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A Motor Control Learning Framework for Cyber-Physical-Systems

ABSTRACT

A central problem in robotics is the description of the movement of a robot. This task is complex,
especially for robots with high degrees of freedom. In the case of complex movements, they can no
longer be programmed manually. Instead, they are taught to the robot utilizing machine learning. The
Motor Control Learning framework presents an easy-to-use method for generating complex trajectories.
Dynamic Movement Primitives is a method for describing movements as a non-linear dynamic system.
Here, the trajectories are modelled by weighted basis functions, whereby themachine learning algorithms
must determine only the respective weights. Thus, it is possible for complex movements to be defined
by a few parameters. As a result, two motion learning methods were implemented. When imitating
motion demonstrations, the weights are determined using regression methods. A reinforcement learning
algorithm is used for policy optimization to generate waypoint trajectories. For this purpose, the weights
are improved iteratively through a cost function using the covariance matrix adaptation evolution
strategy. The generated trajectories were evaluated in experiments.

KURZFASSUNG

Ein zentrales Problem in der Robotik ist die Beschreibung der Bewegung eines Roboters. Diese Aufgabe
ist komplex, insbesondere bei Robotern mit hohen Freiheitsgraden. Bei komplexen Bewegungen kön-
nen diese nicht mehr manuell programmiert werden. Stattdessen werden sie dem Roboter mit Hilfe
von maschinellem Lernen beigebracht. Das Motor Control Learning Framework stellt eine einfach zu
bedienende Methode zur Erzeugung komplexer Trajektorien dar. Dynamic Movement Primitives ist eine
Methode zur Beschreibung von Bewegungen als nichtlineares dynamisches System. Dabei werden die
Trajektorien durch gewichtete Basisfunktionen modelliert, wobei die maschinellen Lernalgorithmen nur
die jeweiligen Gewichte bestimmen müssen. So ist es möglich, dass komplexe Bewegungen durch wenige
Parameter definiert werden können. Als Ergebnis wurden zwei Bewegungslernverfahren implementiert.
Bei der Nachahmung von Bewegungsdemonstrationen werden die Gewichte mittels Regressionsver-
fahren bestimmt. Für die Optimierung der Policy zur Generierung von Wegpunkt-Trajektorien wird ein
Reinforcement-Learning-Algorithmus verwendet. Zu diesem Zweck werden die Gewichte iterativ durch
eine Kostenfunktion unter Verwendung der Covariance Matrix Adaptation Evolution Strategy verbessert.
Die generierten Trajektorien wurden in Experimenten evaluiert.
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1 Introduction

Robots are highly complex systems that involve many sub-disciplines of engineering. Working effectively
with these systems requires a solid base of knowledge and a good development environment that takes
away the cumbersome preliminary work. This thesis aims to solve these problems and, on the one hand,
to give an introduction to the basics like kinematics and robot control.

Therefore, the purpose of this thesis is first to provide an introduction to robotics and the application
of machine learning to robot control. Subsequently, a framework was programmed that allows the
generation of trajectories for the movement of robots. Two learning methods were used for this purpose.
The first one uses reinforcement learning to generate waypoint trajectories. For this purpose, the method
of Rueckert and d’Avella (2013) was implemented, which applies policy search to dynamic movement
primitives. Therefore, the Covariance Matrix Adaption evolution strategy is used to optimize the policy.
For the application, only the via points and the temporal scaling of the trajectory has to be specified. All
other parameters are used for the motion function’s resolution or oscillation properties.

The second application of the framework is the imitation of motions presented by demonstrations.
These demonstrations can be performed either by the reinforcement learning algorithm or manually
by an instructor using the robot. Here again, Dynamic Movement Primitives are used to model the
movements. However, the motions are not altered by reinforcement learning but by ridge regression.
Furthermore, the method of Paraschos et al. (2018) for jerk optimization for movement primitives was
implemented, which allows a further improvement of the learned movements.

Finally, use cases for the framework will be presented; these will show the application in teaching,
industry and research. These cases should give an outlook on the versatility of the motor control learning
framework.

1.1 Motivation

In recent years, robots outside industrial plants and research facilities have become more common. In
the next few years, this trend will increase even further. In particular, the development of intelligent
and autonomous robotic systems represents a particular challenge for this decade. Thus, a central task
of robotics is how to teach complex tasks to robots as simply as possible. For this purpose, a wide variety
of machine learning algorithms have been developed, whereby the field of reinforcement learning, in
particular, plays a significant role.

Furthermore, simulations are becoming more and more critical as they provide engineers and devel-
opers with a comparatively cheap, risk-free and time-efficient method for evaluating motion sequences.
In order to use this advantage in reinforcement learning, methods for generating trajectories, such
as dynamic movement primitives, have been developed. These movement representations provide a
flexible and smart solution for countless tasks. Finally, intelligent frameworks for robots, such as Robot
Operating System (ROS), enable controllers to be developed easily and quickly and allow fast switching
between real and simulated environments.

Nevertheless, simulation and the possibility of controlling real robots is an crucial task for the Chair
of Cyber-Physical Systems. It is essential that a very general control framework can be used, which
functions independently of the platform. Especially at the chair, there are three different serial robots as
of May 2022, which should all be controlled with the same motor control learning framework. These
include robots from Fanuc, Universal Robotics and Franka Emika.
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(a) Fanuc CRX-10iA (b) UR3 (c) Panda

Figure 1: This figure shows the three robots of the Chair of Cyber-Physical Systems.

From these issues, i.e. the control of both simulated and real robots, the framework’s design follows.
First, the possibility to generate smooth trajectories for an undefined number of waypoints shall be
created. Then, the user should define the dimensionality of the trajectories. For the task space, this
would be three dimensions for the location or six for the position, including the orientation. Nevertheless,
the application of joint space trajectories, which have seven dimensions in the case of the Panda robot
and six dimensions in the case of the CRX-10iA, as well as UR3, should be possible.
The second application is the imitation of demonstrations. For this application, the transferability

of movements between robots is particularly interesting through task space trajectories. In particular,
by using Dynamic Movement Primitives, these learned movements can be scaled in time and space,
and the target positions can be changed. Thereby, the usage of various robots can be further increased.
Therefore, the motivation of this thesis is to bundle these learning methods into a framework that is
easy to use. Furthermore, the motor control framework should have three use cases: teaching, industry,
and research.

1.2 Related Work

At the beginning of the development of a trajectory generator, critical key points have to be decided at the
beginning. For this purpose, the decision characteristics for a model-based and model-free method are
listed below. The reinforcement learning and the optimizer have to be adapted to each other. However,
the transfer of simulated systems to real systems is a challenge. It is essential here to close the so-called
reality gap.

1.2.1 Types of Reinforcement Learning

In general, reinforcement learning (RL) is divided into model-based and model-free RL. As the name
suggests, model-based RLs know the environment in which the agent operates. Either the model of the
environment is given, or the algorithm’s goal is to learn its model. Meaning that the agent knows the
state transition and searches for an optimal policy for the path from the current state to the target state.
(Ravishankar and Vijayakumar, 2017)
On the other hand, model-free RLs do not know the transition model or reward function. This implies

that the agent gains experience through trial and error and subsequently optimizes the policy with the
help of the maximum reward. Furthermore, the method of Q-learning does not optimize the policy
but improves the value function with the help of the Bellman equation.(Ravishankar and Vijayakumar,
2017; Ravichandiran, 2020)
Finally, Deep Reinforcement Learning extends the field of RLs through the implementation of artificial

neural networks. These can be model-based or model-free and are used especially with high-dimensional
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data, for example, images or machines with many sensors, since conventional reinforcement learning
cannot handle such large state spaces. (Arulkumaran et al., 2017; Ravichandiran, 2020)

1.2.2 Optimizer Types

In general, a distinction is made between white box and black-box optimization. In addition, there is
the possibility of combining both, which is called a grey-box optimizer. A complete physical model of
the problem in white-box optimization is known. With this model, first and second derivatives can be
obtained, and the steepest path to the global optimum can be determined.(Vierhaus et al., 2017; Yang
et al., 2017)
In contrast, a set of samples is generated randomly in black-box optimizers, depending on the method.

Another way is to calculate according to an algorithm. Subsequently, the samples are used in a simulation
of the problem. The result of the simulation is evaluated in an objective function. This step is repeated
several times with different parameter sets. Only the result of the objective function is used in the
further course to optimize the parameter generation. (Vierhaus et al., 2017)

1.2.3 Simulation vs Real Systems

Over the last two decades, simulations have become an essential tool in robotics. As Žlajpah (2008)
describes, it enables, among other things, faster development times, generation of training data and
the possibility of using non-existent resources as well as sparing expensive components. However,
simulations have one central problem despite these and many other advantages. They only represent
reality to a limited extent. This discrepancy between simulation and reality is named the reality gap as
it is called in Bousmalis and Levine (2017) and Mouret and Chatzilygeroudis (2017) and is a challenge
to all robot developers and researchers. The reality gap is caused by not perfectly representing reality,
which distorts the simulation results. One way to close this gap is to develop better and better simulations,
which are more expensive in computing power. Another is, as described in Mouret and Chatzilygeroudis
(2017) and Koos, Mouret, and Doncieux (2013) the development of transferable controllers.

1.3 Learning Methods

In this thesis, two learning methods for Motor Control learning are described. In Imitation Learning
(IM), the agent, a robot, learns skills or activities through demonstrations given by a teacher. The
teacher can be a human or a data source like a video. These demonstrations can then be learned as
Dynamic Movement Primitives (DMPs) with Schaal et al. (2003) using a regression model. This method
was extended by Paraschos et al. (2018), so that not only the demonstrations can be imitated, but also
the jerk of the motor control can be minimized.
The second learning method is an application of reinforcement learning (RL). For this purpose, motor

controls are again modelled as DMPs, and subsequently, via-point motor controls can be learned using
policy optimizer methods. For this purpose, the method of Rueckert and d’Avella (2013) is applied, which
uses a Black Box Optimizer (BBO) called Covariance Matrix Adaption Evolution Strategy (CMA-ES),
which was first presented in Hansen and Ostermeier (2001), to learn the weights of the DMPs.

1.4 Use Cases

The motor framework is supposed to have three use cases described in the following. These are intended
to facilitate the work of the Chair of Cyber-Physical Systems with the Panda robotic arm from the company
Franka Emika GmbH. The areas of teaching, industry and research were chosen as applications.
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1.4.1 Teaching

The teaching use case should combine two areas, which will be described below. The central idea is
to simplify teaching the complex field of robotics and the application of machine learning, including
simulations, robot controls, and communication interfaces, like ZMQ and Robot Operating System
(ROS). The simulation program chosen for this purpose is called "CoppeliaSim".
The first access is intended to introduce the simulation of the Franka robot. For example, the content

of the course can be the implementation of forwarding and inverse kinematics and the programming of
a Jacobian inverse controller. The communication in this application runs over ZMQ, an asynchronous
message library. The sophisticated approach uses ROS for communication and control. This method
allows for much more flexible applications, especially the possibility of testing the programs on a real
robot. Additionally, with this approach, there is no binding to CoppeliaSim, and other simulation
programs like Gazebo can be used.
In both cases, the motor framework is used to generate trajectories created either by reinforcement

learning or imitation learning. In addition, the framework is intended to provide an easy way to generate
demonstrations for teaching purposes. It will also give students a basis for their bachelor’s and master’s
theses so that they can dive deeper into robotics and do not have to deal with the control of serial robot
arms.

1.4.2 Industry

In the "Industry" use case, the handling of the real robot is made more convenient for the user. Further-
more, the framework offers the possibility to define movements utilizing waypoints or to train them
with the help of imitation learning. This use of the robot arm is intended to be particularly simple to
help simplify the work process in industrial cases. Furthermore, this application should allow the Chair
of Cyber-Physical Systems to present recent developments to industrial partners.

1.4.3 Research

Finally, the "Research" use case is intended to provide researchers with a solid foundation for developing
new methods for the Franka Emika Panda robotic arm. It is not meant to be a constraining one but to
provide the opportunity for modifications and extensions. Furthermore, it is kept so general that even if
the robot is changed, many functionalities can be used for the different robot, and therefore an entirely
new framework does not have to be created. Only the robot controller has to be changed to compensate
for the variation in dynamics.

1.5 Outlook

In this thesis, first an introduction to the required methods of robotics is given in Chapter 2 and machine
learning in Chapter 3. Subsequently, the software components and the robot are described in Chapter
4. In Chapter 5, the conducted experiments are presented and their results. Finally, a conclusion is
drawn, the results are discussed, and further work is described.

Page 10 of 98



A Motor Control Learning Framework for Cyber-Physical-Systems

2 Background Methods in Robotics

This chapter introduces the fundamental areas of robotics needed to understand and apply the CPS
framework. For this purpose, essential terms of robotics, such as degrees of freedom or kinematic
chains, are explained in the first section. The second section gives an introduction to the mathematical
methods, as well as forward and inverse kinematics. Furthermore, the Denavit-Hartenberg parameters
are introduced. In the last section, the Jacobian Inverse and Jacobian Transpose controllers are presented;
these are powerful control algorithms in robotics.

2.1 Robot Basics

In this section, the basic concepts of robot manipulators are introduced. First, the idea of degrees of
freedom and Grübler’s formula is proposed. Then an overview of mathematical spaces in robotics and
kinematic chains is given. Finally, as a typical example, a planar robot manipulator consisting of an
open kinematic chain with two links is used in robotics.

2.1.1 Degrees of Freedom and the Grübler’s Formular

(a) planar (b) spatial

Figure 2: In these figures, the planar (a) and spatial (b) degrees of freedom are illustrated (Teixeira Silva et al.,
2017)

.

The number of degrees of freedom(DOF) is the number of independent variables needed to completely
describe a mechanical system, e.g. a robot, and all possible configurations. A configuration is the
physical state of the robot, especially of the joints, concerning its environment, more about this in the
next paragraph. For example, a water tap has only one degree of freedom, the state of the valve, which
regulates the flow of water. For planar movement, there are two degrees of freedom, (X, Y), for motions
without orientations and three DOFs, (X, Y,θ), for movements with orientations which are shown in
Figure 2a. Spatial Movements need six independent coordinates, as illustrated in Figure 5b, to describe
an unique position, (X,Y,Z), and orientation, (ϕ, θ, ψ). There are many conventions to describe an
orientation in space; in this thesis, the convention of Euler angles is generally used (Lynch and Park,
2017; Dudek and Jenkin, 2010).

DOF = m(N − 1)−
J∑

i=1

(m− fi). (1)
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Grübler’s formula, Equation (1), is a method to determine the degrees of freedom of a mechanical
system. For this purpose, the number of rigid bodies N and joints J and their degrees of freedom(DOFs
of a rigid bodym and a joint fi) is specified. As a result of Grübler’s formula, the number of independent
variables, the DOFs, of the system is obtained. It is essential whether one is in a plane or spatial system
because the degrees of freedom of rigid bodies in space and the plane differ, as already stated, by 3
degrees of freedom (Lynch and Park, 2017).

2.1.2 Configuration Space

The configuration space (C-Space) is a mathematical-topological space in which every possible joint state
of a mechanical mechanism, in this case, a robot manipulator, can be represented. The state coordinates
are thereby specified in generalized form. Thus, the space has exactly the number of independent
variables as the observed system has degrees of freedom and the position and orientation in space(which
is generally omitted for fixed-mounted robots). In C-Space, the joint spaces are equivalent to their actual
characteristics. Especially for revolute joints, this property is important because the states 0 and 2π are
glued together and are continuous. A configuration q denotes a unique state of the robot. An example
of this is a two-link robot shown in Figure 3a, where a torus describes its configuration space, Figure 3b,
as ϕ1 and ϕ2 are revolute joints (Lynch and Park, 2017; Kelly, Davila, and Perez, 2006).

(a) Two link Robot (b) Configuration Space

Figure 3: (a) shows a two link robot and (b) its configuration space is presented (Lynch and Park, 2017).

2.1.3 Task Space and Work Space

The task space and the workspace both do not describe the whole robot but the configuration of the end
effector. These spaces can be Cartesian spaces (in the most common cases) or other coordinate systems,
which are more suitable for the description of the robot’s end-effector motions (Lynch and Park, 2017).

