering the goal will be either to minimize 

the effort required as well as penalties or to maximize the desired benefit (Rao 2009).   

The different kinds of optimization algorithms are related to certain types of problems; however, 

these could be divided, in general, into two categories: deterministic and stochastic. The main 

difference between them is that deterministic methods have a fixed path with a given starting 

point to find the best solution, whereas stochastic methods include a certain level of 

randomness in the process of finding an acceptable solution (Yang 2010). At the same time, 

the stochastic methods are divided into two groups: the heuristic and the metaheuristic 

techniques. 

2.3.1 Metaheuristics 

The definition of metaheuristics refers to, the generation of iterative processes through a set 

of specific strategies and models in order to improve the search space and find efficiently near-

optimal solutions (Osman and Laporte 1996). 

In contrast with the heuristic approach, which is a problem-dependent solution strategy that 

usually gets stuck in a local optima solution, the metaheuristics, being a problem-independent 

method, consider approaches to overcome the local optimality trap and can be applied 

straightforwardly to different problems. (Gendreau and Potvin 2010; Moraga 2016) 
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Most metaheuristic algorithms are inspired by biological evolution, physical science, nervous 

systems and statistical mechanics (Osman and Laporte 1996). These algorithms can be 

classified into 2 groups: population-based and trajectory-based. The main difference between 

them is that in the first one the algorithm has a set of strings (candidate of solution) to develop 

the optimization, while the trajectory-based only considers one solution that is iterated through 

the search space in a fragmented approach (Yang 2010). 

Figure 2 shows the summary of the general classification of algorithms previously explained. 

 

Figure 2: General Algorithms Classification (Yang 2010) 

 

In the present work, because of its simplicity and small time consuming, the stochastic 

optimization method, Genetic Algorithms (GA), was the chosen method to develop the 

optimization of the mining scheduling.  

2.3.2 Genetic Algorithm (GA) 

Published by John Holland in 1975, it is based on Charles Darwin’s theory of natural selection, 

in which reproduction, crossover and mutation are considered as the basic elements of natural 

genetics (Rao 2009). 

Generation of Initial Population Size 

The algorithm works simulating an environment of evolution. First of all, is needed to generate 

a fixed set of admissible solutions (population size) which will be the individuals of the 

population, these are represented as chromosomes composed by random bitstrings. The 

traditional approach to denote chromosomes is the binary string (Figure 3); however, it can be 

also represented as a n-ary string (Figure 4) (Kochenderfer and Wheeler 2019).  

 

Figure 3: Binary String Chromosome - Example 

 

 

Figure 4: n-ary String Chromosome - Example 

Score and Selection of Parents 

Following the strategy of “survival of the fittest”, these individuals are subdued to the fitness 

conditions of the corresponding solutions which are manifested through the objective function 

that needs to be optimized to obtain a fitness value. Depending on their fitness values 

Deterministic
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achieved, the weaker individuals are eliminated by the stronger ones in the selection phase of 

parents (Belegundu and Chandrupatla 2019). 

The method to select the parents is the “Tournament selection method” in which the parents 

are chosen considering the fittest among a random subset of the population, generating a list 

of parental pairs. The number of parental pairs is the same as the number of initial individuals 

(Kochenderfer and Wheeler 2019). 

Crossover 

Between the 2 parents, the crossover is made, exchanging some parts of the chromosomes 

of them, to generate two offspring. The conventional approach, which works very well with 

binary chromosomes, indicates to choose and cut a random location of the chromosomes of 

the parents and exchange that section between them. However, when the individuals are not 

binary and cannot have repetitions, this technique will generate offspring that will be discarded. 

The PMX method, developed by Goldberg and Lingle in 1985, allows to exchange one section 

of the chromosomes without producing repetitions (Üçoluk 2002; Potvin 1996). 

Crossover Method: Partially - Mapped Crossover (PMX) 

Having chosen 2 parents for the crossover, the PMX method indicates firstly to randomly select 

one location for the cut points of both parents. Then it is required to select the first bitstring of 

the second parent and replace it in the same location of the bitstring of the first parent. Due to 

is highly probable that it will produce a repetition in the first parent, the bitstring replaced is 

moved to the position of the likely repeated bitstring (Üçoluk 2002; Potvin 1996). This 

procedure is repeated for both parents until the cut point is reached. Figure 5 and Figure 6 

illustrate how the method works. 

 

Figure 5: First offspring - Example 

 

 

Figure 6: Second offspring - Example 

Mutation 

Considering that the initial random population does not include all the possibilities or 

characteristics that may occur, it is necessary that some randomly selected offspring develop 

a mutation, with which it will be possible to evaluate the fitness of the new traits that it may 

have, even when it was not generated initially (Kochenderfer and Wheeler 2019). 

 

0 1 5 3 4 2 4 1 5 3 0 2 4 2 5 3 4 1

4 2 1 3 5 0 4 2 1 3 5 0 4 2 1 3 5 0

First Offspring 4 2 1 3 4 5

0 1 5 3 4 2 0 1 5 3 4 2 0 1 5 3 4 2

4 2 1 3 5 0 0 1 2 3 5 4 0 1 5 3 1 0

Second Offspring 4 2 1 3 4 5
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Mutation Method: Swap 

The conventional binary approach considers randomly changing one value of the bitstrings. 

This technique is not suitable because it will generate repetitions. The swap technique 

considers in select 2 random bitstrings and exchanges their positions. This technique has the 

closest strategy to the original approach. (Potvin 1996).  

As a summary, the following steps were followed to develop the GA for the present work. 

• Define the objective function with the restrictions or fitness functions. 

• Generate the initial population size. 

• The tournament selection starts to choose the parents, selecting the best fitness values 

from a subset of the population. 

• Once the parents are selected, the crossover is developed using the PMX method. It 

will allow to generate a new generation of new chromosomes (offspring). 

• Some offspring are subdued to the mutation process, which will allow them to explore 

and obtain better solutions. 

2.4 Pillar Dimension 

In order to estimate the pillar size, it is required to develop a strength-based design considering 

the pillar stress (𝜎𝑝𝑎) and pillar strength (𝝈𝒑). The Safety Factor (𝑆𝐹) defines the relation of the 

pillar load capacity (pillar strength) divided by the pillar load (pillar stress), as can be seen in 

equation (34). An acceptable 𝑆𝐹 depends on the tolerable risk of failure. In the case of pillars 

in main development headings or panels during advance mining a 𝑆𝐹 of, at least, 2 is 

conventional and acceptable (Bullock 2011). However, since the calculations made are based 

on assumed values and formulas from literature, a safety factor of 3.5 as minimum will be 

considered to overcome deviations from the theoretical formulas. 

 𝑆𝐹 =
𝝈𝒑

𝜎𝑝𝑎
 (34) 

 

 

Figure 7: Plan view of room and pillar mine design (Zipf 2001) 



Chapter 2 - General Concepts in Stochastic Mine Planning 

   15 

2.4.1 Pillar Stress (𝝈𝒑𝒂) 

It is required calculate first the in-situ vertical stress (𝜎𝑆), which is the product of the rock 

average unit weight (𝛾) and the depth of the mining horizon (𝑧) (Farmer 1992). 

 𝜎𝑆 =  𝛾 ∗ 𝑧 (35) 

The average pillar stress (𝜎𝑝𝑎) is estimated using the tributary area method. This method 

assumes that the pillars have the same dimensions and the mined area is extensive. Despite 

of the fact that this is a very simple technique, for the purpose of this study is acceptable for a 

straightforward estimation. Considering Figure 7, the average pillar stress for a square room 

and pillar mining is defined in equation (36) (Zipf 2001). 

 
𝜎𝑝𝑎 = 𝜎𝑆 ∗  (

𝑊𝑝 +𝑊𝑜

𝑊𝑝
)

2

 (36) 

Where: 

• 𝑊𝑝: Pillar width  

• 𝑊𝑜: Opening width 

2.4.2 Pillar Strength (𝝈𝒑) 

There are different traditional empirical formulas to estimate the strength of a pillar. Due to the 

fact of using a synthetic data set, some established values from the data set need to be 

assumed. For this reason, the Obert-Duvall method (equation (37)) was chosen since it was 

developed for all rock types and at the same time only requires the Unconfined Compressive 

Strength (UCS) value of the intact rock (Kendorski 2007). 

 
𝜎𝑝 = 𝜎𝑐 ∗ (0.78 + 0.22 ∗

𝑊

𝐻
) (37) 

Where: 

• 𝜎𝑐: UCS of the defined sample 

• 𝑊: Pillar width and length 

• 𝐻: Pillar height 

2.4.3 Area Extraction Ratio (𝒓) 

With the pillar width already defined, the area extraction ratio can be calculated, which is 

determined by the mined area divided by the total orebody area (Brady and Brown). Following 

the elements of the mining system of Figure 7, the expression is reduced to equation (38). 

 
𝑟 =  1 − (

𝑊𝑝

𝑊𝑝 +𝑊𝑜
)

2

 (38) 

The Area Extraction Ratio is an important parameter, in order to quantify the amount of ore 

that can be extracted per block. 
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2.5 Cut-off Grade 

The basic definition of cut-off grade refers to a criterion broadly used in mining to classify waste 

and ore of a deposit (Lane 1964). There are different approaches to calculate the cut-off grade; 

however, for the purpose of the present study case, it was selected the most simplistic method 

which is the “Breakeven Cut-off grade”.  

2.5.1 Breakeven Cut-off Grade 

The Breakeven is a straightforward method to calculate the cut-off grade. Due to the fact that 

it only considers financial parameters it is considered as a one-dimensional process. It only 

includes direct cost, price and ore recovery; however, the geology and capacity constraints are 

not considered (Hall 2014; Githiria and Musingwini 2018).  