The task space refers to the space in which a task is performed. Thus, the description depends only
on the action to be performed and not on the robot. For this purpose, a coordinate system is used that
best suits the task, so if, for example, if a picture is to be drawn, the R2 is used because the drawing
only exists in the plane (Lynch and Park, 2017).

On the other hand, the workspace describes the end-effector position concerning the robot’s config-
uration. The workspace describes the configurations of the end effector and includes the knowledge
of the joint limits and is therefore independent of the tasks that the robot has to perform. Note that
depending on the structure of the robot and its joint boundaries, certain positions of the end effector
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Figure 4: These figures show the workspace in side view, left, and top view, right, of the Franka robot (Franka-Emika-
GmbH, 2018).

are not reachable or are reachable through several configurations; see Figure 4. This issue can lead to
singularities, i.e., the transitions between two end effector positions are small, but the two resulting
configurations are too far apart. As a result, the joint velocities become infinitely large, which could
damage the robot, or it is not possible at all. These problems can be compensated by additional joints
(Lynch and Park, 2017; Mareczek, 2020).

2.1.4 Kinematic Chain

Kinematic chains are assemblies consisting of links and joints located between the links. The joints
generally have one degree of freedom, i.e. they are either revolute joints (R) or prismatic joints (P).
Many other joints, such as screw joints (H) or universal joints (U), are either rarely used in serial
robots or only in parallel robots and are therefore not of interest to this thesis. Furthermore, kinematic
chains can be distinguished between open-chain and closed-chain mechanisms. Since this thesis only
deals with the Franka Emika Panda and its application, which is a serial robot and therefore an open
kinematic chain (Constans and Dyer, 2018).

Open kinematic chains are all those mechanisms where the end effector is connected to the chain
with only one side. An example of this would be the human arm. In contrast, our two legs with the body
(in this case, the end effector) would be a closed kinematic chain if both feet are fixed to the ground
(Mareczek, 2020).

2.2 Kinematics and Dynamics

This section gives the essential elements of kinematics and dynamics for robotic manipulators, beginning
with an introduction to planar and spatial coordinate transformations. Subsequently, the forward and
inverse kinematics are formulated. Finally, the DH parameters are presented, a powerful method for
constructing transformation matrices. However, first, the difference between kinematics and dynamics
should be explained. Kinematics is the study of motion, considering it independent of forces and
moments, indicating that movements are considered purely geometrically. The variables used here are
position, velocity and acceleration. In contrast, dynamics describes motions due to changes in forces
and moments (Mahnken, 2011).

2.2.1 Mathematical Methods for Robotics

In order to be able to describe robot movements, a method from multi-body dynamics, the coordinate
transformation, is used. A distinction must be made between translations and rotations, and the axis of
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rotation is another critical parameter. In the following, first the equations for the planar and then the
spatial movements are described. Finally, all equations are given in their generalized form (Lynch and
Park, 2017).

Planar Transformations The following transformation describes the planar rotation (2) and the
planar translation (3). Here (x, y, 1)T indicates the input vector, θ the rotation angle and a the shift in
x-direction and b in y-direction. (x̂, ŷ, 1)T denotes the transformed vector.

Rot(θ) =

x̂ŷ
1

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

xy
1

 , (2)

Trans(a, b) =

x̂ŷ
1

 =

1 0 a
0 1 b
0 0 1

xy
1

 . (3)

Spatial Transformations Here the spatial transformations are described, starting with the spatial
rotations around the x-axis, (4), the y-axis,(5), and the z-axis,(6), furthermore the spatial translation is
given in Equation (7).

Rot(x, θ) =


x̂
ŷ
ẑ
1

 =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



x
y
z
1

 , (4)

Rot(y, ϕ) =


x̂
ŷ
ẑ
1

 =


cosϕ 0 − sinϕ 0
0 1 0 0

sinϕ 0 cosϕ 0
0 0 0 1



x
y
z
1

 , (5)

Rot(y, ψ) =


x̂
ŷ
ẑ
1

 =


cosψ − sinψ 0 0
sinψ cosψ 0 0
0 0 1 0
0 0 0 1



x
y
z
1

 , (6)

Trans(a, b, c) =


x̂
ŷ
ẑ
1

 =


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1



x
y
z
1

 . (7)

In the equations (4) - (7), (x, y, z, 1)T denotes the input vector, (ϕ, θ, ψ)T denotes the angles of
rotation about the x, y, z-axis, and (a, b, c)T denotes the displacement along these axes. The output of
these transformations is the vector (x̂, ŷ, ẑ, 1)T .
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2.2.2 Forward Kinematics

Forward kinematics or direct kinematics refers to the computation of the position and orientation of the
end effector to the coordinate system of the robot base. For this purpose, a separate reference system is
introduced for each link. The goal is to determine the state of the end effector given joint variables qi,
joint angle θi and joint displacements di. Mathematically, the problem is described in the following way:

x = ffwd kin(q). (8)

The forward problem is mapping the joint states to an end effector position and orientation. As a
consequence, each configuration q is unique and generates an end-effector state x. In the case of a serial
robot with more than six DOFs, the end effector state is reachable from more than one configuration
(Mareczek, 2020).

2.2.3 Inverse Kinematics

Inverse kinematics refers to the inverse problem of direct kinematics. It searches for the joint variables,
angles and displacements, which result in a given position of the end effector, i.e., the position and
orientation. The difficulty here is that inverse kinematics is a highly nonlinear problem for serial robots
and, in addition, often does not produce unique solutions. Countable solutions denote finitely many
singularities and uncountable solutions infinitely many. In addition, it may be that the desired position
is outside the workspace. Therefore, inverse kinematics does not find a solution.

In the case of the Franka Emika Panda, it is more complex because the arm has 7 DOFs, whereby
some singularities can be avoided. Because of the additional degrees of freedom, almost all end effector
states can be reached by countless configurations. Therefore a method is required which reduces the
number of possible configurations to a reasonable choice. Otherwise, a choice could be made, leading to
infinitely large velocities in the transition from one state to the next. Because of the multiple solutions
and the high nonlinearity, an analytical solution is usually not used for a higher number of DOFs, and
numerical methods are used (Lynch and Park, 2017; Mareczek, 2020):

x 7→
inv kin

q. (9)

In order to apply inverse kinematics, a trajectory is required, which specifies the course of the end-
effector’s position. There are many ways to describe this, for example, a calculation by hand, trying
it out with known functions, or it can be learned using Dynamic Movement Primitives, DMPs, and
Reinforcement Learning, RL. More about the latter methods in the chapter 3. Subsequently, the trajectory
is divided into smaller steps. Depending on the application, the step size can be fixed or variable. An
essential factor here is how precisely the trajectory must be traversed. Then a control loop can be
implemented, which has the target position as an input variable. This control loop is set up with the
usage of the Jacobian matrix. More about it in the subsection Jacobian 2.3.1 (Niku, 2020).

2.2.4 Denavit-Hartenberg Parameters

The Denavit-Hartenberg parameter, DH, is an approach to finding a solution to the problem of forward
kinematics. For this purpose, each robot manipulator is considered an open kinematic chain consisting
of n links connected to joints with one degree of freedom. The problem of forward kinematics can now
be described in the following way (10). Here {0} denotes the base frame and {n} the end-effector frame
of the robot. Now the transformations Ti−1,i between the individual frames are set up. (Lynch and Park,
2017; Mareczek, 2020).
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T0,n(θ1, ..., θn) = T0,1(θ1),T1,2(θ2)...Tn−1,n(θn). (10)

(a) Denavit-Hartenberg Parameters (b) Model of the Franka Robot Arm

Figure 5: (a) shows a graphical representation of Denavit-Hartenberg parameters (Lynch and Park, 2017) and (b) a
model generated using the DH parameters from the Franka robot arm in its initial configuration.

The transformations are now created as a combination of the Spatial Transformations (4)-(7) from
the previous subsection 2.2.1.With this method, it is possible to reduce complex robot configurations to
simpler models with only joints with one degree of freedom. For this purpose, the following parameters,
the Denavit-Hartenberg parameters, are introduced, and an illustration of them is given in Figure 5a
(Mareczek, 2020):

DH-Parameter Name Purpose
θi joint angle Indicates the angle which must be rotated around the joint

axis zi−1 so that the axes xi−1 and xi are oriented the same
way. If the joint is prismatic, the θi remains constant. For
revolute joints, the angle can be between −π and π.

di link offset Denotes the distance between the intersection point be-
tween the origin {i-1} to the origin {i} along the axis zi−1.
Constant in the case of a rotational joint, variable in the
case of prismatic joints.

ai link length Denotes the distance between the joint axes zi−1 and zi.
αi link twist Denotes the twist of zi−1 and zi with respect to xi−1 axis

Table 1: This table lists the four Denavit-Hartenberg parameters (Mareczek, 2020).

Ti−1,i = Rot(z, θi) Trans(0, 0, di) Trans(ai, 0, 0) Rot(x, αi),

=


cos θi − cosαi sin θi sinαi sin θi ai cos θi
sin θi cosαi cos θi − sinαi cos θi ai sin θi
0 sinαi cosαi di
0 0 0 1

 . (11)
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After all the DH parameters of the robot have been set, the transformations can be constructed, and
the concatenated transformation T0,n can be computed. A small note about the Denavit-Hartenberg
parameters, there are robot configurations where the parameters cannot be uniquely determined, so
there are several sets of DH parameters, and it is important to stick to one description of the system.
The individual transformations have the form of (11) (Mareczek, 2020).

2.3 Robot Control

A robot manipulator can perform an endless number of motions depending on the environment and
the tasks the serial robot should perform. In all of these motions, control values of each joint must be
continuously given to the robot’s motors. Some control strategies have been established; in the following,
two of these motion controls, the Jacobian Inverse Control and the Jacobian Transpose Control, will
be presented. First, the calculation of the so-called Jacobian matrix is described in general and how
to compute it with the help of the Denavit-Hartenberg parameters. Then, since the transformation
matrices are not always square, a method is presented for how a non-square Jacobian matrix can be
inverted (Lynch and Park, 2017).

2.3.1 Jacobian

The Jacobi matrix ,Equation (12), or functional matrix, denotes the derivative of a m-dimensional
vector-valued function according to a n-dimensional argument vector. That means each component
function fi is derived after each argument xi. The resulting matrix possesses dimension m× n (Gentle,
2017).

∂f

∂x
=

[
∂f1

∂x

∂f2

∂x
...

∂fm

∂x

]T
,

=



∂f1

∂x1

∂f1

∂x2
. . .

∂f1

∂xn
∂f2

∂x1

∂f2

∂xn
. . .

∂f2

∂x2...
...

...
∂fm

∂x1

∂fm

∂x2
. . .

∂fm

∂xn


. (12)

In order to use the Jacobian matrix for inverse or transpose control, the forward kinematics of the
robot has to be set up first. In the last section, the Denavit-Hartenberg parameters 2.2.4 were presented
for this purpose. The forward kinematics is a vector-valued function with dimension m, where m is the
number of the end effector’s degrees of freedom (pose and orientation). Furthermore, the argument
vector has n dimensions, where n is the number of degrees of freedom, respectively the number of
controllable joints. The functional derivative of the forward kinematics can be formed, which is the
derivative of the transformation matrix according to the joint variables. In the following, the basic
equations for spatial manipulators are shown (Lynch and Park, 2017).
Derivation of the Jacobian for serial robots:

x = f(q),

ẋ =
d

dt
f(q) =

d

dq
f(q)

d

dt
q = J(q)q̇. (13)
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Serial spatial Robot with DH-Parameters:

x(θ1, . . . , θn) = T0,n(θ1, . . . , θn),x(θ1, . . . , θn)y(θ1, . . . , θn)
z(θ1, . . . , θn)

 =

T0,n,x(θ1, . . . , θn)T0,n,y(θ1, . . . , θn)
T0,n,z(θ1, . . . , θn)

 ,
ẋẏ
ż

 =



∂T0,n,x

∂θ1

∂T0,n,x

∂θ2
. . .

∂T0,n,x

∂θn
∂T0,n,y

∂θ1

∂T0,n,y

∂θ2
. . .

∂T0,n,y

∂θn
∂T0,n,z

∂θ1

∂T0,n,z

∂θ2
. . .

∂T0,n,z

∂θn
,



θ̇1
θ̇2
...
θ̇n

 .

2.3.2 Jacobian Inverse Control

For this purpose, to apply Jacobian Inverse Control, the Jacobian matrix has to be inverted first, as the
name of this method implies. For this purpose, it must be determined whether the matrix is invertible.
If the determinant is not zero for square matrices, it is invertible. For non-square matrices, a pseudo
inverse is calculated, which can be achieved if all rows or column vectors of the non-square matrix are
linearly independent. The pseudo-inverse is most commonly calculated with the Moore-Penrose method,
which is described as follows (14) - (15). The † symbol here only denotes that it is not a regular inverse
matrix but a pseudo-inverse (Gentle, 2017; Lynch and Park, 2017).

J† = JT(JJT)−1, if J is fat (n > m). (14)
J† = (JTJ)−1JT, if J is tall (n < m). (15)

Description of the Jacobian Inverse Equations:

q̇ = J−1(q)ẋ, (16)
∆q = J−1(q)∆x, (17)

q [t+ 1] = q [t] + ∆q, (18)
= q [t] + ηJ−1(q)∆x. (19)

Subsequently, the complete form of Jacobian inverse control can now be formulated. For this, the
equation (13) is further transformed by inverting the Jacobian (16). Afterwards, the differential form
is transformed into a different form, which means that the time steps are no longer continuous but
discrete. This form is also called incremental form (17). Finally, a time step from t to t+ 1 is performed,
equation (18), which describes the change of the joint angle, ∆q, for the next calculated position. The
equation (19) gives the final form of the Jacobian inverse control. The η scales the step size from the
end effector position x[t] to its target position x[t+ 1] (Craig, 2021).

2.3.3 Jacobian Transpose Control

Another control algorithm is the so-called Jacobian Transpose Control. The calculation method is
much more efficient because no inverse has to be computed. Furthermore, trajectories which cross
singularities are possible. In addition, with the help of the Jacobian Transpose torque control (21) can
be applied. This type of control has the advantage that, on the one hand, the difference between the
actual torques and the sensors in the revolute joints can be directly transferred to the motor control.
Nevertheless, on the other hand, faster and more accurate configurations can be achieved. The formulas

Page 18 of 98



A Motor Control Learning Framework for Cyber-Physical-Systems

are provided in the following (Siciliano et al., 2008; Lynch and Park, 2017):

Jacobian Transpose Control for pose control:

q̇ = JT(q) e,

∆q = JT(q) (xd − f(q)),
q [t+ 1] = q [t] + η∆q,

= q [t] + ηJT(q) (xd − f(q)). (20)

τ = JT(q)F . (21)

As with the equation (20), η denotes a scaling of the step size, xd indicates the desired end-effector
position, and f(q) the current end-effector position. In torque control, the Jacobian transpose is
multiplied by a force vector F , and the result is the torques τ of the individual revolute joints. The
application of force control is extremely complicated and will not be discussed further in this master
thesis (Lynch and Park, 2017; Craig, 2021).
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3 Background Methods in Machine Learning

This chapter first gives an overview of Machine Learning and then introduces Reinforcement Learn-
ing(RL). First, all the essential terms and concepts are described, and a mathematical description is
provided. Subsequently, the covariance matrix adaptation evolution strategy (CMA-ES) is introduced and
used in the CPS framework for policy optimization. Finally, an introduction to the Dynamic Movement
Primitives (DMP) is given. These are the chosen model for the movement representations of this thesis.

3.1 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a sub-discipline of Machine Learning. In contrast to the other two
areas, unsupervised and supervised machine learning, which are used for classification, clustering and
regression, reinforcement learning is used to find a decision making policy which optimizes a given
problem. Since the field of RL is very broad and includes countless algorithms. First, a rough introduction
to the basic ideas of RL is given. Then it presents the fundamental elements and concepts and the
Markov decision process (MDP). Finally, a black box optimizer, the CMA-ES, is introduced, which is
used in the state of the art reinforcement learning algorithm (Ravichandiran, 2020).

3.1.1 Basic Idea and Fundamental Elements of Reinforcement Learning

(a) Reinforcement learning (b) Reward function

Figure 6: (a) shows a representation of reinforcement learning and (b) an example graph of a reward function
(Lonza, 2019).

The basic idea of reinforcement learning is to teach machines or computers a human learning method.
For example, a stick is balanced upright for as long as possible. A child will be a bit clumsy at the
beginning of this task, but after a short time, it will have understood the necessary knowledge about the
stick dynamics to balance it, at least for a few seconds. The situation is similar to reinforcement learning,
where some terms will now be introduced. In RL, the child would be the agent, and the stick and the
physical world are the environments. A conceptional figure of an RL algorithm can be seen in Figure
6a. The agent can observe the states of the environment, more about this later, and influences these
states by actions. The better the agent performs, the more reward it will receive from these actions. The
individual components will be explained in more detail in the following subsections. In Figure 6b the
progression of the reward of an RL example is shown.

Agent The agent, as previously mentioned, is one of the two entities in reinforcement learning. It
observes the states of the environment and performs actions that affect it, by which it can get a reward.
The agent is part of the reinforcement learning software and is supposed to solve the given problem
more or less optimal. In particular, in model-free RL, the agent explores the state transitions or exploits
its findings. Depending on the algorithm, the focus is either exploration or exploitation because an
agent who knows only one way to the target state will probably not have found the optimal one. One
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who only explores may not find the target at all in the required time. This dilemma is called the
exploration-exploitation dilemma (Ravichandiran, 2020; Lapan, 2020).

Environment Generally speaking, the environment is the agent’s world, and the agent can only
exist in it. The task of the environment is to process the interaction with the agent. As a result, it
returns feedback to the agent in the form of the new state and the reward. In model-based RL, the
environment is generally modeled as a Markov decision process (MDP), more on this in the paragraph
3.1.2 (Ravichandiran, 2020).

State and Observation To avoid ambiguity, RL distinguishes between states, s, and observations,
o, of the environment by the agent. Observations are only a subset of the states measured by sensors,
for example, so the agent does not have complete access to all states of the environment. Making the
search for an optimal policy even more difficult, but it represents natural systems better since, in reality,
one cannot or does not want to measure every state of a system. An example for states would be the
tilt angle of the rod from the input example. However, this is not measured by the child directly but
observed through its eyes (Ravichandiran, 2020; Bilgin, 2020).

Action Actions, a, are all those activities that the agent can perform in an environment and thereby
change its states. These can be discrete or continuous, for example, the actions in a game of tic-tac-toe
would be discrete since the agent can place its symbol in the 3x3 grid, but the movement of the hand
while balancing a stick is continuous. The important thing is that the possible actions depend on the
states of the environment (Ravichandiran, 2020).

Reward Finally, the term reward, r, is introduced. In reinforcement learning, the reward is a scalar
quantity that indicates how well or poorly the agent behaves. Rewards can be positive or negative,
and the magnitude is variable. Furthermore, the frequency with which rewards are distributed can be
different. For example, dense reward functions punish or reward every action or sparse ones that only
evaluate the game outcome at the end of each tic-tac-toe game. The design of the reward function is
essential for RL because if the function offers loopholes to the algorithm, the agent may exploit them;
this is called reward exploitation (Ravichandiran, 2020; Lonza, 2019).

3.1.2 Fundamental Concepts of RL

In this subsection, the fundamental concepts are added to the above definitions of reinforcement learning.
In addition, the mathematical description of these concepts is also given here.

Action Space The action space denotes the set of all possible actions in the current environment.
Furthermore, action spaces can be divided into discrete, for instance, the possible moves in a tic-tac-toe
game or continuous action spaces. An example of continuous actions is the control of the robot joints or,
to stay with the example of balancing a stick, the movement of the hand (Ravichandiran, 2020).

Policy The goal of using RL is to find a policy for an agent in an environment. A policy describes what
action should be taken by the agent given a state or observation. Thereby, the expected cumulative
reward should be maximal. Policies are divided into deterministic and stochastic ones. The deterministic,
Equation 22, means that each state has only one possible action. Mathematically this is described in the
following way:

at = fπ(st). (22)
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Here, the at denotes the action to be performed at time t, st denotes the state at that time, and fπ
denotes the policy. The policy maps the current state to the action (Ravichandiran, 2020).
In contrast, the stochastic policy, Equation 24 does not assign an action to each state or observation

but maps the action space with a probability distribution for each state. There are no limits on which
probability distribution can be used. In the mathematical description, the mapping changes because it
is no longer deterministic but stochastic, as follows (Ravichandiran, 2020):

at ∼ π(at|st). (23)

As an example of a stochastic policy, the Gauss policy is given here, where a state s is parameterized
with the n-dimensional vector θ(Chou, Maturana, and Scherer, n.d.):

πθ(a|s) =
1√
2πσ

exp

(
−(a− µ)2

2σ2

)
, (24)

with µ = µθ(s),

and σ = σθ(s).

Furthermore, for discrete action spaces, categorical guidelines can be used which assign a frequency
to each possible action. For example, in a grid world, the movement up, down, right or left is given a
probability (up: 0.25, down: 0.1, right: 0.25, left: 0.4) (Ravichandiran, 2020).

Episode An episode denotes the transition of the agent from the initial state to a final state. The final
state is optimally the goal state or a state that aborts the episode and punishes the agent for its mistake.
The agent’s path during an episode is called the trajectory τ . For example, each attempt to balance the
staff or each tic-tac-toe game is an episode. The goal of these episodes is for the agent to learn the
environment and improve its strategies to maximize the cumulative reward (Ravichandiran, 2020).
Depending on which RL algorithm is used, the episodes are used differently. For example, 10 episodes

at a time can run entirely independently of one another and be used to explore the environment. Then,
the policies are evaluated, and the best one is varied for another 10 episodes. The goal, as mentioned
before, is to find the best possible policy and do so in the most efficient way, i.e. with few iterations.
Here, as already mentioned in the subsection Agent, 3.1.1, the exploration-exploitation dilemma is
crucial.

RL Task Classification and Horizon Reinforcement learning tasks can be divided into episodic and
non-continuous tasks. The first run iteratively in the episodes presented earlier. The agent is supposed
to move from an initial state to a terminal state in this process. In the second case, no terminal state
exists (Ravichandiran, 2020).
Important for episodes is the notion of the horizon; this specifies how many time steps the agent

is allowed to interact with the environment until it aborts the episode or, in other words, when the
lifespan of the agent ends. A distinction is made between a limited and an endless horizon. As the name
implies, a predefined number of state changes is performed. It should be noted that even if the goal
state is reached, the episode is not cancelled, but the action space for the goal does not change the
state and the reward is zero so that there are no problems in the implementation. The same is valid
for environments where the agent may be stuck in a state. An agent-environment interaction with an
infinite horizon has no final state and is thus a continuous task (Ravichandiran, 2020; Bilgin, 2020).

Return and Discount Factor Another fundamental concept of RL is the return, Equation 25, of a
trajectory τ . This denotes the sum of all rewards rt over all time steps t from t = 0 to t = T . To prevent
infinitely large returns, the discounted return (Equation 26) is introduced, devaluing each reward by
the so-called discount factor γk. The value for γ is selected from the interval [0, 1] and k increases with
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each additional reward by 1. The discounted reward favours immediate rewards, giving them more
weight and devaluing those in the far future. This usage leads to finding the optimal policy since the
agent should get the highest possible returns and do so in the shortest time since the longer the task
runs, the less successful it is. Especially for continuous tasks this factor is important, where T = ∞
(Ravichandiran, 2020; Bilgin, 2020).

R(τ) = r0 + r1 + r2 + ...+ rT =
T∑
t=0

rt, (25)

R(τ) = γ0r0 + γ1r1 + γ2r2 + ...+ γnr∞ =

∞∑
t=0

γtrt. (26)

The lower γ is, the more critical immediate rewards are, with the limit γ = 0 where all rewards after
the first one are not considered. Consequently, a high factor is less punishing, and future rewards are
more relevant. On the other hand, with the threshold γ = 1, all rewards are equally important, and the
return can become infinitely large, as mentioned at the beginning. Therefore, this factor is crucial and
must be tuned for each problem (Ravichandiran, 2020; Bilgin, 2020).

Model Models of agents in reinforcement learning are created using the Markov Decision Process
(MDP). MDPs are described by the following tuple < S,P,R, γ > and describe memoryless, random
processes, i.e. the decisions of the agent depend only on the current state and not on past states. Here,
the S denotes the set of states the agent can observe in the environment. The transition matrix P
describes the transition probability of all possible current states s to all following states s′, which is
reached by the action a, or mathematically described by the probability P (s′|s, a). Furthermore, there is
the reward function R, which evaluates the reward for the transition from the states with the respective
actions, mathematically R(s, a, s′). The last quantity describing the Markov Decision Process is the
discount factor γ, which is supposed to adjust the return, as already described in the previous paragraph
(Ravichandiran, 2020).

Value Function and Q Function The value function defines the value of a state (27), sometimes
called the state value function, which indicates the cumulative rewards of the state under consideration
for a given strategy of the agent. So in other words, the value function Vπ(s) provides the expected
discounted return R(τ) for the trajectory τ from the state s, with a given policy π (Ravichandiran,
2020).

Vπ(s) = Eτ∼π[R(τ)|st = s]. (27)

The value function can also be written recursively in the form of the so-called Bellman equation
(28). The Bellman equation belongs to the most fundamental optimization equations and is central
for reinforcement learning. It divides the reward of the current state into an immediate one and a
discounted one, as described before. Thus, recursively all optimal solutions for smaller subsystems can
be computed and transformed into a combined optimal value function V∗(s) (29) (Powell, 2022).

Vπ(s) =
∑
a∈A

π(a|s)(Ra
s + γ

∑
s′∈S
Pa
ss′Vπ(s

′)), (28)

V∗(s) = max
π

Vπ(s), (29)
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Qπ(s, a) = Eτ∼π[R(τ)|st = s, at = a]. (30)

The Q function should be mentioned for the completeness of the fundamental concepts of reinforce-
ment learning. The Q function (30) extends the value function by actions. It thus has a state-action pair
as a function argument. Otherwise, the idea of the value function is very similar (Ravichandiran, 2020).

3.1.3 CMA-ES

In this subsection, the policy optimization method is presented, and, in particular, the covariance matrix
adaptation evolution strategy, CMA-ES, is explained. The CMA-ES is a robust optimization method
with "good" convergence properties. These properties are significant for DMPs since the weights are
towards the end of the trajectory. Due to the decay of the canonical system, these weights are several
powers of 10 larger than at the beginning. In addition, the algorithm generally prevents convergence
to local minima. Therefore, the CMA-ES is very well suited for this application of policy optimization.
Moreover, as Stulp and Sigaud (2012) have described, the algorithm is significantly more effective
for such optimization tasks than conventional reinforcement algorithms, such as PI2 or REINFORCE.
However, Stulp and Sigaud (2012) have pointed out that this may only be true for their application and
does not have general validity.

Figure 7: This figure visualizes the CMA-ES algorithm (Shir et al., 2011).

CMA-ES Principle The covariance matrix adaptation evolution strategy is a black-box algorithm,
Algorithm 1, which is used for non-linear optimization. CMA-ES is particularly used when classical
optimizers, such as gradient methods or quasi-Newton methods, do not work because of local optima,
discontinuities, noise or similar problems. The algorithm uses a non-stationary, i.e. changeable, mul-
tivariate normal distribution with mean m(g), step-size σ(g) and covariance matrix C(g), where the g
indicates the generation of the algorithm. A visualization of an optimization by the CMA-ES is shown in
the Figure 7 (Hansen, 2016; Shala et al., 2020).

(µ/µW , λ)-CMA-ES Algorithm The CMA-ES algorithm requires several parameters, which are de-
scribed in Appendix 1. Furthermore, the calculation of these parameters is also given. The setting of the
parameters is done according to the proposed method of Hansen (2016).
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Algorithm 1 (µ/µW , λ)-CMA-ES
1: set λ,wi...λ, cσ, dσ, cc, c1, cµ ▷ number of samples per iteration, at least two, generally > 4
2: initialize m,σ,C = I, pσ = 0, pc = 0, g = 0 ▷ initialize state variables
3: while not terminate do
4: for i in {1, ..., λ} do // sample λ new solutions and evaluate them
5: xi = sample_multivariate_normal(mean = m, covariance_matrix = σ2C)
6: fi = fitness(xi)
7: end for
8: x1,..,λ ← xs(1),...,s(λ) with s(i) = argsort(f1, ..., fλ) ▷ sort solution
9: m′ = m ▷ for the m−m′ and xi −m′ computation
10: m← update_m(x1, ..., xλ) ▷ move mean to better solution
11: pσ ← update_ps(pσ, σ−1C−1/2(m−m′)) ▷ update isotropic evolution path
12: pc ← update_pc(pc, σ−1(m−m′), ∥pσ∥) ▷ update anisotropic evolution path
13: σ ← update_sigma(σ, ∥pσ∥) ▷ update step-size using isotropic path length
14: C ← update_C(C, pc, (x1 −m′)/σ, ..., (xλ −m′)/σ) ▷ update covariance matrix
15: end while
16: return m or x1

Sampling In CMA-ES, λ samples are drawn for each generation g. Samples x⃗(g)i are drawn from
multivariate normal distribution(31) with mean m(g), step-size σ(g) and covariance matrix C(g). Subse-
quently, the drawn samples are evaluated with a fitness function, respectively cost function.Furthermore,
the eigenvalue decomposition(32) of the matrix C(g) is calculated so that C(g)−

1
2 can be computed

(Hansen, 2016).

xi ∼ N (m(g), σ(g)
2
C(g)),

∼m(g) + σ(g) ×N (0,C(g)). (31)

C = BD2BT , (32)

C− 1
2 = BD−1BT .

Selection and Recombination The next step is to sort the samples according to their performance
on the fitness function. From these sorted samples, the updated mean is calculated from µ best samples
with the equation (33) (Hansen, 2016).

{xi:λ|i = 1...λ} = {xi|i = 1...λ} and f(x1:λ) ≤ ... ≤ f(xµ:λ) ≤ f(xµ+1:λ).

m(g+1) =

µ∑
i=1

wixi:λ,

= m(g) +

µ∑
i=1

wi(xi:λ −m(g)). (33)

Step-size Control Now the so-called conjugate evolution path p⃗σ is constructed, which updates the
step size σ. The updates of the two quantities are given in the equations (34) and (35) (Hansen, 2016).

p (g+1)
σ = (1− c(g)σ ) +

√
1− (1− c(g)σ )2µeff C(g)−

1
2 m

(g+1) −m(g)

σ(g)
. (34)
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σ(g+1) = σ(g) × exp

 cσ
dσ

(

∥∥∥p⃗ (g+1)
σ

∥∥∥
E∥N (0, I)∥

− 1)

, (35)

with E∥N (0, I)∥ =
√
2Γ(

n+ 1

2
)/Γ(

n

2
) ≈
√
n(1− 1

4n
+

1

21n2
).

Covariance matrix adaption Finally, the covariance matrix is adapted. To accomplish the adaption,
the evolution path pc and the covariance matrix C must be recalculated, these are computed with the
following equations (36), (37) and (38).

p (g+1)
c = (1− cc)p (g)

c + hσ

√
cc(2− cc)µeff

m(g+1) −m(g)

σ(g)
. (36)

y
(g+1)
i:λ =

xi:λ −m(g)

σ(g)
.

w
(o)
i = wi ×


1 if wi ≥ 0,
n∥∥∥C(g)−

1
2 y

(g+1)
i:λ

∥∥∥2 else. (37)

C(g+1) = (1 + c1δ(hσ)− c1 − cµ
λ∑

j=1

wj)C
(g) + c1p

(g+1)
c p (g+1)T

c + cµ

µ∑
i=1

wo
i y

(g+1)
i:λ (y

(g+1)
i:λ )T . (38)

with δ(hσ) = (1− hσ)cc(2− cc) ≤ 1.

with hσ =

1 if

∥∥∥p (g+1)
σ

∥∥∥√
1− (1− cσ)2(g+1)

< (1.4 +
2

n+ 1
)E∥N (0, I)∥

0 else.