Equation (39) represents the general equation to calculate the Breakeven cut-off grade. In this 

formula, the cut-off is obtained by equalizing the utility for mining ore and waste (Hall 2014; 

Rendu 2014).  

 
 

𝑥𝐶 = 
(𝑀𝑜 + 𝑃𝑜 + 𝑂𝑜 ) − (𝑀𝑤 + 𝑃𝑤 + 𝑂𝑤 )

𝑟 ∗ (𝑉 − 𝑅)
 (39) 

Where: 

• 𝑟: Ore recovery, % 

• 𝑉: Price, USD/tn-metal 

• 𝑅: Refining cost, USD/tn-metal 

• 𝑀𝑜: Mining cost, USD/tn-ore 

• 𝑃𝑜: Processing cost, USD/tn-ore 

• 𝑂𝑜 : Overhead cost, USD/tn-ore  

• 𝑀𝑤: Mining cost, USD/tn-waste 

• 𝑃𝑤: Processing cost, USD/tn-waste 

• 𝑂𝑤 : Overhead cost, USD/tn-waste 

Depending on the costs to consider in the analysis, the breakeven cut-off can be implemented 

for different assessments of the mining operation. It is important to mention that there are no 

standard names to define the cut-off in the different aspects of the mining operation. The cut-

offs that are being considered are the following: 

2.5.2 External or Mine Cut-off Grade without Waste Stripping 

This cut-off includes the costs of mining and processing only the ore (Rendu 2014). In this 

scenario, the waste material is not extracted so it does not have an assigned cost as shown in 

equation (40). 

 
 

𝑥𝐶 = 
𝑀𝑜 + 𝑃𝑜 + 𝑂𝑜 
𝑟 ∗ (𝑉 − 𝑅)

 (40) 
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2.5.3 Marginal Cut-off Grade  

In this case, the cut-off formula, in equation (41), only considers the variable cost (Hall 2014). 

The material above the marginal cut-off and below the Mine cut-off grade is the material used 

for blending to keep feeding the plant with a regular grade and tonnage. Any grade below the 

marginal cut-off grade is considered uneconomical.   

 
𝑥𝐶 = 

𝑀𝑣𝑜 + 𝑃𝑣𝑜
𝑟 ∗ (𝑉 − 𝑅)

 (41) 

Where: 

• 𝑟: Ore recovery, % 

• 𝑉: Price, USD/tn-metal 

• 𝑅: Refining cost, USD/tn-metal 

• 𝑀𝑣𝑜: Variable mining cost, USD/tn-ore 

• 𝑃𝑣𝑜: Variable processing cost, USD/tn-ore 
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3 A New Method for Short-Term Extraction Sequencing 
under Uncertainty 

In this chapter, the detailed methodology will be used to develop a short-term production 

program that meets all the established operational and economic requirements. This will be 

achieved following the flowchart shown in Figure 8. 

 

Figure 8: Flow Chart - General Methodology 
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Specifically, the methodologies developed to be able to generate the estimated and simulated 

block models, as well as the optimization of the mining sequencing, will be presented. In 

addition, the logic behind the risk and benefit classification will be developed, as well as the 

weighted evaluation for each sequencing by developed block model. 

For the exploratory data analysis, variogram and block models generation, the Stanford 

Geostatistical Modelling Software (SGeMS) has been used. The SGeMS is an open-source 

computer software that provides enough basic tools needed to reach the purpose of the 

present research. 

The optimization will be developed using the new approach developed of the Genetic Algorithm 

technique conditioned to the “room and pillar” mining method. Aiming to achieve this, it will be 

necessary to develop a code that allows creating stochastic sequencing of the block models, 

for this purpose the Python programming language will be used 

The valuation and classification will be developed using the Gaussian function (bell curve) 

properties, as well as a risk matrix. 

3.1 Data set Description 

For the purpose of this study case, the information of the drill holes is considered as a synthetic 

data set, which will represent a tabular deposit of copper with a dip of 30° in sedimentary 

competent rock. For these conditions, the mining method chosen was “Cut and Fill - Post Pillar 

(Room and Pillar with backfilling)”.  

3.1.1 Setup of Deposit Conditions 

The following assumed conditions are required to be able to define the pillar width and the 

Extraction Area Ration as well. 

Table 1: Setup of Deposit Conditions 

Parameter Value 

Rock type III A 

Deposit Depth (m) 200 

Density Overlaying rock (Kg/m3) 2300 

UCS pillar, MPa 110 

 

Following the scheme of Figure 7 and replacing the information from Table 1 in equations (35), 

(36) and (37), the value obtained of the pillar width is 4.0 meters providing a Safety Factor of 

3.9. Once the pillar width is defined is possible to calculate the Area Extraction Ration using 

equation (38), this value being 0.84. This means that only 84% of a block is extracted. 

3.1.2 Setup of Operative Conditions 

Considering that only 84% of the content of the blocks can be extracted, for the purpose of this 

work, the production program must be a multiple of 84. For this reason, the daily production 

ratio will be 1680 tons. 
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3.1.3 Setup of Economic Conditions 

In order to define a representative mining operation, it will be necessary to establish the 

assumed costs as regular and standard as possible. Therefore, for practical purposes, it will 

be used standard average cost from literature. 

Using the standard costs from Table 2 (Hustrulid and Bullock 2001), it is possible to extrapolate 

the values to the capacity desired of 1680 tn/day, as is expressed in Table 3. 

 

Table 2: Baseline – Mine Operating Costs for “Room and Pillar” 

Parameter Cost/unit Cost/unit 

Production, tn/d 1,200 8,000 

Stopes, USD/tn 5.62 4.47 

Drifts, USD/tn 3.05 1.26 

Crosscuts, USD/tn 2.09 0.92 

Ventilation Raises, USD/tn 0.08 0.20 

Main Haulage, USD/tn 2.57 1.22 

Services, USD/tn 2.04 1.25 

Ventilation, USD/tn 0.12 0.07 

Maintenance, USD/tn 2.54 0.99 

Administration, USD/tn 4.39 1.81 

Total Operating Costs, USD/tn 22.78 12.31 

          Source: Underground Mining Methods (Hustrulid and Bullock 2001) 
 
 

Table 3: Mine Operating Costs for “Room and Pillar” 

Parameter Cost/unit 

Production, tn/d 1,680 

Stopes, USD/tn 5.34 

Drifts, USD/tn 2.61 

Crosscuts, USD/tn 1.80 

Ventilation Raises, USD/tn 0.11 

Main Haulage, USD/tn 2.24 

Services, USD/tn 1.85 

Ventilation, USD/tn 0.11 

Maintenance, USD/tn 2.16 

Total Operating Costs, USD/tn 16.20 
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Aiming to estimate the processing cost, it will be necessary to use a relation between mining 

operating cost and milling operating costs for 1680 tn. For the purpose of the study case, the 

following empirical formulas, shown in equations (42) and (43) can be used (Camm 1991). 

The processing cost using the Flotation Mill model with one product is expressed as follows: 

 𝑃𝑜 = 121 ∗ (𝑥
−0.335) (42) 

Where: 

• 𝑃𝑜: Processing cost, USD/tn-ore 

• 𝑥: Capacity of mill in short tons per day 

Mining cost for “Room and Pillar” method: 

 𝑀𝑜 = 35.5 ∗ (𝑥
−0.171) (43) 

Where: 

• 𝑀𝑜: Mining cost, USD/tn-ore 

• 𝑥: Capacity of mine in short tons per day 

Developing the calculation and changing the units to MT, the following relation is obtained: 

 𝑃𝑜
𝑀𝑜

= 0.957% (44) 

 

Having defined the information from Table 3, using equation (44) and following equation (40) 

the Mine Cut-off Grade is estimated, as can be seen in Table 4. 

Table 4: Economic Parameters - Mine cut-off grade 

Parameter Value 

Mining cost, USD/tn-ore 16.20 

Processing cost, USD/tn-ore 16.08 

Overhead cost, USD/tn-ore  5.25 

Ore recovery, % 90.2% 

Price, USD/tn-metal 7000* 

Refining cost, USD/tn-metal 80* 

Cut-off 0.60% 

   (*) Historical average information. 

Considering equation (41) the Marginal Cut-off Grade is calculated and expressed in Table 5.  
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Table 5: Economic Parameters – Marginal cut-off grade 

Parameter Value 

Mining cost, USD/tn-ore 16.20 

Processing cost, USD/tn-ore 16.08 

Overhead cost, USD/tn-ore  - 

Ore recovery, % 90.2% 

Price, USD/tn-metal 7000.00 

Refining cost, USD/tn-metal 80.00 

Cut-off 0.52% 

(*) Historical average information. 

3.2 Exploratory Data Analysis (EDA)  

Exploratory data analysis (EDA) is the first step to understand the dataset's statistical 

behaviour. The analysis considers a univariate distribution, which is the copper grade. Based 

on this will be developed statistical evaluations, to gain insight on trends and patterns of the 

ore body. Is useful to have a visual representation of the information, so the basic tool for the 

EDA is the histogram. Along with the histogram, the statistical indicators of central parameters 

of distribution (mean, median and mode), general parameters of a distribution (lower quartile, 

upper quartile, minimum and maximum) and parameters of distribution for dispersion 

(variance) should be obtained. It is important to mention that the exploratory data analysis is 

performed considering the whole deposit and not only of the chosen level. 