It is important to note that there are two case distinctions in the calculations, one time in the
calculations of the weights and the other time it describes the Heavyside function hσ. The case that
hσ = 0 becomes, is rare. Nevertheless this is needed if the target function is changed with the time or
the step size was chosen too small with the initialization (Hansen, 2016).

3.2 Movement Primitives and Representations

One of the essential capabilities in robotics is the generation of trajectories. Over the last few decades,
numerous methods have been developed to accomplish trajectory creation. This section aims to provide
the mathematical foundations of dynamic movement primitives required for the framework to apply
imitation and reinforcement learning. Nevertheless, first, the most important properties that trajectory
generation and DMPs should possess will be discussed.
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3.2.1 Properties of Trajectory Generators

The methods should create compact trajectories, which means a few parameters define the trajectories.
Furthermore, they should be smooth, which means that the velocities and acceleration do not have
any discontinuities and be as flexible as possible for various applications. Some elementary calculation
methods are not as general and flexible as DMPs, so this thesis will not discuss them. These include
manual point-to-point computation, splines, and similar techniques. In this section, we will instead
focus on dynamic movement primitives. In particular, the applicability of the methods for reinforcement
learning, RL, and imitation learning, IM (Ijspeert et al., 2013).

3.2.2 Properties of Dynamic Movement Primitives

Dynamic Movement Primitives, DMPs, are a method to model weakly nonlinear differential equation
systems. For this purpose, a well-understood attractor model has been modified with a forcing term that
produces stable, time-invariant and space scalable models, with very few variables. Attractors are stable
"paths" in differential equation fields, which lead to a fixed final state of the system, which uses discrete
DMPs, or cyclic sequences, which Harmonic DMPs generate. The states are not identical but similar
enough to be recognized as a "pattern". This method provides a compelling way for robotics to generate
trajectories with learning algorithms. At the end of this section, the application of DMPs, as mentioned
before, to via-point trajectories and imitation learning will be explained for this purpose (Ijspeert et al.,
2013).

3.2.3 Mathematical formulation of the Dynamic Movement Primitives

For illustration, the mathematical methods for systems with one DOF are first presented. There are two
ways to write a spring-damper system using a differential equation. As a second-order equation ( ref
eq : DMP2 ) or as a first-order equation(40); these are also called transformation system. The τ is a
constant used to accelerate or decelerate the motion if necessary or can be used for temporal scaling. αz

and βz are time constants which are usually defined beforehand and indicate the damping properties of
the system.

τ ÿ = αz(βz(g − y)− ẏ) + f, (39)

τ ż = αz(βz(g − y)− z) + f,

τ ẏ = z. (40)

Furthermore, the system has a point attractor at its final position (z, y) = (0, g). The f -function
denotes a non-linear function, called forcing term, which results in a globally stable differential equation
system in the case of 0. However, since f is not supposed to be zero but, as indicated before, a non-linear
function, we use it for learning. Thereby its form differs depending on the application, depending on
whether it is a discrete or a rhythmic motion (Ijspeert et al., 2013; Rueckert and d’Avella, 2013).

Discrete Dynamic Movement Primitives In the case of discrete dynamic motion primitives, various
forcing terms f can be used, but the form described in (41) has been established for machine learning.
Here f is built as a sum of N normalized weighted basis functions Ψi, Figure 8b, where in general the
Gaussian functions (44) are used as basis functions. Whereby this notation also exists in adapted form
(43), as shown in Figure 8c, with the help of a canonical system (42), Figure 8a. The αx serves here as
a constant and is chosen so that the initial state of x0 = 1 and x converges monotonically to 0 at goal
state, g (Ijspeert et al., 2013).
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(a) Canonical system

(b) Gaussian basis functions

(c) Gaussian basis functions scaled by the canonical system

Figure 8: (a) shows the exponential decay of the canonical system, (b) the Gaussian basis functions and c the basis
function scaled by the canonical system.

f(t) =

∑N
i=1Ψi(t)wi∑N
i=1Ψi(t)

, (41)

τ ẋ = −axx, (42)

f(x) =

∑N
i=1Ψi(x)wi∑N
i=1Ψi(x)

x(g − y0), (43)

Ψi(x) = exp

(
− 1

2σ2i
(x− ci)2

)
. (44)

For the Gaussian basis, here ci are the midpoints, and σi are the widths of each Gaussian function
and are previously defined. In (43) y0 denotes the initial state of y(t = 0) = y0. Only the weights wi are
to be varied in RL or IM. Because these change the trajectory, all other constants scale only the path
(Ijspeert et al., 2013).
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Rhythmic Dynamic Movement Primitives The other variant of DMPs is rhythmic, which has a limit
cyclic system instead of a point attractor. These systems also have to be transformed into a canonical
system (45) first. An essential property of the canonical system is that if a robot has several degrees of
freedom, which should be coupled, the DMPs can be joined with its help.

τ ϕ̇ = 1,with ϕ ∈ [0, 2π], (45)

f(x) =

∑N
i=1Ψi(t)wi∑N

i=1Ψi

r, (46)

Ψi(x) = exp(hi(cos(ϕ− ci)− 1)). (47)

The simplest variant to establish such a canonical system is a phase oscillator. Furthermore, for
rhythmic dynamic motion primitives, no Gaussian basis is used anymore but a Mises basis (47). The
form of the forcing term changes to the following form (46) (Ijspeert et al., 2013).

Page 29 of 98



A Motor Control Learning Framework for Cyber-Physical-Systems

4 Framework

This chapter describes the basic structure of the CPS fameworks and its parts. First of all, the software
components and the programs used are described briefly. Also the interfaces of the framework are listed
and how they can be used. Furthermore, the Franka robot arm and its specifications are described.
Finally, the application of the learning algorithm with dynamic movement primitives in combination
with reinforcement learning and imitation learning within the CPS framework is presented.

4.1 Software

Basically, the framework was programmed with Python, since this programming language offers a
relatively easy access to ROS in contrast to C++. However, ROS nodes written in Python are much
slower and therefore it makes sense to write certain core tasks, for example the control ROS nodes,
in C++ for faster execution. Apart from some Python libraries, for example numpy, sympy or rospy,
CoppeliaSim was used as simulation program, this is presented in the following.

4.1.1 CoppeliaSim

Figure 9: This figure shows the simulation program CoppeliaSim from the company Coppelia Robotics GmbH.

CoppeliaSim is the successor of the V-REP robot simulator from Coppelia Robotics GmbH. CoppeliaSim
is a multiplatform simulator that can be communicated with via several Application Programming
Interfaces (API). In this framework the interfaces ROS and ZMQ were implemented, which will be
described in more detail later. Many important features are already built into the simulation program,
such as multiple physics engines, collision detectors, and forward and inverse kinematics solvers.
CoppeliaSim V4.3.0 was used for the framework. It is essential to use a version >=V4.3.0, because
only from this version the ZeroMQ (ZMQ) interface works. Also, the embedded Python scripts will only
work from this version. Within the framework, all objects in the scene, as the simulation files are called,
can be created, manipulated or deleted using the ZMQ API (CoppeliaSim n.d.).

4.1.2 Docker

Docker is a system with which applications are packaged as so-called containers. This container contains
all the necessary packages and libraries that are required for the execution of the application. Docker
thus enables a platform-independent deployment of the CPS Framework as a Docker image. That means,
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to use the CPS Framework, only Docker is needed to run it and it works on Windows, MacOS and Linux
and no additional installations are necessary (Mouat, 2015).

4.2 Interfaces

In this section, the two interfaces with which the framework communicates with CoppeliaSim and the
interface with which the robot communicates, respectively, will be presented. As described before, the
simulation can be controlled via the API ZeroMQ and ROS and the robot can be operated via ROS. The
advantage of operating the framework via ROS is that the simulator and the real Franka arm can be
operated simultaneously.

4.2.1 ZMQ

ZeroMQ enables direct control of the CoppeliaSim robot simulator. It works as an asynchronous message
library and was developed for special distributed systems. The packages "pyzmq" and "cbor" are required
for use in the framework. In the following the code of a few important applications is presented. First,
however, the connection between the Python script and CoppeliaSim will be described (CoppeliaSim
n.d.).

Establish ZMQ Connection As described here, establishing a connection is very easy. The default
parameters for CoppeliaSim are ’localhost’ with port ’23000’. The ’zmqRemoteApi’ script can be found
by the CoppeliaSim developers on their GitHub repository.

1 # ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 # ZMQ Connection
3

4 from zmqRemoteApi import RemoteAPIClient
5

6 c l i e n t = RemoteAPIClient ( ’ l o c a l ho s t ’ ,23000)
7 sim = c l i e n t . ge tOnjec t ( ’ sim ’ )

Generate Via Points in CoppeliaSim When generating new via points it starts by checking if an
object with the desired name already exists, if not a dummy object is created. Then it is positioned
relative to the Panda base frame.

1 i f sim . ge tOb jec t ( ’ /newPoint ’ , { ’ noError ’ : True }) == −1:
2 sim . createDummy (0.04)
3 _handle = sim . ge tOb jec t ( ’ /Dummy ’ )
4 _panda_handle = sim . ge tOb jec t ( ’ /Panda ’ )
5 sim . s e tOb j e c tA l i a s ( _handle , ’ /newPoint ’ )
6 _pose = [x , y , z ]
7 sim . s e tOb j e c t Po s i t i on ( _handle , _panda_handle , _pose )

Forward Kinematics in CoppeliaSim Forward kinematics can be performed in CoppeliaSim with
the ZMQ API using the following code. Here, the corresponding new joint value is transmitted to each
joint. This should show how easy it is to use CoppeliaSim’s API. So this approach offers a good possibility
of CoppeliaSim for teaching and an introduction to robot simulations with CoppeliaSim and Python.
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1 # Get the handles of each j o i n t
2 j o i n t _hand l e s = []
3 robot_name= ’ /Robot_Name ’
4 f o r i in range (1 , n r_ Jo in t s ) :
5 handle = sim . getObjectHandle ( robot_name + s t r ( i ) )
6 j o i n t _hand l e s . append( handle )
7

8

9 # get j o i n t va lues of each j o i n t
10 cu r r en t _ j o i n t _ v a l u e s = []
11

12 f o r j o i n t in j o in t _hand l e s :
13 value = sim . g e t J o i n t Po s i t i o n ( j o i n t )
14 cu r r en t _ j o i n t _ v a l u e s . append( value )
15

16 # se t new j o i n t va lues to each j o i n t
17 new_jo int_va lues = [a1 , a2 , . . . , an]
18

19 f o r i in range ( len ( j o in t _hand l e s ) ) :
20 new_value = cu r r en t _ j o i n t _ v a l u e s [ i ] + new_jo int_va lues [ i ]
21 sim . s e t J o i n t P o s i t i o n ( j o in t _hand l e s [ i ] , newvalue )

4.3 Robot Operating System (ROS) and ROS2

This section provides an overview in ROS. Furthermore, the novelties of ROS2 are shown and weighed
up whether an early switch pays off, since ROS is only maintained until 2025.

4.3.1 ROS basics

ROS - Robot Operating System - is a low-level software framework for robot platforms, which can
be developed with C++, Python or Lisp. It consists of the so-called roscore with the communication
components and the ros packages, which can be created and provided by companies, research groups or
individuals. Ros packages are divided into smaller programs, so-called nodes, which can communicate
with each other. These communication channels are divided into three types (ROS-wiki n.d.; Generation
Robots n.d.; Joseph, 2018):

• ROS Topics are used for data streams, for example sensor data such as speed data, which can then
be subscribed to by other nodes.

• ROS Service is a synchronous client/server communication between a service client and a service
server. Synchronous messages are characterized by sending a request and blocking until the
response comes. Therefore, they should only be used for short-lived processes, otherwise the client
will be stuck for a long time. It is important that ros services are unique and defined by a name
and by the data types of the message.

• ROS Action is an asynchronous communication, that means the client is not blocked waiting for a
response. In this process, the client sends a destination and receives a result back at the end. While
the process is executed, a feedback is sent back, which indicates the current state of the process.
Furthermore, the running process can be aborted by the client at any time.

The goal of ROS is not to be the most comprehensive framework, but to give the greatest possibilities to
programmers and robot developers. Furthermore, ROS is committed to the following goals (ROS-wiki
n.d.; Generation Robots n.d.):
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• Scalability: The programs run on small, large but also very large systems.
• Language variety: ROS packages can be developed, as before already described, with C++, Python
and Lisp, furthermore still additional programming languages can communicate by means of
modules or Toolboxes e.g. Matlab with ROS.

• Lightweight: ROS is built as light as simple, so that the freedom of design of the developers is as
large as possible. In addition, this can be written very good reusable programs which are platform
independent.

• Open Source: ROS and all its basic libraries are free and open source, making license management
very simple.

4.3.2 ROS1 vs ROS2

To avoid confusion, ROS1 and ROS2 are used for the two ROS versions in the following subsection. Since
ROS1 does not meet some industry requirements, including real-time capability, security and safety,
and integration is very difficult or impossible without disrupting the functionality of older packages,
ROS2 was developed from the mid-2010s.
Now to the innovations of ROS2. The new libraries for Python and C++ are in comparison to ROS1
much more similar whereby the readability of nodes in different programming languages is facilitated.
Furthermore, the integration of additional languages has been greatly facilitated, so you can also code
in Java, for example.
In contrast to ROS1 there is a clear convention in ROS2 how nodes have to be written, namely with
object-oriented programming. This again increases the readability as well as the reusability of code.
Furthermore, multiple nodes can be generated in one Python script because the ROS components are
generated as objects. A further innovation is that Launch files must be written no longer only in XML
format, but starting from ROS2 also as Python Script can be provided, whereby the configuration
possibilities are greatly increased.
A large difference of ROS1 to ROS2 is that ROS2 does not have a ROS master. The reason for this is that
there are no more global parameters but all parameters are associated with a node, so each node is
in principle a separate server. Furthermore, ROS services are asynchronous since ROS2 and can also
be equipped with callback functions. Of course they can also be changed to sychron. Actions are now
part of the ROSCore and must no longer be used as a modified topic. With ROS2 the feature Quality of
Service, QoS, is introduced whereby the possibility is introduced to operate ROS in networks with not
good connection qualities, since messages must not always arrive.
The development environment has also changed drastically, so catkin is not used for building the
packages in ROS2 but the new building system is called "ament". Furthermore, packages containing
C++ and Python scripts can no longer be written as easily as in ROS1. C++ packages hardly differ
from ROS1 packages, Python Scripts must be installed starting from ROS2, for which the new Python
package structure was created. Nevertheless, a Python C++ package can still be created via more
complex settings.
Another novelty is that ROS2 is supported by all three major operating systems, making it finally possible
to create and run ROS projects with Windows and MacOS. ROS2 can also be used on embedded systems
(ROS2 Documentation n.d.; The Robotics Back-End n.d.).
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4.4 Franka Emika Panda

In this section, the Franka Emika robot from the company Franka Emika GmbH will be presented. The
robot has seven degrees of freedom. Each joint can be controlled and has its own torque sensor, which is
essential for torque control. In table 2 the Denavit-Hartenberg parameters are shown which are essential
for the calculations in the framework. In APPENDIX C.2 the joint limits and the sensor specifications of
the robot are given. The robot arm is equipped with a mounting flange DIN ISO 9409-1-A50 which
allows to mount robot hands or other tools as long as the total load does not exceed 3kg. Also the sensor
technology can be extended, in case the sensor data should be processed in the calculation process, a
connection to ROS is required which can be achieved ,e.g., by means of Arduino.

Joint a(m) d(m) α(rad) θ(rad)
Joint 1 0 0.333 0 θ1
Joint 2 0 0 −π

2 θ2
Joint 3 0 0.316 π

2 θ3
Joint 4 0.0825 0 π

2 θ4
Joint 5 -0.0825 0.384 −π

2 θ5
Joint 6 0 0 π

2 θ6
Joint 7 0.088 0 π

2 θ7
Flange 0 0.107 0 0

Table 2: This table lists the Denavit-Hartenberg parameters of the Panda robot arm.