3.3 Analysis of Spatial Variability 

This analysis is critical to measure the local variability of the data, which is vital to define the 

spatial continuity of an attribute, in the present study case, copper grade. The semi-variogram 

is the tool used to describe this spatial continuity of a characteristic. It determines the average 

dissimilarity between data points separated by a distance h (Goovaerts 1997b). It is expressed 

by the following formula: 

 

𝛾(ℎ) =  
1

2𝑁(ℎ)
∑[𝑧(𝑢𝛼) − 𝑧(𝑢𝛼 + ℎ)]

2

𝑁(ℎ)

𝛼=1

 (45) 

Having the experimental omnidirectional variogram processed and with it the nugget effect, sill 

and range values obtained, is possible to generate the variogram model. Depending on the 

variability of the data, the variogram model could be spherical, exponential or Gaussian. 

3.4 Operation Level Setting 

Because of the size of the deposit, the amount of data and computer capacity constraints, the 

procedures will be developed only in one level of the mineral deposit to be developed a 2D 

model. This is completely acceptable since the objective of the work is to generate a short-

term mining plan that considers the geological uncertainty in it. Therefore, it will not be 
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necessary to make a block model of the entire deposit, but rather a single exploitation level will 

be established. The 2D model will reduce the requirement of the computer’s processing 

capacity in the simulations. At this level, the EDA should be developed as well. 

3.5 Ordinary Kriging – Point Scale Estimation 

Using the variogram model, the process of estimation starts. The estimation method selected 

was Ordinary Kriging, because as mentioned before, OK is the most widely used estimation 

method. The development of the OK estimation follows the flow chart expressed in Figure 9. 

 

Figure 9: Flow Chart – Ordinary Kriging Estimation 

 

Once the OK is executed the analysis of the first results is carried out by comparing the 

estimated statistical indicators with the original ones. It is important to point out the presence 

of the smoothing effect and the effects in the variance. 

The previous ordinary kriging estimation was developed on a point scale. To create a block 

model, these points values must be averaged to block size to subsequently be used as base 

data to calculate the ordinary kriging in SMU size.  
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3.6 Ordinary Kriging – Short-Term Block Model Estimation 

After the moving average point grid is developed a new grid for the block model must be 

created. The dimensions of the grid nodes should be of the desired size of the block dimension, 

this means that each block must have the dimensions of the Selective Mining Unit (SMU). The 

ordinary kriging is developed using this time the point grid moving average as hard data and 

with it, the estimated block model is generated. 

3.7 Simulation – Sequential Gaussian Simulation (SGSIM) 

The development of the SGSIM follows the sequence detailed in the flow chart in Figure 10 

and is detailed in the following sub-chapters as well. 

3.7.1 Normal Transformation 

Knowing that Conditional Simulations assume a gaussian distribution of data, the input data 

set must be transformed to normal distribution. The software SGeMS uses the tool “trans” to 

transform the raw data set to a normal distribution with a mean value of 0 and variance of 1.  

Having the normalized data set, the Analysis of Spatial Variability is developed as well as in 

the estimation method, obtaining the omnidirectional variogram which will allow to evaluate the 

variability of the property selected. 

3.7.2 Sequential Gaussian Simulation – Point Scale Simulation 

Sequential Gaussian simulation was the method chosen to develop the simulation, because 

of its simplicity and, due to the fact that when performing a 2D simulation, the data processing 

will not require a high capacity from the computer and will not take long to execute. 

The simulation models in a point scale are obtained after the simulations processed are back 

transformed. 

3.7.3 Sequential Gaussian Simulation – Short-Term Block Model 

As with the estimation method, the previous simulations were developed on a point scale. 

Aiming to create block models, these point values must be averaged to block size (SMU). 

Through the previously explained algorithm “Moving Window – Moving Average”, the new point 

grids are generated and, as well as, in the estimation case, the Ordinary Kriging is developed 

using these points as hard data generating the block models. All of the previous block models 

generated are considered Short-Term block models. 
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Figure 10: Flow Chart – Sequential Gaussian Simulation 
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3.8 Medium-Term Block Model 

Since the previously generated Short-Term block models contain a large amount of 

information, it is required to develop a block model with larger blocks, which will produce a 

lower processing load for the computer hardware when running algorithms in the next stage. 

This new configuration of the block model will be considered Medium-Term.  

In order to develop this new block model, it is required to create a new grid with the same limits 

as the previous ones, but with a larger block size. The following step is to execute the OK using 

the point grid moving average as hard data, as developed with the short-term block model. 

The outcome will be block models with larger blocks but less quantity, generating more 

manageable data.  

Having all the estimated and simulated block models available, as well as the cut-off grade 

and the pillar dimensions, the analysis of the tonnage grade curve is developed. 
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3.9 New Optimization Approach - GA Modified for “room and 
pillar” Method 

Utilizing the programming language python, the conditions and requirements to develop the 

algorithm that will allow obtaining extraction sequences in a short time are defined and 

implemented, following the flow chart detailed in Figure 11. In this part, the following scripts 

adapt the Genetic Algorithm method to the "room and pillar" mining method. 

 

Figure 11: Flow Chart – Scheduling through Genetic Algorithm Modified 
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3.9.1 Population Generation 

The population is considered as a set of random bitstrings with integer values from zero to 

“number of blocks - 1”. The initial population is created as is shown in Figure 12, having two 

hyperparameters on it, the “n_bits” and “n_pop”. The “n_bits” defines the number of bits in the 

array, which refers to the initial random sequence of block extraction. The n_pop defines the 

size of the population (number of arrays generated), which refers to the set of initial possible 

mining extraction sequences. 

 

 

Figure 12: GA – Initial population 

3.9.2 Objective Function 

The objective function is a two-stage function that minimizes the total penalty generated from 

the deviations in meeting the requirements of operation and sequence. The first stage refers 

to the penalty for not meeting the cut-off grade. The second stage penalizes when the mining 

extraction does not follow a logical sequence. When the penalties are higher, the higher the 

fitness score, therefore the lower the feasibility of the solution. 

3.9.3 Penalty Grade 

Per period, there is a set of blocks that need to be extracted in order to meet the daily 

requirement of mine production and grade. This stage works with the hyperparameter “cut_off”. 

Depending on whether the scheduling will be developed for the medium or short-term, these 

requirements must be adjusted. However, the logic is the same, the average grade of the 

blocks per period will be calculated and a penalty directly proportional to the square difference 

with the cut-off grade will be added (Equation (46)). The minimum penalty_grade considered 

is 10. Figure 13 shows the algorithm behind this explanation. 

 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑔𝑟𝑎𝑑𝑒 = (𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑟𝑎𝑑𝑒 − 𝑐𝑢𝑡𝑜𝑓𝑓)2 ∗ 1000 (46) 

 

 

Figure 13: GA – Penalty_grade 
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3.9.4 Penalty Order 

This penalty is related to the location of the blocks in the sequence of extraction. This algorithm 

calls the hyperparameter “n_block”, which is used to identify how many blocks should be mined 

per period. The mining extraction sequence considered in this case is from south to north, so 

the blocks must be extracted considering the following conditions: 

• A block can be mined if the previous block (on vertical axis) was already mined. 

• A block can be mined if the immediate block next to it was already mined. 

There is a penalty each time that blocks do not accomplish these conditions. However, when 

all the conditions are met, the penalty is 1.0. 

Equation (47) shows the penalty in case the first block is not in the first row of the block model 

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 + 50000 (47) 

Equation (48) shows the penalty in case the mined block does not meet the two previously 

indicated conditions. In this case, the further north the block is, the greater the penalty. 

 
𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 100 ∗ (

𝐵𝑖𝑡𝑠𝑡𝑟𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘 𝑣𝑎𝑙𝑢𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐵𝑀
) (48) 

 

 

Figure 14: GA – Penalty_order 

Equation (49) shows the total penalty, which is just the sum of the “penalty_order” and 

“penaly_grade”. Figure 15 shows the algorithm behind this expression. 

 𝑇𝑜𝑡𝑎𝑙_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑜𝑟𝑑𝑒𝑟 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑔𝑟𝑎𝑑𝑒 (49) 

 

 

Figure 15: GA - Total_penalty 

3.9.5 Tournament Selection (parents) 

The parents are chosen using the tournament method already explained. The parent selected 

will be the ones with a lower score (minimizing). Figure 16 explains the algorithm that allows 

to obtain the parents with a better score. 
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Figure 16: GA – Tournament selection (parents) 

3.9.6 Crossover – PMX Method 

Figure 17 shows the crossover function with the PMX method among the parents. This method 

avoids repetition of values and is activated when a random probability is less than the 

hyperparameter “r_cross” 

 

Figure 17: GA – Crossover 

3.9.7 Mutation -Swap Method 

Figure 18 shows how works the mutation function, selecting 2 random bitstrings and 

exchanging their positions. The hyperparameter “r_mut” activates the mutation, while a 

random probability is less than “r_mut”. 

 

Figure 18: GA – Mutation 

3.9.8 Genetic Algorithm Function 

Joining all the functions previously explained, the Genetic Algorithm function is developed. 

This function depends on the hyperparameters: n_bits, n_pop, n_iter, r_cross, r_mut, cutoff 

and n_blocks. It is important to mention that the hyperparameter n_iter (number of iterations) 

creates a loop that generates a number of generations of offspring equal to the n_iter value.  
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Figure 19: GA - Function 

3.10 Mine Planning Scheduling 

Owing to the fact that developing mining scheduling is time-consuming, especially if it has to 

be developed for each generated simulation, the new optimization approach developed in the 

present work called is an alternative to overcome this difficulty. 

In order to use the Genetic Algorithm modified for room and pillar efficiently, the procedure will 

be divided into 2 phases.  

• The first phase is the medium-term planning in which the level selected is scheduled in 

a mesh with block dimension of medium-term size to schedule. 

• Once the optimum extraction path is selected, the algorithm is executed again for every 

medium-term block individually, to develop the short-term planning with blocks of SMU 

size. 

The outcome will be the mining extraction scheduling of every block model and with them, it 

would be possible to calculate and compare the Net present value and classify the models.   