4.5 State of the Art Learning Algorithms

In the following, the learning methods used in the framework are presented. Both Imitation Learning
and Reinforcement Learning were implemented using dynamic movement primitives. For Imitation
Learning, the equations for one dimension are sufficient because each dimension is considered separately.
However, in reinforcement learning, one DMP must be generated and learned for each dimension, i.e., if
the end effector is considered three dimensions for the position and, if necessary, three for the orientation
or in joint space, one dimension for each joint. As mentioned in the previous chapter, the coupling of
the systems may be necessary. However, it may become challenging because the DMPs are decoupled
systems and robots, kinematic chains, are not decoupled (Rueckert and d’Avella, 2013; Schaal et al.,
2003).

4.5.1 DMPs and Imitation Learning

Dynamic motion primitives provide a convenient approach to imitation learning because of their
mathematical formulation. Here, trajectories presented by humans or, for example, by optical recordings
should be imitated. In general, multiple demonstrations of a task are averaged, and the trajectory,
velocity, and acceleration functions are substituted into the equation (48), computing the target forcing
term ftarget. For imitation learning, linear weighted regressions were proposed in Schaal et al. (2003)
for this purpose. In contrast, Paraschos et al. (2018) proposed a ridge regression for PROMPs, which is
used analogously for DMPs in this thesis.

ftarget = τ2ÿdemo − αz[βz(g − ydemo)− τ ẏdemo], (48)

fmodel = Ψw. (49)
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Figure 10: In this figure an example of imitation learning is shown.

Then, together with the model forcing term fmodel given by (49) a cost function (50) is created.
Subsequently, the weights of the model forcing term are estimated in (51). Where λ is set very small,
e.g. 1e-12, because larger values degrade the estimation (Paraschos et al., 2018).

J =
1

2
(ftarget − fmodel)

T (ftarget − fmodel),

=
1

2
(ftarget −Ψw)T (ftarget −Ψw), (50)

wi = (ΨTΨ+ λI)−1Ψftarget, (51)

wi = (ΨTΨ+ λΓTΓ)−1Ψftarget. (52)

Furthermore, in Paraschos et al. (2018) an adapted version of (51) was presented, which additionally
minimizes the jerk of the trajectory (52). For this purpose, the third derivatives, Γ, of Ψ are calculated,
and ΓTΓ is used instead of the unit matrix I in the ridge regression.

4.5.2 DMPs and Reinforcement Learning

The following subsection presents a method for learning dynamics motion primitives with via-points.
This method uses CMA-ES, a policy search method presented in the previous section, which evaluates
and optimizes the policy after each episode. The method was adopted from Rueckert and d’Avella
(2013) and will now be explained.

ut = diag(kpos)(y
∗
t − yt) + diag(kvel)(ẏ

∗
t − ẏt). (53)

First, a simple p controller is set up for each DOF, where y∗t and ẏ∗t are the desired trajectory obtained
by integrating the equation (39) and yt and ẏt were simulated. This controller can also be described in
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vector notation as in (53). With this, the simulation is performed. If the energy consumption of the
controller is to be minimized, the function values are summed up or saved to be used for the evaluation
from the objective function of the CMA-ES (Rueckert and d’Avella, 2013).

C(τ) =(g − xt)
T Rpos (g − xt) +

N∑
i=1

(gi − xt=ti)
T Rvia (gi − xt=ti) +

(ġ − ẋt)
T Rvel (ġ − ẋt) +

tfin∑
t=0

uTt HE ut. (54)

The next step is to define an objective function, or cost function, for the CMA-ES. There is an
uncountable possibility of how this can be constructed. One of these variants is presented in equation
(54), which divides into four parts. The first part penalizes not reaching the target position, and the
second punishes not passing the N via points with position gi at times ti. The third forces the policy
to a final velocity ġ and the last part penalizes too high energy consumption of the controller. Here,
the matrices Rpos, Rvia, Rvel and HE give the cost of each error. It is important to note that the cost
function can be adjusted. Individual parts can be omitted, or the final velocity is often set to zero,
reducing the third part to ẋt

TRvel ẋt. In addition, for example, the running time can also be penalized.
The choice of the previously mentioned matrices is crucial in this case (Rueckert and d’Avella, 2013).

Procedure This state-of-the-art reinforcement learning algorithm was first presented in Rueckert and
d’Avella (2013). The process of the RL algorithm, which is shown in Figure 11, starts with the design of
the objective function, as described in 4.5.2, of the policy optimizer - followed by the initialization of the
weights of the DMPs. Here, the number of dimensions, i.e., whether the trajectory is to be learned in task
or joint space, and the number of basis functions must be determined. For movements in the task space,
it is further possible to decide whether only the position or the orientation of the end effector should be
considered. Furthermore, it should be noted that trajectories in Joint Space are much smoother because
the inverse kinematics does not have to be solved by the controller. Therefore no discontinuities or
singularities can occur. The initialization concludes with the definition of the start, goal and waypoints,
and the time scaling τ .

Figure 11: This figure shows the procedure of reinforcement learning algorithm in combination with CMA-ES.

Subsequently, the reinforcement learning algorithm starts with the first run of the policy search using
CMA-ES. As described in 3.1.3, λ samples are drawn, and subsequently, the DMPs are rolled out. Then,
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depending on whether the trajectory is optimized for energy, a simulation of the trajectory must be
performed, and the control law ut is computed. Afterwards, the DMPs and, if necessary, the results of
the simulations are evaluated with the objective functions. As the last step, all λ evaluations of the cost
function in the CMA-ES are used to adapt the mean, covariance matrix and step size of the samples.
After that, the algorithm starts again, and more samples with the new means and covariances are drawn.
The algorithm ends once the step size or the best evaluation of the objective function becomes small
enough or a maximum number of iterations has been performed. Note that by eliminating the energy
optimization, the computation time of the algorithm is drastically reduced.
In this work, two variants of via-point trajectory generation were performed. On the one hand, the

trajectories were wholly described in the task space, and an inverse controller needs to be used. The
other method transforms the start, goal and waypoints into the joint space and calculates the trajectory
of the joint angles.
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5 Experiments

In this chapter, the experiments of the motor learning framework and their results are described. For this
purpose, an adapted method of the previously presented reinforcement learning algorithm is presented
first. Then, the experiments for testing the new variant are proposed, and their results are shown and
discussed. Subsequently, an imitation learning experiment is presented. Finally, the use of the motor
learning farm framework for the use cases is discussed.

5.1 Learn Via Point Movement with RL

In the course of conducting the experiments, an adapted procedure to the method presented in Chapter
3 was developed. This method proposes a scaling of the DMP weights with the increasing progression
of the canonical system. For this, the weight vector of each DMP was scaled by the vector cscale using
the Hadamard product, as shown in (55), before rolling it out. Here, the vector cscale has a logarithmic
increasing appearance from 1 to 0.8ax. This idea compensates for the decay of the canonical system,
which leads to small weights, about ±102, near the initial state and to huge weights, about ±105, at the
end of the trajectory. The problem with the non-scaled weights here is that the DMPs combined with
CMA-ES have issues with convergence and, in some cases, never converge to the desired movement
trajectories.

wdmp = xi ◦ cscale, (55)
with cscale = [1, . . . , 0.8ax]

T .

For verification purposes, 5 trajectories were learned using the new and old methods. In the figures,
the results for the cost function, Figures 12a and 13a, and the trajectories of the position, Figures
12b and 13b, are shown. Furthermore, it should be noted that there are no differences between the
calculation times, as they require, on average, 3 minutes for 200, 8 minutes for 500 and 40 minutes for
2500 iterations. It is also clear that the time scales linearly so that parallel computing can accelerate the
calculations.
Unfortunately, the assumed effects could not be achieved, and the adapted method works as well as

the non-adapted one. Moreover, the results were distorted due to an outdated version of the NumPy
method. More precisely, the least square linear equation solver was changed, causing a flag mistakenly
not to be set. As a result, small singular values of the matrix were not calculated correctly but set
directly to zero, causing the convergence properties of the CMA-ES to no longer work correctly. As a
comparison, the results of a trajectory learned with 200 iterations are given for both the scaled and
non-scaled methods. Here it is evident that no improvement can be achieved. Therefore, the algorithm
presented in Rueckert and d’Avella (2013) is used for the remaining computations.

start 1 2 3 4 goal
x (m) 0.75 0.78 1.12 1.15 0.90 0.55
y (m) 0.02 0.60 0.37 -0.15 -0.53 -0.57
z (m) 1.87 1.70 1.45 1.20 1.20 1.45
t (s) 0 2 4 6 8 10

Table 3: This table lists the start, goal and via-points of the learned trajectory.
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(a) Cost Function 200 scaled

(b) DMPs 200 scaled

Figure 12: The images show both the cost functions and the trajectories learned using the adapted method for 200
iterations.
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(a) Cost Function 200 scaled

(b) DMPs 200 scaled

Figure 13: The images show both the cost functions and the trajectories learned using the adapted method for 200
iterations.
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Figure 14: The images shows the trajectories in task space learned for 2500 iterations.

As a first application of the motor learning framework, trajectories with 4 via points were generated in
the task space. In each case, 5 trajectories with 500 iterations were learned and subsequently averaged
to generate reproducible trajectories. For this purpose, 3 DMPs, one for each dimension in Cartesian
space, each with 25 Gaussian basis functions. The τ was set to 10 seconds. The initial position of the
Franka robot was chosen as the start point, and all waypoints, as well as the goal point, are described in
Table 3. For the experiment, the penalties for the target, as well as on the waypoints, were set to 105,
the final velocity is supposed to be 0, and the penalty is 103. Finally, a penalty on excessive acceleration
was set, which was implemented similarly to the control penalty; this is 10−2 for each element. These
values were also used for the comparisons between scaled and non-scaled methods. The results of this
experiment can be seen in Figure 14.

5.2 Imitate Robotic Movements with Dynamic Movement Primitives

For the application of imitation learning, 20 trajectories each were generated using the RL method. The
four intermediate points were varied with a Gaussian distribution ofN(0, 0.052). All these 20 trajectories
were checked to see if they were entirely within the workspace, which excluded 8 movements. With the
rest, simulations were performed, and the end-effector’s position was recorded.
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(a) Imitation Learning with Ridge Regression (b) jerk optimized imitation learning

Figure 15: These figures show the results of imitation learning.

Afterwards, the recordings were averaged, and various imitation learning methods were performed.
The figures ABB, the results for the standard ridge regression and the adapted regression with jerk
optimization are shown. The imitated regression is almost perfect. The trajectory is not completely
imitated in the second method but flattened from halfway. This flattening could be due to the non-
optimized hyperparameter λ.

5.3 Uses Cases

At the beginning of this thesis, three use cases for the motor framework were defined. Unfortunately, no
experiments could be performed on the real robot due to hardware problems with the robot’s control
unit. These problems could only be solved at the end of the development period of this thesis. Therefore,
only the experiments are described for the use cases "Research" and "Industry", which will be carried
out afterwards.

5.3.1 Teaching

The first use case, "Teaching", has been completely processed. First, the task of the hypothetical course
described in 1.4.1 is described in more detail. Then, CoppeliaSim was used as a simulation program
for this application, and the communication was done with the message library ZMQ. For this purpose,
a complete robot model was implemented in Python, starting with programming the transformations
for the Denavit-Hartenberg parameters and the forward kinematics. Subsequently, a Jacobian Inverse
Controller was developed, which, however, is not used due to singularity issues. Instead, the inverse
controller of CoppeliaSim has been applied. In Figure 16, the three-dimensional end-effector motion is
shown. This trajectory was calculated using the RL algorithm as a task space problem.
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Figure 16: This figure displays the trajectories of the desired path and the path performed by the CoppeliaSim inverse
controller.

The simulation experiments with ROS could not be fully completed. However, these will be completed,
and the experiments following the master thesis will therefore not be discussed in further detail.

5.3.2 Industry

In the "Industry" use case, the focus will be on applying imitation learning. For this purpose, several
movements are to be demonstrated by the robot operator. Conceivable demonstrations would be, for
example, a simple industrial application, such as a pick and place process. A ROS Publisher is required,
which records the joint angles. Subsequently, the data is averaged for each time and learned as an
imitation using one of the two implemented regression analyses.

5.3.3 Research

The definition of experiments for the use case "research" is relatively complex since, in the end, only the
simultaneous application of actual and simulated robots is to be tested. Nevertheless, the experiments
from the "Teaching" and "Research" use cases can be used. Subsequently, the research of the Chair of
Cyber-Physical Systems can be supported directly, and experiments in the field of motor control of serial
robots can be immediately performed.
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6 Discussion

This chapter reviews the results of the thesis. The methods are evaluated, and possible further work
is discussed. The core task of the motor learning framework, the trajectory generation, could be
implemented successfully. Both methods, the reinforcement learning algorithm and the imitation
learning, work in the task space.

Reinforcement Learning However, only the trajecotry of the position and not the orientation of the
end-effector were considered. The motion in task space is implemented well, but the movement is still
unstable, due for actual tasks since no orientation of the end effector can be determined. For this reason,
the generated movements of the end-effector are not entirely free of oscillations. Therefore, trajectories
with fewer iterations were generated using the reinforcement learning algorithm and then averaged to
obtain better results. As a result, the averaged trajectories have fewer oscillations, and thus the motion
of the simulated robot is much smoother than before..

Imitation Learning In imitation learning, the benefit of jerk optimization could not be established
because the trajectories used do not have any particular problems with jerk. Therefore the much higher
computational cost is not worth it for the experiments performed. In addition, the trajectories are
guided to the goal value at an early stage and thus do not perform the intended movement. However,
ridge regression calculation produces desired results with very brief calculation times. In particular, the
method should be further tested with the real robot.

Framework In conclusion, it is questionable whether the use of CoppeliaSim is helpful in the context
of the Motor Learning Framework. CoppeliaSim is currently only used to visualise waypoints and for
low-level communication via ZMQ. When using ROS, the software libraries of Franka Emika are used,
which use Gazebo as simulation. Therefore, in the application of ROS, CoppeliaSim is only used to
visualise the robot and the waypoints.

6.1 Conclusion

In this thesis, a motor control learning framework was developed. This framework should facilitate
serial robots, especially the Panda robot arm of the company Franka Emika GmbH. For the generation
of motion trajectories, two different approaches were chosen. Here, movements were modelled by
Dynamic Movement Primitives and their weights were calculated using two learning methods. The
reinforcement algorithm uses a policy optimizer, which uses the CMA-ES. The optimizer iteratively
adjusts the weights of the DMPs based on a cost function. Furthermore, regression models for imitating
motion demonstrations can be used.

Use Cases Additionally, three use cases, called "teaching", "industry", and "research", were defined
for which the framework can be applied. However, due to hardware issues with the control unit of the
real Panda robot, only the use case "teaching" could be considered, and the other two will be reviewed
after the master thesis has been completed.

Adapted Reinforcement Learning In the course of the conducted waypoint experiment, an adapted
version of the method of Rueckert and d’Avella (2013) was developed and evaluated. The weights of the
dynamic movement primitives were scaled over the runtime of the canonical system to compensate for
the decay. The idea of the adapted method was to achieve better and faster convergence properties for
the DMPs. Unfortunately, the desired effects could not be proven because even after only 200 iterations,
the performance of both methods was the same, thus no improvement could be achieved. The original
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assumption was supported by using an outdated Numpy function, however, the performance benefits
could be eroded by using the newer version.

Reinforcement Learning Nonetheless, waypoint experiments were conducted in Task Space. The
experiments demonstrated that the generation by the proposed reinforcement learning algorithm could
create smooth and nearly oscillation-free motions. Furthermore, the use is straightforward. Only the
waypoints have to be defined and the temporal scaling. All other parameters can be taken from the
appendix and have to be adapted only marginally to the experiment.

Imitation Learning Finally, an experiment on the method of imitation learning was performed. First,
trajectories were generated with the reinforcement learning algorithm, in which the positions of the
waypoints varied slightly in each case and performed in a simulation. Then, the joint angle data were
recorded, and two different regression models were used to computed trajectory models from the
demonstrations. For the regression, classical ridge regression was used to optimize the jerk. Therefore,
the third derivatives of the basis functions were utilized instead of the identity matrix.

6.2 Future Work

As further work, the evaluation of the two remaining use cases, "Industry" and "Research", is planned.
In particular, the application of linking actual and simulated robots is not an easy task due to the reality
gap.

Motion Capturing Therefore, an extension of the Motor Control Learning Framework by an interface
to the OptiTrack system, a camera-based motion capturing system used at the Chair of Cyber-Physical
Systems. This extension could make it more convenient to demonstrate trajectories using optical markers
of the motion capturing system. Thus, the movements of an arm can be recorded directly and imitaiton
learning can be applied to real applications, for example the use of tools.

Paralell Computing and ProMP Furthermore, optimizing the reinforcement algorithm concerning
parallel computing would be beneficial, reducing the computation times. Also, the Dynamic Movement
Primitives should be evaluated, so the convergence properties of the RL algorithm could be further
improved with Probabilistic Movement Primitives (ProMPs). In addition, the use of ProMPs allows the
application of near-real-time systems and the use of planning algorithms.

Application to other robots In addition, for the application of robots in actual experiments, the
possibility of using grippers or robot hands is necessary. For this purpose, the motor control learning
framework should also be extended. In addition, the application to the different robots of the Cyber-
Physical Systems chair will be performed to demonstrate the universal usability of the framework.
Consequently, suitable parameters for the respective robot can be determined and the motor learning
framework will be further improved.

Force Control Finally, force control is to be added to the framework. Thereby, the application of the
robots for collaborative use should be improved. Movement primitives can also describe force control
trajectories, but the implementation is more complicated than controlling by joint angle or velocity.
Nevertheless, it enables even broader use of the robot and many more applications that are not possible
through conventional controllers.
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A APPENDIX ONE

A.1 Additional Results

In this section, further results of the trajectory calculation are given. The maximum number of iterations,
100 and 500, was chosen. Furthermore, a 3D trajectory calculated by imitation learning is shown, and
the 3D trajectory generated by the Reinforcement Learning algorithm with 100 iterations.
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(a) Cost Function 100

(b) DMPs 100

Figure 17: The images show both the cost functions and the trajectories learned using the adapted method for 100
iterations.
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(a) Cost Function 500

(b) DMPs 500

Figure 18: The images show both the cost functions and the trajectories learned using the adapted method for 500
iterations.
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(a) Trajectory of an imitated path.

(b) Trajectory of the path learned with 100 iterations.

Figure 19: This Figure shows two 3D trajectories, (a) displays the imitated path and (b) a path learned with 100
iterations.
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A.2 Code

In the following section, the most important code of the framework is given. The purpose of this is to
provide a deeper understanding of the framework.

A.2.1 Franka Robot

1 import numpy as np
2 import sympy as sp
3

4 # from Franka_ZMQ import FrankaZMQ
5 from CPS_WS . s r c . cps_framework . s r c . Franka_ZMQ import FrankaZMQ
6

7

8 c l a s s FrankaRobot :
9 def _ _ i n i t _ _ ( s e l f , com="ZQM" , i n v e r s e _ c on t r o l l e r = " IK " ) :
10 # Communication
11 i f com == "ZQM" :
12 s e l f . com = FrankaZMQ()
13 s e l f . com_type = com
14 e l i f com == "ROS" :
15 pass
16 e l s e :
17 r a i s e ValueError ( " Communication s t y l e not found " )
18 # Denavit Hartenberg Parameter
19 s e l f . a_DH = [0 , 0 , 0 , 0.0825 , −0.0825, 0 , 0.088 , 0]
20 s e l f . d_DH = [0.333 , 0 , 0.316 , 0 , 0.384 , 0 , 0 , 0.107]
21 s e l f . alpha_DH = [0 , −sp . p i / 2 , sp . p i / 2 , sp . p i / 2 , −sp . p i / 2 ,

sp . p i / 2 , sp . p i / 2 , 0]
22

23 # Jo in t c on s t r a i n t s
24 s e l f . q_max = np . array ([2.8973 , 1.7628 , 2.8973 , −0.0698, 2.8973 ,

3.7525 , 2.8973])
25 s e l f . q_min = np . array ([−2.8973 , −1.7628, −2.8973, −3.0718,

−2.8973, −0.0175, −2.8973])
26 s e l f . dq_max = np . array ([2.1750 , 2.1750 , 2.1750 , 2.1750 , 2.6100 ,

2.6100 , 2.6100])
27 s e l f . ddq_max = np . array ([15 , 7 .5 , 10 , 12.5 , 15 , 20 , 20])
28

29 # Conf igura t ions I n i t i a l i z a t i o n
30 s e l f . theta1 , s e l f . theta2 , s e l f . theta3 , s e l f . theta4 , s e l f . theta5 ,

s e l f . theta6 , s e l f . theta7 = \
31 sp . symbols ( ’ theta_1 theta_2 theta_3 theta_4 theta_5 theta_6

theta_7 ’ , r e a l=True )
32 s e l f . the ta = sp . Matrix ([ s e l f . theta1 , s e l f . theta2 , s e l f . theta3 ,
33 s e l f . theta4 , s e l f . theta5 , s e l f . theta6 ,

s e l f . theta7 ])
34

35 # region Forward Kinemat ics I n i t i a l i z a t i o n
36 s e l f . TE = None # Transformation matr ix end−e f f e c t o r
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37 s e l f . pE = None # Pos i t i on end−e f f e c t o r
38 s e l f . j a cob ian = None
39 # endregion
40 s e l f . f o rward_k inemat i c s_ in i t ( )
41

42 # Inver se Kinemat ics
43 s e l f . _e ta_ jacob ian = 0.1
44

45 # Sta t e s
46 s e l f . _ t h e t a _ s t a t e = [0 , 0 , 0 , 0 , 0 , np . p i /2 , np . p i /4]
47 s e l f . _p_ende f f e c t o r _ s t a t e = None
48 s e l f . s e t _ i n i t i a l _ p o s e ()
49

50 # Inver se Con t ro l l e r Type
51 s e l f . _ i n v e r s e _ c on t r o l l e r = i n v e r s e _ c on t r o l l e r
52

53 def denav i t_har tenberg_matr ix ( s e l f , dof_nr ) :
54 t r ans = s e l f . Trans ( s e l f . a_DH[ dof_nr ] , 0 , s e l f . d_DH[ dof_nr ])
55 rx = s e l f . Rot_x ( s e l f . alpha_DH[ dof_nr ])
56 rz = s e l f . Rot_z ( s e l f . the ta [ dof_nr ])
57 re turn rx @ trans @ rz
58

59 def fo rward_k inemat i c s_ in i t ( s e l f ) :
60 _p0 = sp . Matrix ([0 , 0 , 0 , 1])
61 # Transformat ions
62 _T1 = s e l f . denav i t_har tenberg_matr ix (0)
63 _T2 = _T1 ∗ s e l f . denav i t_har tenberg_matr ix (1)
64 _T3 = _T2 ∗ s e l f . denav i t_har tenberg_matr ix (2)
65 _T4 = _T3 ∗ s e l f . denav i t_har tenberg_matr ix (3)
66 _T5 = _T4 ∗ s e l f . denav i t_har tenberg_matr ix (4)
67 _T6 = _T5 ∗ s e l f . denav i t_har tenberg_matr ix (5)
68 _T7 = _T6 ∗ s e l f . denav i t_har tenberg_matr ix (6)
69 s e l f . TE = _T7 ∗ s e l f . Trans ( s e l f . a_DH[7] , 0 , s e l f . d_DH[7])
70

71 s e l f . pE = s e l f . TE ∗ _p0
72 s e l f . pE . row_del (3)
73

74 # jacob ian
75 s e l f . j a cob ian = s e l f . pE . j acob ian ( s e l f . the ta )
76

77 def forward_k inemat ics_eva luate ( s e l f , t he ta_eva l ) :
78 _pE_eval = s e l f . pE . subs ({ s e l f . theta1 : the ta_eva l [0] ,
79 s e l f . theta2 : the ta_eva l [1] ,
80 s e l f . theta3 : the ta_eva l [2] ,
81 s e l f . theta4 : the ta_eva l [3] ,
82 s e l f . theta5 : the ta_eva l [4] ,
83 s e l f . theta6 : the ta_eva l [5] ,
84 s e l f . theta7 : the ta_eva l [6]})
85 re turn _pE_eval . e v a l f ( )
86
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87 # Jacobian inve r s e con t ro l
88 def j a cob i an_ inve r s e_eva lua t e ( s e l f , t he ta_eva l ) :
89 _ jacob ian_eva l = s e l f . j a cob ian . subs ({ s e l f . theta1 : the ta_eva l [0] ,
90 s e l f . theta2 : the ta_eva l [1] ,
91 s e l f . theta3 : the ta_eva l [2] ,
92 s e l f . theta4 : the ta_eva l [3] ,
93 s e l f . theta5 : the ta_eva l [4] ,
94 s e l f . theta6 : the ta_eva l [5] ,
95 s e l f . theta7 : the ta_eva l [6]})
96

97 #pr i n t ( _ j acob ian_eva l )
98 _ j a cob i an_ inve r se = np . l i n a l g . pinv ( _ jacob ian_eva l )
99 re turn _ j a cob i an_ inve r se . e v a l f ( )
100

101 def jacob ian_ inver se_ inc rement ( s e l f , next_goal , record ing ) :
102

103 i f s e l f . _ i n v e r s e _ c on t r o l l e r == " IK " :
104 _ j a cob i an_ inve r se = s e l f . j a cob i an_ inve r s e_eva lua t e ( s e l f .

t h e t a _ s t a t e )
105 _de l ta_pose = s e l f . de l ta_pose ( next_goal )
106 _de l ta_q = np . dot ( _ jacob ian_ inver se , _de l ta_pose )
107

108 _e r ro r = 1
109

110 while _e r ro r > 0.01:
111 _new_q = s e l f . t h e t a _ s t a t e + s e l f . e t a_ j acob ian ∗ _de l ta_q
112

113 s e l f . _p_ende f f e c t o r _ s t a t e = s e l f .
forward_k inemat ic s_eva luate (_new_q)

114 s e l f . _ t h e t a _ s t a t e = _new_q
115

116 _e r ro r = np . l i n a l g . norm( s e l f . de l ta_pose ( next_goal ) )
117

118 s e l f . com . s e t _ j o i n t s _ v a l u e s ( s e l f . _ t h e t a _ s t a t e )
119

120 record ing [ ’ Time ’ ] = np . append( record ing [ ’ Time ’ ] , s e l f . com
. ge t_s imula t ion_t ime () )

121

122 # add new s t a t e s and sim time
123 i f record ing [ ’ Type ’ ] == " j o i n t " :
124 record ing [ ’ S t a t e s ’ ] = np . hs tack (( record ing [ ’ S t a t e s ’ ] ,

s e l f . com . g e t _ j o i n t _ v a l u e s () ) )
125

126 e l i f record ing [ ’ Type ’ ] == " task " :
127 _new_states = s e l f . com . ge t _ob j e c t _po s i t i on ( ’ /

Panda_tip ’ )
128 _new_states = _new_states [ : , np . newaxis ] . T
129 record ing [ ’ S t a t e s ’ ] = np . vs tack (( record ing [ ’ S t a t e s ’ ] ,

_new_states ) )
130
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131 e l i f s e l f . _ i n v e r s e _ c on t r o l l e r == " CoppeliaSim " :
132

133 _e r ro r = 1
134

135 while _e r ro r > 0.05:
136 de l ta_x = s e l f . compute_delta_x ( next_goal )
137 _e r ro r = np . l i n a l g . norm( de l ta_x )
138

139 s e l f . move_IK_target ( de l ta_x )
140

141 record ing [ ’ Time ’ ] = np . append( record ing [ ’ Time ’ ] , s e l f . com
. ge t_s imula t ion_t ime () )

142

143 # add new s t a t e s and sim time
144 i f record ing [ ’ Type ’ ] == " j o i n t " :
145 record ing [ ’ S t a t e s ’ ] = np . hs tack (( record ing [ ’ S t a t e s ’ ] ,

s e l f . com . g e t _ j o i n t _ v a l u e s () ) )
146

147 e l i f record ing [ ’ Type ’ ] == " task " :
148 _new_states = s e l f . com . ge t _ob j e c t _po s i t i on ( ’ /

Panda_tip ’ )
149 _new_states = _new_states [ : , np . newaxis ] . T
150 record ing [ ’ S t a t e s ’ ] = np . vs tack (( record ing [ ’ S t a t e s ’ ] ,

_new_states ) )
151

152 e l s e :
153 r a i s e ValueError ( ’ This i nve r s e c on t r o l l e r i s not implemented !

’ )
154

155 re turn record ing
156

157 def compute_delta_x ( s e l f , nex t _pos i t i on ) :
158 _cu r ren t_pos i t i on_ee = s e l f . com . ge t _ob j e c t _po s i t i on ( ’ / Panda_tip ’ )
159 re turn nex t_pos i t i on − _cur ren t_pos i t i on_ee
160

161 def move_IK_target ( s e l f , de l ta_x ) :
162 _cu r r en t _po s i t i on = s e l f . com . g e t _ob j e c t _po s i t i on ( ’ / Panda_target ’ )
163 _new_posit ion = _cu r r en t _po s i t i on + s e l f . e t a_ j acob ian ∗ de l ta_x
164 s e l f . com . s e t _ ob j e c t _ po s i t i o n ( ’ / Panda_target ’ , _new_posit ion )
165

166 def j a cob i an_ inve r s e_ con t ro l ( s e l f , t r a j e c t o r y , record ing_type=" task " )
:

167 _time = np . ar ray ([0])
168 _ s t a t e _a r r a y = None
169 i f record ing_type == " j o i n t " :
170 _ s t a t e _a r r a y = s e l f . com . g e t _ j o i n t _ v a l u e s ()
171

172 e l i f record ing_type == " task " :
173 _ s t a t e _a r r a y = s e l f . com . g e t _ob j e c t _po s i t i on ( ’ / Panda_tip ’ )
174 _ s t a t e _a r r a y = _s t a t e _a r r a y [ : , np . newaxis ] . T
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175

176 e l s e :
177 r a i s e ValueError ( " chosse between ’ j o i n t ’ or ’ t a sk ’ as

record ing type " )
178

179 record ing = { ’ Type ’ : recording_type , ’ Time ’ : _time , ’ S t a t e s ’ :
_ s t a t e _a r r a y }

180

181 f o r t in range ( t r a j e c t o r y . shape [1]) :
182 record ing = s e l f . j a cob ian_ inver se_ inc rement ( t r a j e c t o r y [ : , t ] ,

record ing )
183

184 p r i n t ( ’ T r a j e c t o r y f i n i s h ed ! ’ )
185 re turn record ing
186

187 # Po s i t i o n s
188 def r e s e t _ t a r ge t _po se ( s e l f ) :
189 # re s e t Panda Target Po s i t i on
190 i f s e l f . com == "ZMQ" :
191 _current_ee_pose = s e l f . com . ge t _ob j e c t _po s i t i on ( ’ / Panda_tip ’ )
192 s e l f . com . s e t _ ob j e c t _ po s i t i o n ( ’ Panda_target ’ , _current_ee_pose

)
193

194 def s e t _ i n i t i a l _ p o s e ( s e l f ) :
195 _the ta = sp . Matrix ( s e l f . t h e t a _ s t a t e )
196 _p_E_sta te = s e l f . forward_k inemat ics_eva luate ( _ the ta )
197

198 # Element convers ion to F loa t
199 _ t h e t a _ f l o a t = []
200 f o r i in _ the ta :
201 _ t h e t a _ f l o a t . append( f l o a t ( i ) )
202

203 s e l f . _ t h e t a _ s t a t e = _ th e t a _ f l o a t
204 s e l f . _p_ende f f e c t o r _ s t a t e = _p_E_state
205

206 s e l f . com . s e t _ j o i n t s _ v a l u e s ( s e l f . _ t h e t a _ s t a t e )
207

208 def de l ta_pose ( s e l f , next_goal ) :
209 _de l ta_x = next_goal − s e l f . p _ende f f e c t o r _ s t a t e
210 re turn _de l ta_x
211

212 def generate_random_point_in_workspace ( s e l f ) :
213 _angles = []
214 f o r i in range ( s e l f . q_min . s i z e ) :
215 _rand = np . random . uniform ( low=s e l f . q_min[ i ] , high=s e l f . q_max[

i ] , s i z e=1)
216 _angles . append( _rand [0])
217

218 _pose = s e l f . forward_k inemat ics_eva luate ( _angles )
219
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220 _pose_ f l oa t = l i s t ( )
221 f o r i in _pose :
222 _pose_ f l oa t . append( f l o a t ( i ) )
223

224 re turn _pose
225

226 # generate po int ob j e c t a t cur ren t po s i t i on in ZMQ
227 def gen_cu r r en t_pos i t i on_po in t _ob j e c t ( s e l f , name=" /p0 " ) :
228 i f s e l f . com_type == "ZMQ" :
229 # transform the ende f f e c to r pose to the coord inate system of

the baseframe
230 _pose = s e l f . t ransform_to_base_frame ( s e l f .