3.11 Net Present Value (NPV) 

Aiming to calculate the NPV from every medium-term block model, it is necessary to have 

defined the operative and economic factors. The operative factors allow to define the metallic 

content that can be extracted using a mining method defined, while the economic factors will 

allow to define the payable ore as well as revenues and costs.  

3.11.1 Operative Factors 

The parameters needed to define the configuration of the blocks for the mining method defined, 

in this case, “room and pillar” are the following: 

• Short-term block dimension, 𝑚 
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• Medium-term block dimension, 𝑚 

• Medium-term block volume, 𝑚3 

• Density, 𝑡/𝑚3 

• Pillar dimension, % 

Equation (51) shows the procedure to calculate the extractable metal content from each block. 

 𝑂𝑟𝑒(𝑡𝑛) = 𝐵𝑙𝑜𝑐𝑘_𝑉𝑜𝑙 (𝑚3) ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑡𝑛 𝑚3⁄ ) (50) 

 𝑀𝑒𝑡𝑎𝑙(𝑡𝑛) = 𝑂𝑟𝑒(𝑡𝑛) ∗ (1 − 𝑃𝑖𝑙𝑙𝑎𝑟(%)) (51) 

Equations (52) and (53) shows the total amount of ore and metallic content respectively, in 

tones per period 𝑡. 

 

𝑇𝑜𝑡𝑎𝑙_𝑂𝑟𝑒𝑡 =∑𝑂𝑡

𝑝

𝑡=0

 (52) 

Where: 

• 𝑝: number of scheduling periods 

• 𝑂𝑡: Ore in tones in period 𝑡 

 

𝑇𝑜𝑡𝑎𝑙_𝑀𝑒𝑡𝑎𝑙𝑡 =∑𝑀𝑡

𝑝

𝑡=0

 (53) 

Where: 

• 𝑝: number of scheduling periods 

• 𝑀𝑡: Metallic content in tones in period 𝑡 

3.11.2 Economic Factors 

The parameters needed in this section will define the value of the block model and with it their 

economic viability. These are the following: 

• Mining cost (𝑀𝑖𝑛𝑖𝑛𝑔_𝑐𝑜𝑠𝑡), USD/t 

• Ore processing cost (𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑜𝑠𝑡), USD/t 

• Ore recovery % 

• Smelting and refining cost (𝑆𝑅_𝐶𝑜𝑠𝑡), USD/t-metal 

• Discount rate (𝑖), % per year 

• Discount rate (𝑖𝑝), % per Period (medium-term) 

• Cold Prices, Cu USD/t-metal 

• Cash-cost (𝐶𝑎𝑠ℎ_𝑐𝑜𝑠𝑡), USD/tn ore 

• Cut-off 

Using equations (53) and (51) the payable metal in a period 𝑡 is calculated as follows: 

 𝑃_𝑀𝑒𝑡𝑎𝑙𝑡 = 𝑇𝑜𝑡𝑎𝑙_𝑀𝑒𝑡𝑎𝑙𝑡 ∗ 𝑂𝑟𝑒_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(%) (54) 
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The cash-cost is calculated as the expression (55) 

 𝐶𝑎𝑠ℎ_𝑐𝑜𝑠𝑡 = 𝑀𝑖𝑛𝑖𝑛𝑔_𝑐𝑜𝑠𝑡 + 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑜𝑠𝑡 (55) 

 

The revenue and costs in USD per period are expressed in the expressions (56), (57) and (58) 

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 = 𝑃_𝑀𝑒𝑡𝑎𝑙𝑡 ∗ 𝐶𝑜𝑙𝑑_𝑃𝑟𝑖𝑐𝑒(𝑈𝑆𝐷 𝑡𝑛 𝑚𝑒𝑡𝑎𝑙)⁄  (56) 

 𝐶𝑜𝑠𝑡𝑡 =  𝐶𝑎𝑠ℎ_𝑐𝑜𝑠𝑡 ∗  𝑇𝑜𝑡𝑎𝑙_𝑂𝑟𝑒𝑡 (57) 

 𝑆𝑅_𝐶𝑜𝑠𝑡𝑡 =  𝑆𝑅_𝑐𝑜𝑠𝑡 ∗  𝑃_𝑀𝑒𝑡𝑎𝑙𝑡 (58) 

The cash flow per period (equation (59)) is calculated and with it, the NPV of each block model 

is obtained, following equation (60). 

 𝐶𝑎𝑠ℎ_𝑓𝑙𝑜𝑤𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 − 𝐶𝑜𝑠𝑡𝑡 −  𝑆𝑅_𝐶𝑜𝑠𝑡𝑡 (59) 

 

 

𝑁𝑃𝑉 =∑
𝐶𝑎𝑠ℎ_𝑓𝑙𝑜𝑤𝑡

(1 + 𝑖)𝑡

𝑃

𝑡=0

 (60) 

3.12 Risk-Benefit Valuation 

Once the NPV of the whole set of block models is calculated, it is required to classify and select 

the best model among them to could develop the short-term planning. Having this objective, it 

is necessary to develop a risk assessment valuation of the outcomes already obtained. 

The valuation aims to choose the best block model among the realizations developed. The 

best block model means that the simulation selected must have the highest profit with the 

lowest geological risk. To accomplish this, NPV and Grade Risk valuations will be assessed. 

It is important to mention that the valuations are measured in percentage. 

The valuation of the NPV and the Grade Risk will allow to understand and classify the different 

block models generated with a valuation factor, the Risk-benefit valuation, which is only the 

product of both previously named valuations calculated. 

 𝑅𝐵_𝑉𝐴𝐿(𝑥) = 𝑁𝑃𝑉_𝑉𝐴𝐿(𝑥) ∗ 𝐺𝑟𝑎𝑑𝑒_𝑟𝑖𝑠𝑘_𝑉𝐴𝐿(𝑥) (61) 

3.12.1 NPV Valuation  

The valuation of the NPV, expressed in equation (63) is in general simple. It considers as 

higher the NPV, the valuation will be higher. Establishing that the mean of the NPV value of 

the set of simulations, represented in equation (62), has a 50% of valuation, the proportion of 

the NPV with respect to the mean will define the valuation. The application of equation (63) 

allows to classify which values have the highest NPV. 

 
𝑁𝑃𝑉(𝑠𝑖𝑚�̄�) =

1

𝑁
∑𝑁𝑃𝑉(𝑠𝑖𝑚𝑥𝑖 )

𝑁

𝑖=1

 (62) 

Where: 

• 𝑁𝑃𝑉(𝑠𝑖𝑚𝑥𝑖 ): NPV per simulation 𝑖 
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𝑁𝑃𝑉_𝑉𝐴𝐿(𝑥) =

𝑁𝑃𝑉(𝑠𝑖𝑚𝑥) ∗ 0.5

𝑁𝑃𝑉(𝑠𝑖𝑚�̄�)
∗ 100 (63) 

The values obtained per iteration receive a classification according to Table 6. The mean value, 

that has 50%, is considered as “Moderate” risk. 

 

Table 6: NPV Risk Classification 

Minimum Moderate High Maximum 

0% 40% 40% 60% 60% 80% 80% 100% 

3.12.2 Grade Risk Valuation 

The geological uncertainty is measured having as a base the metal content. For this situation, 

the valuation considers as closer to the Metal content mean value as higher the valuation. In 

addition, this first valuation is penalized by a correction factor that is related to the Gaussian 

function properties. 

The correction factor is calculated considering the following circumstances, which are 

summarized in Table 7: 

If a value of the Metallic content is inside 0.5 standard deviations of the mean, the correction 

is 38.2%, which is the proportion of values that are located in this range. 

If a value of the Metal content is between 0.5 and 1.0 standard deviations of the mean, the 

correction is 30.0%, which is the proportion of values that are located only in this range. 

If a value of the Metal content is between 1.0 and 2.0 standard deviations of the mean, the 

correction is 27.2%, which is the proportion of values that are located only in this range. 

If a value of the Metal content is outside 2.0 standard deviations of the mean, the correction is 

4.4%, which is the proportion of values that are located outside of this range. 

 

Table 7: Correction Factor for Geological Risk 

Type Distribution Correction Factor (CF) 

Very High 
> μ - 3σ 

4.40%  
< μ + 3σ 

High 
> μ - 2σ 

27.20% 
< μ + 2σ 

Intermediate 
> μ - σ 

30.00% 
< μ + σ 

Low 
> μ - 0.5σ 

38.20% 
< μ + 0.5σ 

Equation (64) shows the mean value of the metallic content, which is the baseline to define 

grade risk valuation shown in equation (65). 
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𝑀𝐶(𝑠𝑖𝑚�̄�)  =

1

𝑁
∑𝑀𝐶(𝑠𝑖𝑚𝑥𝑖 )

𝑁

𝑖=1

 (64) 

Where: 

• 𝑀𝐶(𝑠𝑖𝑚𝑥𝑖 ): Metallic content per simulation 𝑖 

 

 
𝐺𝑟𝑎𝑑𝑒_𝑟𝑖𝑠𝑘_𝑉𝐴𝐿(𝑥) = ( 1 − 

𝑀𝐶(𝑠𝑖𝑚�̄�) −𝑀𝐶(𝑠𝑖𝑚𝑥)

𝑀𝐶(𝑠𝑖𝑚�̄�) 
 ) ∗ 𝐶𝐹 (65) 

3.13 Risk Matrix 

The Block Model with a higher Risk-benefit valuation is the one that has a better balance 

between NPV potential and grade risk. However, depending on the economical requirements 

and willingness of the company in assumes risks, it is possible to choose a Block model with 

a lower 𝑅𝐵_𝑉𝐴𝐿. For this reason, the complete set of block models are classified in the risk 

matrix, shown in Table 8, depending on the valuations previously calculated. 

Table 8: Risk Matrix 

 

3.14 Short-term Planning Scheduling 

Once the Optimum Block model is selected, the following activity is to obtain the short-term 

scheduling. Aiming to accomplish this, the GA modified for “room and pillar” will be used again 

in the SMU block size, following the sequence already developed by the previous medium-

term sequence. With the complete scheduling is possible to develop the daily and monthly 

mining plan.  

 

 

 

 

Type Distribution Correction Factor 0% 40% 40% 60% 60% 80% 80% 100%

> μ - 3σ

< μ + 3σ

> μ - 2σ

< μ + 2σ

 > μ - σ

< μ + σ

> μ - 0.5σ

< μ + 0.5σ
Low 38.20%

High 27.20%

Intermediate 30.00%

Risk Matrix

Grade Risk
NPV

Minimum Moderate High Maximum

Very High 4.40%
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4 Demonstration in a Controlled Environment 

In the present chapter, following the methodology previously explained, the study case will be 

established, considering all the operational and economic assumptions, in order to process the 

information and be able to develop the block models, scheduling and risk-benefit valuations. 

The outcome will be the daily production program accomplishing the operational requirements 

using as input the block model with the highest economic potential and lowest geological risk. 

4.1 Exploratory Data Analysis – Cu Deposit 

The information shown in the histogram, which is skewed to the right, reveals that the 

maximum and minimum Cu grade value 1.02% and 0.51 respectively, with a mean grade of 

0.66% and it is. The total statistical information can be seen in Table 9. 

 

Figure 20: Histogram – Cu deposit 

 

Table 9: Statistical Parameters Cu Deposit 

Statistical Parameter Value 

Mean grade (Cu %) 0.665 

Variance 0.008 

Minimum  0.51 

Lower quartile 0.60 

Median 0.65 

Upper quartile 0.71 

Maximum  1.02 

Once the information from the EDA is obtained, the variogram of the deposit is developed, as 

can be shown in Figure 21. The onmi-directional variogram shows a spherical behaviour and 

its parameters are detailed in Table 10. Following the information from Table 10, the variogram 

model is constructed as Figure 21 shows as well. 
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Table 10: Variogram Parameters Raw data 

Variogram Parameter Value 

Nugget effect 0.003 

Sill contribution 0.004 

Type Spherical 

Range (m) 960 

 

 

Figure 21: Omni-directional Variogram – Raw data 

4.2 Working Level – Lv. 5020 

In order to exemplify the processes to be developed as well as to reduce the requirement of 

the processing capacity of the computer, the simulations will be developed in 2D. To perform 

this, one single level of the entire deposit will be selected, which, with the focus on being 

representative, must have a certain level of dispersion in its values. For this reason, the 

selected level was Lv. 5020 in which the grade of Cu varies between 0.52 and 0.82 as can be 

seen in Figure 22 
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Figure 22: Data set Lv. 5020 in 2D view 

The statistical parameters and the histogram shown in Table 11 and Figure 23 reflect the 

information of the chosen level. These parameters will be essential to compare the estimated 

and simulated models with the original data set at the working level. 

 

Table 11: Statistical Parameters Lv. 5020 

Statistical Parameter Value 

Mean grade (Cu %) 0.657 

Variance 0.006 

Minimum  0.52 

Lower quartile 0.60 

Median 0.66 

Upper quartile 0.70 

Maximum  0.82 
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Figure 23: Histogram – Lv. 5020 

4.3 Ordinary Kriging Estimation 

4.3.1 Point Scale Model 

In order to develop the Ordinary Kriging, the information required by the software interface 

must be completed.  

Initially, the grid must be delimited with dimensions that cover all the samples, in this case the 

grid will have dimensions of 300x300 m2 with 1.0x1.0 m2 cells. In the kriging interface, the 

“General and Data” section contains the information of the grid, the hard data, and the search 

ellipsoid (Figure 24). At the same time, the information used for the “Variogram” section is the 

one previously modelled (Figure 25). The range considered was 2000 aiming to cover the 

complete grid section, and the number of points considered to develop the estimation varies 

between 5 and 20 points. The information added in the variogram section is the one from Table 

10. 

 

 

Figure 24: Interface – Estimation / kriging / General and Data 
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Figure 25: Interface – Estimation / kriging / Variogram 

The Ordinary Kriging estimation obtained can be appreciated in Figure 26. The deterministic 

method reveals that there is a zone with a high-grade concentration in the west zone. However, 

in the east zone, the grades are low. It should also be stated that in the southeast zone, more 

drilling needs to be carried out to have a greater certainty of the grade in that area. This is 

reflected because of the high variance values in this zone as shown in Figure 27. 

 

Figure 26: Ordinary Kriging Estimation – Point Scale 
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Figure 27: Variance Ordinary Kriging Estimation – Point Scale 

4.3.2 Short-Term Block Model 

The previous ordinary kriging estimation was developed in a point scale, in order to create a 

block model these points values must be averaged to a point grid of 1.0x1.0 m2 to subsequently 

be used as a base data to calculate the ordinary kriging in SMU size of 10x10 m2.  

The function of the SGeMS that allows to execute this is the “Moving Window – Moving 

Average”. The Moving Average calculates the linear average in the neighborhood, this 

averaged value is positioned in the window central point. In the interface, shown in Figure 28, 

the “window geometry” must be defined (Remy et al. 2009).  

 

 

Figure 28: Interface – Utilities / Moving Window 
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Figure 29 shows the Ordinary Kriging after the moving average. Since the values were 

averaged with the next 1.0x1.0 grid nodes, this model seems to be smoother than the model 

developed in Figure 26. 

 

Figure 29: Ordinary Kriging Estimation – Moving Average Point Grid 

A new grid is created with grid node dimensions equal to the SMU in this case of 10.0x10.0 m2 

and the block model is created as in Figure 30. Considering that the size of the grid is 300x300 

m2, this means that the short-term block model will have 900 blocks. 

 

Figure 30: Ordinary Kriging Estimation – Short-Term Block Model 

4.3.3 Medium-Term Block Model 

It was decided to generate the medium-term block model with the objective of using a smaller 

number of blocks and thus having a more manageable data size to process. The construction 

of the medium-term block model implies to create a new grid. Aiming to keep the blocks as 

regular as possible, the new cell sizes will be 60x60 m2. This means that the model will have 

25 blocks on it and for every medium-term block, there will be 36 short-term blocks as is shown 

in Figure 31. This configuration will also be used to develop the medium-term models with 

Gaussian simulations as well. 
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Figure 31: Ordinary Kriging Estimation – Medium-Term Block Model 

4.4 Sequential Gaussian Simulation (SGSIM) 

To develop the grade uncertainty measurement, the Kriging estimation will be compared with 

the stochastic simulations using the sequential Gaussian simulation (SGSIM) method. In this 

case study, 50 realizations were developed, since being a hypothetical case study, this number 

of simulations will be enough to demonstrate the deviations of the deterministic model. 

Following the steps detailed in Chapter 3.7, the raw data set should be normalized. To develop 

the transformation, the information required by the software interface must be completed. The 

“Data” section contains the information of the property to normalize, which in this case is the 

copper grade (Figure 32). Likewise, the “Source” section, in Figure 33, requires the type of 

information with which it is working and also requires the minimum and maximum values of the 

property to be evaluated (copper grade), which will be defined when the EDA is developed 

later in chapter 4.1. The last section “Target” contains the type of transformation to perform, in 

this case, is a Gaussian type with mean and variance of 0 and 1 respectively (Figure 34). 

 

 

Figure 32: Interface – Utilities / trans / Data 
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Figure 33: Interface – Utilities / trans / Source 

 

 

Figure 34: Interface – Utilities / trans / Target 

The histogram of the Normal transformation can be seen in Figure 35. In Table 12 can be 

reflected the characteristics of a gaussian distribution, since the mean is close to zero and the 

variance almost 1.0. Subsequently, the variogram is developed. 

 

 

Figure 35: Histogram – Normalized Data Set of Cu deposit 
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Table 12: Statistical Parameters Normalized Data Set 

Statistical Parameter Value 

Mean grade (Cu %) 0.065 

Variance 0.947 

Minimum  -2.935 

Lower quartile -0.628 

Median 0.051 

Upper quartile 0.682 

Maximum  3.261 

 

The onmi-directional variogram shows a spherical behaviour and its parameters can be seen 

in Table 13. In Figure 36 the black line represents the variogram model that describes the 

experimental variogram (red crosses) with a nugget effect of 0.35, sill contribution of 0.65 and 

range of 1530. 

 

Figure 36: Omni-directional Variogram – Normalized Data 

 

Table 13: Variogram Parameters – Normalized data 

Variogram Parameter Value 

Nugget effect 0.350 

Sill contribution 0.650 

Type Spherical 

Range (m) 1530 
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4.4.1 Point Scale Model 

Having the grid dimension of 300x300 m2 with cells sizes of 1.0x1.0 m2, the 50 realizations 

were carried out in the Lv. 5020. The search ellipsoid considers 1580 in order to cover all the 

grid section.  

The sequential Gaussian simulation is developed using the tool “sgsim” from SGeMS. As in 

the previous method, a grid must be established. In order to make a comparison between 

simulated and estimated models, a grid of the same dimensions as the one used for Ordinary 

Kriging should be considered and the information required in the SGSIM interface must be 

completed as well. The “General” section requires the number of simulations to develop and 

the type of kriging to consider (Figure 37). The following section is “Data” which needs the 

normalized data set and the ranges of the search ellipsoid (Figure 38). The last section, shown 

in Figure 39, is “Variogram” in which the information of the normalized variogram must be 

included (Remy et al. 2009). 