_p_ende f f e c t o r _ s t a t e )
231 _pose_ f l oa t = s e l f . sympy_to_f loat ( _pose )
232

233 i f s e l f . com . sim . ge tOb jec t (name , { ’ noError ’ : True }) == −1:
234 s e l f . com . sim . createDummy (0.04)
235

236 _handle = s e l f . com . sim . ge tOb jec t ( ’ /Dummy ’ )
237 _panda_handle = s e l f . com . sim . ge tOb jec t ( ’ /Panda ’ )
238

239 s e l f . com . sim . s e tOb j e c tA l i a s ( _handle , name)
240 s e l f . com . sim . s e tOb j e c t Po s i t i on ( _handle , _panda_handle ,

_pose_ f l oa t )
241 s e l f . com . sim . se tOb jec tCo lo r ( _handle , 0 , s e l f . com . sim .

colorcomponent_ambient_dif fuse , [ 0 . , 1 . , 0 . ] )
242 e l s e :
243 s e l f . com . sim . removeObject ( s e l f . com . sim . getObjectHandle (

name) )
244 s e l f . g en_cu r r en t_pos i t i on_po in t _ob j e c t ()
245

246 re turn _pose_ f l oa t
247

248 e l s e :
249 r a i s e NotImplemented
250

251 # region Spa t i a l Transformat ions
252 @staticmethod
253 def Rot_x ( phi ) :
254 _R = sp . Matrix ( [ [1 , 0 , 0 , 0] ,
255 [0 , sp . cos ( phi ) , −sp . s i n ( phi ) , 0] ,
256 [0 , sp . s i n ( phi ) , sp . cos ( phi ) , 0] ,
257 [0 , 0 , 0 , 1]])
258 re turn _R
259

260 @staticmethod
261 def Rot_y ( phi ) :
262 _R = sp . Matrix ( [ [ sp . cos ( phi ) , 0 , −sp . s i n ( phi ) , 0] ,
263 [0 , 1 , 0 , 0] ,
264 [ sp . s i n ( phi ) , 0 , sp . cos ( phi ) , 0] ,

Page 57 of 98



A Motor Control Learning Framework for Cyber-Physical-Systems

265 [0 , 0 , 0 , 1]])
266 re turn _R
267

268 @staticmethod
269 def Rot_z ( phi ) :
270 _R = sp . Matrix ( [ [ sp . cos ( phi ) , −sp . s i n ( phi ) , 0 , 0] ,
271 [ sp . s i n ( phi ) , sp . cos ( phi ) , 0 , 0] ,
272 [0 , 0 , 1 , 0] ,
273 [0 , 0 , 0 , 1]])
274 re turn _R
275

276 @staticmethod
277 def Trans (a , b , c ) :
278 _T = sp . Matrix ( [ [1 , 0 , 0 , a ] ,
279 [0 , 1 , 0 , b ] ,
280 [0 , 0 , 1 , c ] ,
281 [0 , 0 , 0 , 1]])
282 re turn _T
283

284 def transform_to_base_frame ( s e l f , vec to r ) :
285 i f i s i n s t a n c e ( vector , l i s t ) :
286 vec to r = np . ar ray ( vec to r )
287

288 vec to r = np . append( vector , 0)
289 _trans formed_vector = np . dot ( s e l f . Rot_y (np . p i /2)@self . Rot_x (np . p i

) , vec to r )
290

291 re turn _t rans formed_vector [ :3 ]
292

293 # endregion
294

295 # region Se t t e r Get te r
296 @property
297 def e ta_ j acob ian ( s e l f ) :
298 re turn s e l f . _e ta_ jacob ian
299

300 @eta_jacobian . s e t t e r
301 def e ta_ j acob ian ( s e l f , value ) :
302 s e l f . _e ta_ jacob ian = value
303

304 @property
305 def t h e t a _ s t a t e ( s e l f ) :
306 re turn s e l f . _ t h e t a _ s t a t e
307

308 @property
309 def p_ende f f e c t o r _ s t a t e ( s e l f ) :
310 re turn s e l f . _p_ende f f e c t o r _ s t a t e
311 # endregion
312

313 # region u t i l i t y
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314 @staticmethod
315 def sympy_to_f loat ( vec to r ) :
316 _ v e c t o r _ f l o a t = []
317 f o r i in vec to r :
318 _ v e c t o r _ f l o a t . append( f l o a t ( i ) )
319

320 re turn _ v e c t o r _ f l o a t
321

322 # endregion
323

324

325 i f __name__ == " __main__ " :
326 robo = FrankaRobot ()
327 p r i n t ( robo . com . ge t _ j o i n t _ v a l u e s )

A.2.2 Franka ZMQ

1 # from zmqRemoteApi import RemoteAPIClient
2 from CPS_WS . s r c . cps_framework . s r c . zmqRemoteApi import RemoteAPIClient
3 import numpy as np
4

5

6

7 c l a s s FrankaZMQ :
8 def _ _ i n i t _ _ ( s e l f ) :
9 # c l i e n t setup
10 s e l f . c l i e n t = RemoteAPIClient ( ’ l o c a l ho s t ’ , 23000)
11 s e l f . sim = s e l f . c l i e n t . ge tOb jec t ( ’ sim ’ )
12

13 # Object handles
14 s e l f . _panda_base = s e l f . sim . getObjectHandle ( ’ /Panda ’ )
15 s e l f . _panda_tip = s e l f . sim . getObjectHandle ( ’ / Panda_tip ’ )
16

17 s e l f . _panda_ jo in t s = []
18 s e l f . _ n r _ j o i n t s = 7
19 f o r i in range (1 , s e l f . _ n r _ j o i n t s+1) :
20 _joint_name = ’ / Panda_jo int ’ + s t r ( i )
21 s e l f . _panda_ jo in t s . append( s e l f . sim . getObjectHandle (

_joint_name ) )
22

23 # region Se t t e r and Get te r
24 @property
25 def panda_ jo in t s ( s e l f ) :
26 re turn s e l f . _panda_ jo in t s
27 # endregion
28

29 def g e t _ j o i n t _ v a l u e s ( s e l f ) :
30 _angles = np . zeros ((7 , 1) )
31 f o r idx , i in enumerate ( s e l f . panda_ jo in t s ) :
32 _angles [ idx ] = s e l f . sim . g e t J o i n t Po s i t i o n ( i )
33 re turn _angles
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34

35 def ge t_s imula t ion_t ime ( s e l f ) :
36 re turn s e l f . sim . getSimulat ionTime ()
37

38 def s e t _ j o i n t s _ v a l u e s ( s e l f , new_angles ) :
39 f o r i in range ( s e l f . _ n r _ j o i n t s ) :
40 _ jo in t_hand le = s e l f . panda_ jo in t s [ i ]
41 _ang l e s _ f l o a t = f l o a t ( new_angles [ i ])
42 s e l f . sim . s e t J o i n t P o s i t i o n ( _ jo in t_handle , _ ang l e s _ f l o a t )
43

44 def s e t _ ob j e c t _ po s i t i o n ( s e l f , object_name , new_posit ion ,
r e l a t i v e_ f r ame=−1):

45 _ob jec t_handle = s e l f . sim . getObjectHandle ( object_name )
46 s e l f . sim . s e tOb j e c t Po s i t i on ( _object_handle , r e l a t i ve_ f rame ,

new_posit ion . t o l i s t ( ) )
47

48 def ge t_ob j ec t_mat r i x ( s e l f , object_name , r e l a t i v e_ f r ame=−1):
49 _ob jec t_handle = s e l f . sim . getObjectHandle ( object_name )
50 re turn np . ar ray ( s e l f . sim . ge tObjec tMatr ix ( _object_handle ,

r e l a t i v e_ f r ame ) )
51

52 def g e t _ob j e c t _po s i t i on ( s e l f , object_name , r e l a t i v e_ f r ame=−1):
53 _ob jec t_handle = s e l f . sim . getObjectHandle ( object_name )
54 re turn np . ar ray ( s e l f . sim . ge tOb j e c tPo s i t i on ( _object_handle ,

r e l a t i v e_ f r ame ) )
55

56 # generate po int ob j e c t a t cur ren t po s i t i on

A.2.3 DMP

1 import numpy as np
2 import ma tp lo t l i b . pyp lo t as p l t
3 from abc import ABC, abstractmethod
4 import s c i py . i n t e r po l a t e as s c i i p
5 from sympy import Symbol , d i f f , exp
6

7

8 c l a s s CanonicalSystem :
9 def _ _ i n i t _ _ ( s e l f , dt , dmp_type= ’ d i s c r e t e ’ , ∗∗kwargs ) :
10

11 s e l f . _dt = dt
12 s e l f . _x = 1.0
13

14 # get kwargs
15 s e l f . _a_x = kwargs . get ( ’ a_x ’ , 4 .0)
16 s e l f . _tau = kwargs . get ( ’ tau ’ , 1 .0)
17

18 s e l f . _type = dmp_type
19

20 i f s e l f . _type == ’ d i s c r e t e ’ :
21 s e l f . _ s tep = s e l f . d i s c r e t e _ t ime_ s t ep
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22 s e l f . _run_time = 1.0 ∗ s e l f . _tau
23

24 e l i f s e l f . _type == ’ rhythmic ’ :
25 s e l f . _ s tep = s e l f . rhythmic_t ime_step
26 s e l f . _run_time = 2 ∗ np . p i ∗ s e l f . _tau
27

28 e l s e :
29 r a i s e ValueError ( ’ Pa t t e rn has to be e i t h e r d i s c r e t e or

rhythmic ’ )
30

31 s e l f . _ t ime_s teps = i n t ( s e l f . _run_time / s e l f . _dt )
32 s e l f . _time = np . zeros ( s e l f . t ime_s teps )
33

34 s e l f . _ x _ t r a j e c t o r y = np . empty ( s e l f . t ime_s teps )
35 s e l f . _e r ro r_coup l ing = kwargs . get ( ’ e r ro r_coup l ing ’ , np . ones ( s e l f .

t ime_s teps ) )
36

37 s e l f . r o l l _ ou t ()
38

39 # region CanonicalSystem methods
40 def r e s e t _ s t a t e ( s e l f ) :
41 s e l f . _x = 1.0
42 s e l f . _time = np . zeros ( s e l f . t ime_s teps )
43

44 def d i s c r e t e_ t ime_ s t ep ( s e l f , e r ro r_coup l ing =1.0 , t ime_index=0) :
45 s e l f . _x ∗= np . exp((− s e l f . _a_x ∗ er ro r_coup l ing / s e l f . _tau ) ∗

s e l f . _dt )
46 # s e l f . _x += (− s e l f . _a_x ∗ s e l f . _x ∗ e r ro r_coup l ing ) / s e l f . _tau

∗ s e l f . _dt
47

48 i f t ime_index == 0:
49 s e l f . _time [ t ime_index ] = 0
50 e l i f t ime_index != 0:
51 s e l f . _time [ t ime_index ] = s e l f . t ime [ t ime_index − 1] + s e l f . _dt
52 re turn s e l f . x
53

54 def rhythmic_t ime_step ( s e l f , e r ro r_coup l ing =1.0 , t ime_index=0) :
55 s e l f . _x += s e l f . _dt ∗ e r ro r_coup l ing / s e l f . _tau
56

57 i f t ime_index == 0:
58 s e l f . _time [ t ime_index ] = 0
59 e l i f t ime_index != 0:
60 s e l f . _time [ t ime_index ] = s e l f . t ime [ t ime_index − 1] + s e l f . _dt
61 re turn s e l f . x
62

63 def r o l l _ ou t ( s e l f ) :
64 s e l f . r e s e t _ s t a t e ()
65

66 f o r i in range ( s e l f . t ime_s teps ) :
67 s e l f . _ x _ t r a j e c t o r y [ i ] = s e l f . x
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68 s e l f . _ s tep ( s e l f . _e r ro r_coup l ing [ i ] , i )
69

70 re turn s e l f . _ x _ t r a j e c t o r y
71

72 # endregion
73

74 # region Get te r Se t t e r
75 @property
76 def x ( s e l f ) :
77 re turn s e l f . _x
78

79 @property
80 def x _ t r a j e c t o r y ( s e l f ) :
81 re turn s e l f . _ x _ t r a j e c t o r y
82

83 @property
84 def time ( s e l f ) :
85 re turn s e l f . _time
86

87 @property
88 def s tep ( s e l f ) :
89 re turn s e l f . _ s tep
90

91 @property
92 def t ime_s teps ( s e l f ) :
93 re turn s e l f . _ t ime_s teps
94

95 @property
96 def run_time ( s e l f ) :
97 re turn s e l f . _run_time
98

99 @property
100 def a_x ( s e l f ) :
101 re turn s e l f . _a_x
102 # endregion
103

104

105 c l a s s DMP(ABC) :
106 def _ _ i n i t _ _ ( s e l f , nr_dmps , nr_bfs , dt=0.01 , ∗∗kwargs ) :
107 s e l f . _nr_dmps = nr_dmps
108 s e l f . _nr_bf s = nr_b f s
109 s e l f . _dt = dt
110

111 s e l f . _ v e c t o r _ s i z e = (1 , s e l f . nr_dmps )
112

113 # get s t a r t and goal po in t s
114 s e l f . _y0 = kwargs . get ( ’ y0 ’ , np . zeros ( s e l f . _ v e c t o r _ s i z e ) )
115 s e l f . _g = kwargs . get ( ’ goal ’ , np . ones ( s e l f . _ v e c t o r _ s i z e ) )
116 s e l f . _gdy = kwargs . get ( ’ goal_dy ’ , np . zeros ( s e l f . _ v e c t o r _ s i z e ) )
117
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118 # weights generat ion
119 s e l f . _w_gen = kwargs . get ( ’w_gen ’ , ’ zeros ’ )
120 s e l f . _w = kwargs . get ( ’w ’ , s e l f . r e se t_we ig th () )
121

122 # get important params
123 s e l f . _a_z = kwargs . get ( ’ a_z ’ , 25 ∗ np . ones ( s e l f . _ v e c t o r _ s i z e ) )
124 s e l f . _b_z = kwargs . get ( ’ b_z ’ , s e l f . _a_z / 4)
125 s e l f . _tau = kwargs . get ( ’ tau ’ , 1 .0)
126

127 # i n i t i a l i z e canon ica l system
128 _a_x = f l o a t ( s e l f . _a_z [ : , 0] / 3)
129 s e l f . _cs = CanonicalSystem ( dt=s e l f . _dt , a_x=_a_x , ∗∗kwargs )
130 s e l f . _ t ime_s teps = s e l f . c s . t ime_s teps
131

132 # i n i t i a l i z e s t a t e ve c to r s of
133 s e l f . _y = s e l f . _y0 . copy ()
134 s e l f . _dy = np . zeros ( s e l f . _ v e c t o r _ s i z e )
135 s e l f . _ddy = np . zeros ( s e l f . _ v e c t o r _ s i z e )
136