 

 

Figure 37: Interface – Algorithm / sgsim / General 

 

 

Figure 38: Interface – Algorithm / sgsim / Data 
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Figure 39: Algorithm / sgsim / Variogram 

The outcomes are normalized simulations which subsequently must be back transformed to 

non-parametric distribution with the same tool “trans” only exchanging the information between 

Source and Target sections. 

Knowing that the simulations must reproduce the original histogram at Lv. 5020 and, at the 

same time, maintain the variability of the samples, the validation of all 50 realizations can be 

undertaken by comparing the simulated histograms (Figure 40, Figure 41, Figure 42, Figure 

43, Figure 44, Figure 45, Figure 46, Figure 47, Figure 48, Figure 49, Figure 50, Figure 51, 

Figure 52) with the original data set in the same level 5020 (Figure 23) which must be similar. 

 

Figure 40: Histograms – Sim_0, Sim_1, Sim_2, Sim_3 

 

 

Figure 41: Histograms – Sim_4, Sim_5, Sim_6, Sim_7 
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Figure 42: Histograms – Sim_8, Sim_9, Sim_10, Sim_11 

 

 

Figure 43: Histograms – Sim_12, Sim_13, Sim_14, Sim_15 

 

 

Figure 44: Histograms – Sim_16, Sim_17, Sim_18, Sim_19 

 

 

Figure 45: Histograms – Sim_20, Sim_21, Sim_22, Sim_23 
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Figure 46: Histograms – Sim_24, Sim_25, Sim_26, Sim_27 

 

 

Figure 47: Histograms – Sim_28, Sim_29, Sim_30, Sim_31 

 

 

Figure 48: Histograms – Sim_32, Sim_33, Sim_34, Sim_35 

 

 

Figure 49: Histograms – Sim_36, Sim_37, Sim_38, Sim_39 
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Figure 50: Histograms – Sim_40, Sim_41, Sim_42, Sim_43 

 

 

Figure 51: Histograms – Sim_44, Sim_45, Sim_46, Sim_47 

 

 

Figure 52: Histograms – Sim_48, Sim_49 

 

The variability can also be compared using the statistical information of the simulations from 

Table 14 to Table 23. 

Table 14: Statistical Parameters – Sim_0, Sim_1, Sim_2, Sim_3, Sim_4 

Statistical Parameter Sim_0 Sim_1 Sim_2 Sim_3 Sim_4 

Mean grade (Cu %) 0.649 0.656 0.643 0.639 0.658 

Variance 0.008 0.005 0.006 0.006 0.006 

Minimum  0.511 0.511 0.511 0.511 0.510 

Lower quartile 0.586 0.602 0.589 0.588 0.599 

Median 0.650 0.660 0.643 0.629 0.661 

Upper quartile 0.710 0.699 0.696 0.693 0.709 

Maximum  0.820 0.820 0.820 0.820 0.820 
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Table 15: Statistical Parameters – Sim_5, Sim_6, Sim_7, Sim_8, Sim_9 

Statistical Parameter Sim_5 Sim_6 Sim_7 Sim_8 Sim_9 

Mean grade (Cu %) 0.645 0.652 0.643 0.638 0.640 

Variance 0.006 0.007 0.006 0.006 0.005 

Minimum  0.511 0.510 0.511 0.511 0.511 

Lower quartile 0.593 0.594 0.592 0.588 0.592 

Median 0.642 0.652 0.641 0.630 0.636 

Upper quartile 0.695 0.703 0.694 0.692 0.692 

Maximum  0.820 0.820 0.820 0.820 0.820 

 

Table 16: Statistical Parameters – Sim_10, Sim_11, Sim_12, Sim_13, Sim_14 

Statistical Parameter Sim_10 Sim_11 Sim_12 Sim_13 Sim_14 

Mean grade (Cu %) 0.657 0.642 0.652 0.636 0.633 

Variance 0.006 0.005 0.006 0.006 0.006 

Minimum  0.511 0.511 0.511 0.511 0.511 

Lower quartile 0.600 0.592 0.597 0.586 0.583 

Median 0.661 0.637 0.654 0.630 0.627 

Upper quartile 0.704 0.693 0.699 0.692 0.691 

Maximum  0.820 0.820 0.820 0.820 0.820 

 

Table 17: Statistical Parameters – Sim_15, Sim_16, Sim_17, Sim_18, Sim_19 

Statistical Parameter Sim_15 Sim_16 Sim_17 Sim_18 Sim_19 

Mean grade (Cu %) 0.651 0.643 0.640 0.639 0.654 

Variance 0.005 0.005 0.005 0.005 0.006 

Minimum  0.511 0.510 0.511 0.510 0.511 

Lower quartile 0.599 0.593 0.592 0.592 0.598 

Median 0.654 0.640 0.633 0.635 0.659 

Upper quartile 0.697 0.694 0.692 0.691 0.701 

Maximum  0.820 0.820 0.820 0.820 0.820 
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Table 18: Statistical Parameters – Sim_20, Sim_21, Sim_22, Sim_23, Sim_24 

Statistical Parameter Sim_20 Sim_21 Sim_22 Sim_23 Sim_24 

Mean grade (Cu %) 0.664 0.646 0.649 0.647 0.651 

Variance 0.007 0.006 0.005 0.005 0.005 

Minimum  0.511 0.511 0.511 0.511 0.511 

Lower quartile 0.603 0.590 0.598 0.597 0.598 

Median 0.664 0.645 0.650 0.647 0.653 

Upper quartile 0.718 0.698 0.696 0.695 0.698 

Maximum  0.820 0.820 0.820 0.820 0.820 

 

Table 19: Statistical Parameters – Sim_25, Sim_26, Sim_27, Sim_28, Sim_29 

Statistical Parameter Sim_25 Sim_26 Sim_27 Sim_28 Sim_29 

Mean grade (Cu %) 0.651 0.662 0.635 0.649 0.649 

Variance 0.005 0.007 0.006 0.006 0.006 

Minimum  0.511 0.511 0.511 0.511 0.511 

Lower quartile 0.602 0.601 0.585 0.593 0.595 

Median 0.655 0.662 0.627 0.647 0.649 

Upper quartile 0.696 0.714 0.691 0.699 0.698 

Maximum  0.820 0.820 0.820 0.820 0.820 

 

 

Table 20: Statistical Parameters – Sim_30, Sim_31, Sim_32, Sim_33, Sim_34 

Statistical Parameter Sim_30 Sim_31 Sim_32 Sim_33 Sim_34 

Mean grade (Cu %) 0.646 0.631 0.650 0.651 0.648 

Variance 0.005 0.005 0.006 0.006 0.005 

Minimum  0.510 0.511 0.510 0.511 0.511 

Lower quartile 0.595 0.585 0.595 0.596 0.598 

Median 0.648 0.626 0.649 0.656 0.649 

Upper quartile 0.695 0.685 0.698 0.699 0.695 

Maximum  0.820 0.820 0.820 0.820 0.820 
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Table 21: Statistical Parameters – Sim_35, Sim_36, Sim_37, Sim_38, Sim_39 

Statistical Parameter Sim_35 Sim_36 Sim_37 Sim_38 Sim_39 

Mean grade (Cu %) 0.643 0.646 0.640 0.636 0.623 

Variance 0.005 0.006 0.005 0.007 0.005 

Minimum  0.511 0.511 0.510 0.510 0.511 

Lower quartile 0.595 0.592 0.591 0.582 0.574 

Median 0.641 0.644 0.637 0.626 0.618 

Upper quartile 0.692 0.697 0.693 0.694 0.674 

Maximum  0.820 0.820 0.820 0.820 0.820 

 

Table 22: Statistical Parameters – Sim_40, Sim_41, Sim_42, Sim_43, Sim_44 

Statistical Parameter Sim_40 Sim_41 Sim_42 Sim_43 Sim_44 

Mean grade (Cu %) 0.649 0.658 0.656 0.655 0.651 

Variance 0.006 0.007 0.006 0.006 0.005 

Minimum  0.510 0.511 0.511 0.511 0.511 

Lower quartile 0.594 0.597 0.599 0.600 0.599 

Median 0.650 0.657 0.661 0.661 0.655 

Upper quartile 0.699 0.709 0.704 0.702 0.698 

Maximum  0.820 0.820 0.820 0.820 0.820 

 

Table 23: Statistical Parameters – Sim_45, Sim_46, Sim_47, Sim_48, Sim_49 

Statistical Parameter Sim_45 Sim_46 Sim_47 Sim_48 Sim_49 

Mean grade (Cu %) 0.651 0.644 0.652 0.630 0.651 

Variance 0.006 0.005 0.006 0.006 0.007 

Minimum  0.511 0.511 0.511 0.511 0.511 

Lower quartile 0.597 0.595 0.598 0.583 0.593 

Median 0.653 0.640 0.655 0.623 0.655 

Upper quartile 0.699 0.693 0.698 0.684 0.702 

Maximum  0.820 0.820 0.820 0.820 0.820 
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4.4.2 Short-Term Block Model 

Following the same procedure as with the estimation method, the point grid model should be 

average to a point grid of 1.0x1.0 m2 for each realization. Using the averaged point grid model 

as hard data, the ordinary kriging is performed in a new grid in SMU size, with a cell size of 

10x10 m2. The outcome with be a set of 50 equiprobable short-term simulated block models. 

4.4.3 Medium-Term Block Model 

For this case, the same grid configuration is also maintained as in the case of ordinary kriging 

and following the steps described in Chapter 3.8, the medium-term block model is created for 

each simulation.  

4.5 Grade-Tonnage Curve 

The grade-tonnage curve in the stochastic simulation method allows to evaluate the deviation 

in different equiprobable block models. Figure 53 represents the Block Model grade-tonnage 

curve of all 50 realizations and also the Ordinary Kriging estimation for different cut-off grades. 

 

Figure 53: Grade-tonnage curve SGSIM vs OK 

4.5.1 Tonnage Distribution 

Considering that the cut-off of this project is 0.60%, the distribution of the ore tonnage, 

schematized in Figure 54, reveals that the Ordinary Kriging estimation tonnage has one of the 

highest values from all realizations. 
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Figure 54: Ore reserve distribution for cut-off of 0.60% 

4.5.2 Metal Content Distribution 

The geological risk is referred to the grade uncertainty. In this section, the ore grade is 

measured on its probability of occurrence. Therefore, the metallic content is essential to 

compare and analyse the uncertainty in grade, as can be seen in Figure 55. 

 

Figure 55: Metallic Content distribution for cut-off of 0.60% 

In order to select the best possible solution, the simulations must be analysed considering the 

highest economical value (NPV) with the lowest or, at least, tolerable geological risk.  

To be able to quantify the Net Present Value It is required to develop the sequence of mining 

in a defined period per each of the block models obtained.  
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4.6 Mine Planning Scheduling 

In this section, the scheduling design will be carried out using the Genetic Algorithm modified 

for room and pillar, considering the design and operational parameters that can be seen in the 

following tables. The new optimization approach will allow the development of the mining 

extraction sequence in a small amount of time, which is a key factor because it is required to 

process 50 block models. 

Table 24: Design Parameters 

Parameter Value 

Grid size, m 300x300 

Short-term block dimension, m 10x10x2* 

Number of short-term blocks, units 900 

Short-term block volume, m3 200 

Medium-term block dimension, m 60x60x2* 

Number of medium-term blocks, units 25 

Medium-term block volume, m3 7200 

Density, t/m3 2.5 

Pillar volume, block % 16 

*It is considered that the mining is already in breasting with 2 meters of bench 

Table 25: Operational Parameters Short-term 

Parameter Value 

Short-term period Days 

Daily production, tn 1,680 

Cut-off 0.60% 

Number of short-term blocks per day, units 4 

 

Table 26: Operational Parameters Medium-term 

Parameter Value 

Medium-term period, days 45 

Period production, tn 75,600 

Cut-off 0.60% 

Number of Medium-term blocks per period, units 5 
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4.6.1 Medium-Term Scheduling 

It will develop a mining sequence per each simulation in medium-term period, following the 

parameters in Table 26 and connecting them to the optimization approach: 

Table 24 indicates that because of the grid size of 300x300, the Lv. 5020 is composed of 25 

medium-term blocks.  

From the conditions of Table 25 and Table 26, each medium-term block is mined in 9 days, so 

there must be mined 5 blocks to achieve the production requirement. 

In Figure 56 the parameters needed to develop the GA in short-term are shown. The number 

of bits per chromosome is 25 because this simulates the sequence of all blocks in the grid.  

It is considered that, due to the size of the sample, with an initial population of 1000 

chromosomes, the number of iterations of 100, a crossover ratio of 90% and a mutation ratio 

of 5%, correct sequencing can be achieved in a short period. The time elapsed per run was 90 

seconds. 

 

Figure 56: GA medium-term parameters 

 

Each block has assigned a position value, the scheduling, in general, locates every block in a 

different position aiming to reach the minimum penalty. The minimum penalty obtained for the 

OK block model was the following set of values, which are schematized in Figure 57 

OK sequence: [0, 3, 5, 8, 6, 7, 11, 13, 18, 12, 10, 4, 15, 14, 9, 17, 2, 19, 1, 20, 21, 23, 24, 16, 

22] 

 

Figure 57: OK Medium-term Sequence – Lv. 5020 

This same procedure is developed for each of the 50 simulations. The outcomes will allow to 

schematize the medium-term mining sequence per period per simulation. This information 

together with the design, operative and economic parameters, will allow to calculate the NPV. 
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Table 27: Economic Parameters 

Parameter Value 

Mining cost, USD/t 15.73 

Ore processing cost, USD/t 15.04 

Overhead cost, USD/t 6.59 

Ore recovery, % 90.2 

Smelting and refining cost USD/t-metal 80 

Discount rate, % per year 8 

Discount rate, % per Period (45 days) 0.97 

Cold Price, Cu USD/t-metal 7,000 

Cash-cost $/tn ore 37.36 

Cut-off, % 0.60 

Figure 58 and Figure 59 show the range of financial outcomes obtained per simulation. It is 

appreciated that the Ordinary Kriging value is located in a central position within the range of 

conditionally simulated realizations. 

 

Figure 58: NPV for OK vs SGSIM 
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Figure 59: NPV distribution from simulated realizations and OK estimation 

4.7 Risk-Benefit Valuation 

Among all the stochastic conditioned simulations it is required to select the block model that 

presents the best valuation following the equation (61). For this reason, it is required to valuate 

the economic potential, represented by the NPV, and the geological risk, represented by the 

metallic content obtained from the grade and tonnage. 

4.7.1 NPV Valuation 

The application of equation (63) is executed in each of the simulated block models as well as 

in the OK block model. It is important to mention that the values with higher NPV will be the 

ones with a higher valuation. 

Figure 60 shows the distribution of the NPV valuations among the block models developed 

reflecting their economic potential. From the graph, the simulations with higher and lower 

potential are the numbers 26 and 39 respectively. It is important to mention that the OK model 

has a valuation of 47% which according to Table 6 is classified as “Moderate” risk.  
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Figure 60: NPV Valuation 

4.7.2 Grade Risk Valuation 

The grade risk valuation is measured using the distribution of the metallic content. In this case, 

as farther from the mean as lower the valuation. This first valuation is penalized with a 

Correction Factor directly linked to the gaussian function properties. From Table 7, Table 28 is 

developed, which is applied to the case study. 

Table 28: Correction Factor for Geological Risk - Applied 

Type Distribution Range Correction Factor 

Very High 
> μ - 3σ 181 

4.40% 
< μ + 3σ 301 

High 
> μ - 2σ 201 

27.20% 
< μ + 2σ 281 

Intermediate 
> μ - σ 221 

30.00% 
< μ + σ 261 

Low 
> μ - 0.5σ 231 

38.20% 
< μ + 0.5σ 251 

The application of this formula allows to recognize that the value with higher valuation has 

lower grade uncertainty. Figure 61 reveals that there are many simulations in the range of 35% 

and 40% of valuations, which are the higher range. Nevertheless, the OK estimation is located 

in a lower section with a value of 24.6% which classify as “High” risk. 
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Figure 61: Grade Risk Valuation 

The Risk-Benefit Valuation is calculated using equation (61). Figure 62 details the distributions 

of the results and shows the simulation with the valuation according to the parameters given. 

In this case, Simulation 19 has the best value with 23.5% of valuation among the 50 

realizations and the OK.  

 

Figure 62: Risk-Benefit Valuation 

4.7.3 Risk-Benefit Matrix 

Using Table 8 the values obtained in the Risk-Benefit valuation are inserted according to its 

classification in the 2 aspects previously explained. 

There are 4 simulations with the classification of “High” NPV with “Low” Geological risk, and 

among these block models, simulation 19 is the one with better valuation. On the other hand, 

the OK estimation is located in the classification of “Moderate” NPV with “High” Geological 

Risk, which reflects that this estimation has a high probability of not being achieved in reality. 



Chapter 4 - Demonstration in a Controlled Environment 

   62 

 

Table 29: Risk Matrix - Applied 

 

Depending on the risk level that the company is willing to take, different simulations can be 

chosen. For the study case, it will be chosen the simulation that has the potential to generate 

higher economic benefits at lower geological risk is the one with the highest risk-benefit 

valuation, which is simulation 19. 

4.8 Short-Term Planning Scheduling 

Once the best medium-term block model is selected, the short-term planning can be 

developed. For this, it is required first to execute the new optimization approach in short-term 

size, following the operational and design parameters for short-term previously explained in  

Table 24 and Table 25. The short-term scheduling must follow the sequence obtained from the 

medium-term scheduling of Simulation 19. 

For Sim19, the scheduling developed using the GA delivering as a result the following 

sequence, which is schematize in Figure 63: 

[0, 5, 3, 1, 2, 7, 4, 12, 17, 9, 18, 8, 23, 10, 6, 19, 15, 13, 22, 20, 11, 16, 21, 14, 24] 

 

Figure 63: Sim19_Medium-term Sequence 

The requirements for the optimization in short-term consider some different parameters than 

in medium-term. For short-term, the number of bits is 36, because there are 36 blocks in each 

medium-term block. Because of the processing requirement of 1,680 tn/day, it will be 

mandatory the extraction of 4 blocks per day with an average grade of 0.6%.  

Type Distribution Correction Factor 0% 40% 40% 60% 60% 80% 80% 100%

> μ - 3σ

< μ + 3σ

> μ - 2σ

< μ + 2σ

 > μ - σ

< μ + σ

> μ - 0.5σ

< μ + 0.5σ

High

Intermediate

Low

4.40%

27.20%

30.00%

38.20% 8, 18, 37
2, 5, 7, 9, 11, 16, 17, 

28, 29, 30, 32, 33, 40, 
6, 12, 19, 41

Geological Risk
Minimum Moderate High Maximum

39, 48 38

14, 27
OK, 0, 3, 13, 15, 22, 24, 

34
1, 20, 25, 26

31
21, 23, 35, 36, 43, 44, 

45, 46, 47
4, 10, 42

NPV

Very High



Chapter 4 - Demonstration in a Controlled Environment 

   63 

The stochastic algorithm considers an initial population of 1000 chromosomes, a number of 

iterations of 200, a crossover ratio of 90% and a mutation ratio of 5%, correct sequencing can 

be achieved in a short period. The time elapsed per run was 200 seconds. 

Following the medium-term sequence, the GA modified for “room and pillar” is executed in 

each medium-term block. Considering that the first block in the medium-term simulation was 

cero (“0”), this position will be the starting block to initiate the short-term sequence. The 

optimization provides the following possible solution for the first block in location “0” of the 

Medium-term schedule of simulation 19 which is schematized in Figure 64: 

[0, 6, 12, 18, 24, 7, 5, 25, 26, 27, 19, 31, 20, 8, 30, 9, 28, 4, 13, 10, 11, 14, 3, 17, 15, 34, 1, 16, 

21, 32, 35, 2, 23, 29, 22, 33] 

 

Figure 64: Sim19_Short-term Sequence for Block 0 

After running the Genetic Algorithm in each medium-term block, the first short-term scheduling 

will be obtained, which will be constantly updated as the mining operation progresses. 

Following the sequence developed, the level 5020 will be mined in 225 days, with a production 

ratio of 4 blocks per day and a cut-off grade of 0.6%. Figure 65 details the mining sequence in 

a short-term view, following the same sequence as in medium-term and considering that each 

medium-term block has 36 short-term blocks. 

 

Figure 65: Sim19_Short-term Sequence 
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4.9 Short-Term Production Program 

The short-term planning delivers the daily and monthly production program. The following 

tables show the mining planning for the first month of operation in which the average grade of 

0.67% is achieved, accomplished the condition of 0.60% of cut-off and the production 

requirement of 1680 tn/day. 

Table 30: Production plan for first Block for days 1 - 8 

Day 1 2 3 4 5 6 7 8 

TM 1,680 1,680 1,680 1,680 1,680 1,680 1,680 1,680 

Cu% 0.58 0.66 0.66 0.67 0.65 0.66 0.66 0.66 

 

Table 31: Production plan for first Block for days 9 - 16 

Day 9 10 11 12 13 14 15 16 

TM 1,680 1,680 1,680 1,680 1,680 1,680 1,680 1,680 

Cu% 0.67 0.73 0.75 0.74 0.74 0.74 0.75 0.74 

 

Table 32: Production plan for first Block for days 17 - 24 

Day 17 18 19 20 21 22 23 24 

TM 1,680 1,680 1,680 1,680 1,680 1,680 1,680 1,680 

Cu% 0.74 0.74 0.59 0.61 0.63 0.63 0.65 0.63 

 

Table 33: Production plan for first Block for days 25 - 30 

Day 25 26 27 28 29 30 Total 

TM 1,680 1,680 1,680 1,680 1,680 1,260 49,980 

Cu% 0.64 0.63 0.64 0.68 0.67 0.68 0.67 
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5 Discussion of Results 

• Comparing the values from ordinary kriging estimation against the raw data set of the 

Lv. 5020, can be appreciated that the smoothing effect is present. The smaller values 

from the raw data set are overestimated (from 0.52% to 0.57%) and the higher values 

are underestimated (from 0.82% to 0.74%). Another indicator of the smoothing effect 

is the diminished of the variance because of the original variance in Lv. 5020 was 

0.00605 and after OK it decreased significantly to 0.00130. 

• The marginal cut-off is lower than the mine cut-off because the marginal value has sunk 

cost and is considered that the fixed costs are already paid by the mine cut-off, knowing 

this any value between 0.52% and 0.60% should be considered as low-grade ore and 

should be used only for blending purpose. 

• The validation of all 50 realizations can be undertaken by comparing the simulated 

histograms at point scale (Figure 40 to Figure 52) with the original data set histogram 

in the Lv. 5020 (Figure 23) which are similar. 

• The statistical information from Table 14 to Table 23, can also validate the simulations 

generated. Comparing the variance in Figure 66 is possible to appreciate that the raw 

data set and the simulations have similar and close values, while, the Kriging has a 

very low value, close to cero, because of the smoothing effect. 

• The realizations obtained prove that all realizations have similar features to the original 

data and are reasonably accepted. 

 

Figure 66: Variance Assessment 

• Figure 53 reveals that until the cut-off grade of 0.62% the Ordinary Kriging ore tonnage 

has a higher value from all over simulations and as the value of the cut-off grade 

progresses, the tonnage rapidly decreases.  

• It is also visible that the average grade of the Ordinary kriging, after the cut-off of 0.58%, 

has one of the lowest values from all the simulations for each cut-off. Moreover, the 

maximum average grade obtained for OK is 0.73%, while every simulation always 

surpasses this value. 
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• From Figure 53 can be appreciated that the average grade of the OK is the lowest 

among all realizations with 0.65%. At the same time, in Figure 54 the estimated OK 

tonnage with 407,000 ore-tones is one of the highest among the simulations because 

there is only one simulation with a greater tonnage. It is important to mention that this 

tonnage is located within the range of “μ + σ” and “μ + 2σ”. 

• According to Figure 55 and considering the properties of the gaussian distribution, the 

estimation of the ordinary kriging of Cu metallic content is located where there is only 

31.8% of the simulated values. Having an OK estimation of 264,700 Cu-tons and a 

mean of 241,200 Cu-tons, it is most likely that the metallic content in the exploitation 

level 5020 has 10% less than the estimated value. 

• The analysis of Figure 58 reveals that the range of financial outcomes from the different 

simulations is extremely wide, having values between 480K and 1,551K USD$. 

Nevertheless, the NPV from the Ordinary Kriging (1,040K USD$) is located inside the 

range of “μ ± σ” (639,000 - 1,238,000 USD$) which contains 68.2% of the values. 

• According to the results obtained from Figure 60, 66% of the realizations generate a 

higher economic value than the Ordinary Kriging. 

• The OK NPV valuation of 47% indicates that its potential is less than the average 

economic potential value from the 50 simulations. This result is logical considering that 

the OK method produces an underestimation in large values. This statement can be 

proved using the statistical information from Table 14 to Table 23 and evaluating the 

“upper quartile”. Figure 67 schematizes the upper quartile assessment, showing that 

the upper quartile of OK is the lowest among all simulations which indicates that the 

simulation has more times higher grades, therefore higher economic value. 

 

Figure 67: Upper Quartile Assessment 

• The outcome of having the OK model with a classification of “High” risk in the grade 

valuation section is logical, considering that its metal content and tonnage were outside 

of the gaussian range distribution of “μ ± σ”. 
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• It is proven that the GA modified for “room and Pillar” is a very useful tool to carry out 

mining scheduling, since it can successfully develop the algorithm in times less than 

90 and 120 seconds for the medium and short-term block models, respectively. 

• It was essential to divide the block model in short and medium-term, to reduce the 

number of blocks per model. If this had not been done, 900 bits per block model would 

have had to be processed with the genetic algorithm, which would have produced a 

significant increase in processing time. 

• Simulation 38, 39 and 48 have the lowest values with less than 2%, which refers to a 

risk classification of “Very High”. This is generated since its metal content is between 

the range “μ - 2σ” and “μ - 3σ” 

• Depending on the risk that the company is willing to take, it could also be possible to 

consider different simulations that could generate higher NPV with a higher geological 

risk. On the other hand, a more conservative company could choose a model with the 

lowest geological risk which in this case is Simulation 11 having a moderate NPV 

potential. 

• It can be appreciated, that 11 simulations have higher NPV than the OK model with the 

same or lower geological risk. 

• The daily production program, shown from Table 30 to Table 33 successfully meet the 

operative requirements. Day 1 and 19 are the only days in which the grade is less than 

the cut-off; nevertheless, the average grade of the month is 0.67%.  
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6 Conclusions 

The thesis work proves satisfactorily that is possible to address the geological uncertainty and 

develop short-term production programs in a reasonable amount of time, which will be highly 

beneficial to real mining operations. 

When the grade uncertainty is included in the planning process, it will generate more robust 

mining plans with lower grade deviations, which will generate fewer economic losses and less 

operational improvisation to meet the requirements of the processing plant. 

The limitations that deterministic methods like Kriging have been significant because it only 

allows having a single and unique estimated block model, making it not possible to develop 

any geological risk assessment or evaluate the NPV potential. At the same time, it produces 

the smoothing effect which can lead to under or overestimations in the block model and could 

produce shortcomings in mining planning especially in reaching short-term targets. 

The main drawback of the Sequential Gaussian Simulation is the processing time because it 

will be conditioned to the computing capacity, the size of the deposit and the number of 

realizations, which would make the simulation process slow. However, there are more 

advanced conditioned simulated methods that can overcome the time consumption difficulty. 

The Genetic Algorithm modified for “room and pillar” proves to be a powerful tool for mining 

planning generating suitable schedules in a short time. It is true that, in the study case, the 

restrictions were simple; however, the algorithm can be adapted to more complex 

requirements of any mining operation. 

The Risk-Benefit matrix proves to be of paramount importance to classify in a practical way 

every realization and estimation created, allowing to identify the best and worst block models. 

Depending on the targets and strategies of the mining operation, it is possible to select a block 

model different than the one with the highest Risk-Benefit valuation. This decision depends 

mainly on the level of geological risk that the company is willing to take. 

Knowing that if the extracted grade does not meet the expected grade of the block model, 

there could be a risk that the entire project fails. For this reason, it is of paramount importance 

to develop a geological risk analysis and be able to assess the accuracy of the modelled 

information. 

The versatility of the genetic algorithm allows updating the sequencing conditions and 

restrictions in case the laws in the exploitation area are updated. This would allow the short-

term plan to be adopted rapidly. 

Geological uncertainty is an inherent parameter in every block model; therefore, it is verified 

that a single deterministic estimation is not sufficient to be able to consider the full potential of 

the mineral deposit.  

 

 

. 
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