137 # check dimensions and o f f s e t
138 s e l f . _dimension_checker ()
139 s e l f . _o f f s e t _ checke r ()
140

141 # imi t a t i on l ea rn ing
142 s e l f . y_des = None
143

144 # region DMP methods
145 def _gene ra t e_ s t a r t ( s e l f , y_des ) :
146 _ s t a r t = np . zeros ( s e l f . _ v e c t o r _ s i z e )
147 f o r dim in range ( s e l f . nr_dmps ) :
148 _ s t a r t [ : , dim] = y_des [0 , dim]
149

150 re turn _ s t a r t
151

152 def rese t_we ig th ( s e l f ) :
153 s e l f . random_gen = np . random . de fau l t _ rng ()
154 i f s e l f . _w_gen == ’ zeros ’ :
155 _w = np . zeros (( s e l f . nr_dmps , s e l f . n r_b f s ) )
156

157 e l i f s e l f . _w_gen == ’ random ’ :
158 _w = 200 ∗ s e l f . random_gen . random(( s e l f . nr_dmps , s e l f . n r_b f s )

) − 100
159 e l s e :
160 r a i s e ValueError ( ’ weight genera t ions can be zero or random ’ )
161

162 s e l f . _w = _w
163

164 re turn s e l f . _w
165

166 def r e s e t _ s t a t e s ( s e l f ) :
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167 s e l f . c s . r e s e t _ s t a t e ()
168

169 s e l f . _y = s e l f . _y0 . copy ()
170 s e l f . _dy = np . zeros ( s e l f . _ v e c t o r _ s i z e )
171 s e l f . _ddy = np . zeros ( s e l f . _ v e c t o r _ s i z e )
172

173 def _dimension_checker ( s e l f ) :
174 i f s e l f . y0 . shape [1] != s e l f . _nr_dmps or s e l f . y0 . shape [0] != 1:
175 r a i s e ValueError ( ’ y0 needs the shape [nr_dmps , 1] ’ )
176

177 i f s e l f . g . shape [1] != s e l f . _nr_dmps or s e l f . y0 . shape [0] != 1:
178 r a i s e ValueError ( ’ g needs the shape [nr_dmps , 1] ’ )
179

180 def _o f f s e t _ checke r ( s e l f ) :
181 f o r i in range ( s e l f . _nr_dmps ) :
182 i f abs ( s e l f . y0 [ : , i ] − s e l f . g [ : , i ] ) < 1e−4:
183 s e l f . g [ i ] += 1e−4
184

185 def s tep ( s e l f , e r ro r =0.0 , s pa t i a l _ coup l i ng=None , t ime_index=0) :
186 # step in canon ica l system
187 _er ro r_coup l ing = 1.0 / (1 .0 + er ro r )
188 _x = s e l f . c s . s tep ( e r ro r_coup l ing=_error_coupl ing , t ime_index=

time_index )
189

190 # i n i t i a l i s e ba s i s func t ion
191 _ps i , _sum_psi = s e l f . _genera te_ps i ( _x )
192 f o r dim in range ( s e l f . nr_dmps ) :
193 f = s e l f . _generate_ f ront_ term (_x , dim) ∗ (np . dot ( _ps i , s e l f .

_w[dim , : ] ) )
194 f /= _sum_psi
195

196 # s e l f . _ddy [ : , dim] = s e l f . _a_z [ : , dim] ∗ \
197 # (( s e l f . _b_z [ : , dim] ∗ ( s e l f . g [ : , dim] −

s e l f . _y [ : , dim]) ) −
198 # (− s e l f . gdy [ : , dim] + s e l f . _dy [ : , dim])

) + f
199

200 s e l f . _ddy [ : , dim] = s e l f . _a_z [ : , dim] ∗ \
201 (( s e l f . _b_z [ : , dim] ∗ ( s e l f . g [ : , dim] −

s e l f . _y [ : , dim]) ) − s e l f . _dy [ : , dim])
+ f

202

203 i f s p a t i a l _ coup l i ng i s not None :
204 s e l f . _ddy [ : , dim] += spa t i a l _ coup l i ng [dim]
205

206 s e l f . _dy [ : , dim] += s e l f . _ddy [ : , dim] / s e l f . _tau ∗ s e l f . _dt
∗ _er ro r_coup l ing

207 s e l f . _y [ : , dim] += s e l f . _dy [ : , dim] ∗ s e l f . _dt / s e l f . _tau ∗
_er ro r_coup l ing

208
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209 re turn s e l f . _y , s e l f . _dy , s e l f . _ddy
210

211 def r o l l _ ou t ( s e l f , ∗∗kwargs ) :
212 s e l f . r e s e t _ s t a t e s ()
213

214 _ y _ t r a j e c t o r y = np . zeros (( s e l f . _ t ime_steps , s e l f . nr_dmps ) )
215 _dy_ t r a j e c t o r y = np . zeros (( s e l f . _ t ime_steps , s e l f . nr_dmps ) )
216 _ddy_ t r a j e c to ry = np . zeros (( s e l f . _ t ime_steps , s e l f . nr_dmps ) )
217

218 f o r t in range ( s e l f . c s . t ime_s teps ) :
219 _ y _ t r a j e c t o r y [ t , : ] , _dy_ t r a j e c t o r y [ t , : ] , _ddy_ t r a j e c to r y [ t ,

: ] = s e l f . s tep ( t ime_index=t , ∗∗kwargs )
220

221 re turn _y_ t r a j e c t o r y , _dy_ t ra j e c to ry , _ddy_ t r a j e c to ry
222

223 def _ in t e rpo l a t e_pa th ( s e l f , y_des ) :
224 _path = np . zeros (( s e l f . _ t ime_steps , s e l f . nr_dmps ) )
225 _x = np . l i n spa ce (0 , s e l f . c s . run_time , y_des . shape [0])
226

227 f o r dim in range ( s e l f . nr_dmps ) :
228 _path_generat ion = s c i i p . in terp1d (_x , y_des [ : , dim])
229 f o r t in range ( s e l f . _ t ime_s teps ) :
230 _path [ t , dim] = _path_generat ion ( t ∗ s e l f . _dt )
231

232 re turn _path
233

234 def im i t a t i on_ l e a rn i ng ( s e l f , y_des ) :
235 i f y_des . shape [1] != s e l f . nr_dmps :
236 r a i s e ValueError ( ’ y_des needs the shape [nr_dmps , s e l e c t a b l e

] ! ’ )
237

238 i f y_des . ndim == 1:
239 y_des = y_des . reshape ( s e l f . _ v e c t o r _ s i z e )
240

241 s e l f . _y0 = s e l f . _ gene ra t e_ s t a r t ( y_des )
242 s e l f . _g = s e l f . _generate_goal ( y_des )
243

244 _y_des = s e l f . _ i n t e rpo l a t e_pa th ( y_des )
245 _dy_des = np . grad ien t ( _y_des , a x i s=0) / s e l f . _dt
246 _ddy_des = np . grad ien t ( _dy_des , a x i s=0) / s e l f . _dt
247

248 s e l f . y_des = _y_des . copy ()
249

250 _ f _ t a r g e t = np . zeros (( s e l f . _ t ime_steps , s e l f . nr_dmps ) )
251 f o r dim in range ( s e l f . nr_dmps ) :
252 _ f _ t a r g e t [ : , dim] = s e l f . _tau ∗∗ 2 ∗ _ddy_des [ : , dim] − \
253 s e l f . _a_z [ : , dim] ∗ ( s e l f . _b_z [ : , dim] ∗
254 ( s e l f . g [ : , dim] −

_y_des [ : , dim]) −
s e l f . _tau ∗
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_dy_des [ : , dim])
255

256 s e l f . _generate_weights ( _ f _ t a r g e t )
257

258 # endregion
259

260 # region ab s t r a c t methods
261 @abstractmethod
262 def _generate_ f ront_ term ( s e l f , x , dmp_index ) :
263 pass
264

265 @abstractmethod
266 def _generate_goal ( s e l f , y_des ) :
267 pass
268

269 @abstractmethod
270 def _genera te_ps i ( s e l f , x ) :
271 pass
272

273 @abstractmethod
274 def _generate_weights ( s e l f , f _ t a r g e t ) :
275 pass
276

277 # endregion
278

279 # region Get te r and Se t t e r
280 @property
281 def y0 ( s e l f ) :
282 re turn s e l f . _y0
283

284 @property
285 def g( s e l f ) :
286 re turn s e l f . _g
287

288 @property
289 def nr_b f s ( s e l f ) :
290 re turn s e l f . _nr_b f s
291

292 @property
293 def nr_dmps ( s e l f ) :
294 re turn s e l f . _nr_dmps
295

296 @property
297 def cs ( s e l f ) :
298 re turn s e l f . _cs
299

300 @property
301 def w( s e l f ) :
302 re turn s e l f . _w
303
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304 @property
305 def gdy ( s e l f ) :
306 re turn s e l f . _gdy
307

308 @w. s e t t e r
309 def w( s e l f , value ) :
310 i f value . shape == ( s e l f . nr_dmps , s e l f . n r_b f s ) :
311 s e l f . _w = value
312

313 e l i f value . shape == ( s e l f . nr_dmps ∗ s e l f . nr_bfs , None) or ( s e l f .
nr_dmps ∗ s e l f . nr_bfs , 1) :

314 value = np . reshape ( value , ( s e l f . nr_dmps , s e l f . n r_b f s ) )
315 s e l f . _w = value
316 e l s e :
317 r a i s e ValueError ( ’w needs shape [ s e l f . nr_dmps , s e l f . n r_b f s ]

or [ s e l f . nr_dmps ∗ s e l f . nr_bfs , None] ’ )
318

319 @y0. s e t t e r
320 def y0 ( s e l f , value ) :
321 i f value . shape == ( s e l f . nr_dmps , ) or ( s e l f . nr_dmps , 1) :
322 s e l f . _y0 = value
323 e l s e :
324 r a i s e ValueError ( ’ y0 needs shape (nr_dmps , ) or (nr_dmps , 1) ’ )
325

326 @g. s e t t e r
327 def g( s e l f , value ) :
328 i f value . shape == ( s e l f . nr_dmps , ) or ( s e l f . nr_dmps , 1) :
329 s e l f . _g = value
330 e l s e :
331 r a i s e ValueError ( ’ g needs shape (nr_dmps , ) or (nr_dmps , 1) ’ )
332 # endregion
333

334

335 c l a s s DmpDiscrete (DMP) :
336 def _ _ i n i t _ _ ( s e l f , ∗∗kwargs ) :
337 super (DmpDiscrete , s e l f ) . _ _ i n i t _ _ ( pa t te rn= ’ d i s c r e t e ’ , ∗∗kwargs )
338

339 # d i s c r e t e dmp i n i t i a l i z a t i o n
340 s e l f . _c = np . zeros (( s e l f . nr_bfs , 1) )
341 s e l f . _h = np . zeros (( s e l f . nr_bfs , 1) )
342 s e l f . _genera te_bas i s_ func t ion_parameter s ()
343

344 # imi t a t i on l ea rn ing
345 s e l f . _ r eg re s s i on_ type = kwargs . get ( ’ r eg re s s i on_ type ’ , ’ Schaal ’ )
346 s e l f . _ im i t a t i on_ type = kwargs . get ( ’ im i t a t i on_ t ype ’ , ’ eye ’ )
347 s e l f . _reg_lambda = kwargs . get ( ’ reg_lambda ’ , 1e−12)
348

349 # ps i
350 s e l f . _ps i , _ = s e l f . _genera te_ps i ( s e l f . c s . r o l l _ ou t () )
351
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352 def _genera te_bas i s_ func t ion_parameter s ( s e l f ) :
353 f o r i in range (1 , s e l f . n r_b f s + 1) :
354 _des_c = ( i − 1) / ( s e l f . n r_b f s − 1)
355 s e l f . _c [ i − 1] = np . exp(− s e l f . c s . a_x ∗ _des_c )
356

357 f o r i in range ( s e l f . n r_b f s ) :
358 i f i != s e l f . n r_b f s − 1:
359 s e l f . _h[ i ] = ( s e l f . c [ i + 1] − s e l f . c [ i ] ) ∗∗ (−2)
360 e l s e :
361 s e l f . _h[ i ] = s e l f . _h[ i − 1]
362

363 def _generate_ f ront_ term ( s e l f , x , dmp_index=None) :
364 i f dmp_index i s not None :
365 _s = x ∗ ( s e l f . g [ : , dmp_index ] − s e l f . y0 [ : , dmp_index ])
366

367 e l s e :
368 _s = np . zeros (( s e l f . c s . t ime_steps , s e l f . nr_dmps ) )
369 f o r dim in range ( s e l f . nr_dmps ) :
370 _s [ : , dim] = x ∗ ( s e l f . g [ : , dim] − s e l f . y0 [ : , dim])
371

372 re turn _s
373

374 def _generate_goal ( s e l f , y_des ) :
375 _goal = np . ones ( s e l f . _ v e c t o r _ s i z e )
376 f o r dim in range ( s e l f . nr_dmps ) :
377 _goal [ : , dim] = y_des [−1, dim]
378

379 re turn _goal
380

381 def _genera te_ps i ( s e l f , x ) :
382 _ps i = (np . exp(− s e l f . h ∗ (x − s e l f . c ) ∗∗ 2) ) . T
383

384 i f x . shape == () :
385 _sum_psi = np . sum( _ps i )
386 re turn _psi , _sum_psi
387

388 e l i f x . shape [0] == s e l f . c s . t ime_s teps :
389 _sum_psi = np . sum( _psi , a x i s=1)
390 re turn _psi , _sum_psi
391

392 def p s i _ p l o t ( s e l f , x ) :
393 _s = s e l f . _generate_ f ront_ term (x )
394 _ps i = (np . exp(− s e l f . h ∗ (x − s e l f . c ) ∗∗ 2) ) . T
395 _sum_psi = _sum_psi = np . sum( _psi , a x i s=1)
396

397 _ p s i _ a c t i v a t i o n s = np . zeros (( _ps i . shape [0] , _ps i . shape [1] , _s .
shape [1]) )

398 p r i n t ( _s . shape )
399 f o r t in range (x . shape [0]) :
400 f o r dim in range ( _s . shape [1]) :
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401 _ p s i _ a c t i v a t i o n s [ t , : , dim] = _ps i [ t , : ] / _sum_psi [ t ]
402 _ p s i _ a c t i v a t i o n s [ t , : , dim] ∗= _s [ t , dim]
403

404 re turn _p s i _ a c t i v a t i o n s
405

406 def gene ra t e_p s i _3 rd_de r i va t i v e ( s e l f , x ) :
407 _ , _psi_sum = s e l f . _genera te_ps i ( x )
408

409 _x = Symbol ( ’ x ’ )
410 _h = Symbol ( ’ h ’ )
411 _c = Symbol ( ’ c ’ )
412 _g = Symbol ( ’ g ’ )
413 _y = Symbol ( ’ y ’ )
414

415 _ps i = exp(−_h ∗ ( _x − _c ) ∗∗ 2)
416 _s = _x ∗ ( _g − _y )
417 func = _ps i ∗ _s
418

419 _ps i_dev = np . zeros (( s e l f . c s . t ime_steps , s e l f . nr_bfs , s e l f .
nr_dmps ) )

420

421 f o r dim in range ( s e l f . nr_dmps ) :
422 f o r bf in range ( s e l f . n r_b f s ) :
423 f o r idx , t in enumerate (x ) :
424 p s i _ eva l = func . e v a l f ( subs={_h : f l o a t ( s e l f . h[ bf , : ] ) ,
425 _c : f l o a t ( s e l f . _c [ bf , : ] )

,
426 _g : f l o a t ( s e l f . g [ : , dim])

,
427 _y : f l o a t ( s e l f . y0 [ : , dim

]) })
428

429 p s i _ d i f f = d i f f ( ps i _eva l , _x , 3)
430 _ps i_dev [ idx , bf , dim] = p s i _ d i f f . e v a l f ( subs={_x : t })

/ _psi_sum [ idx ]
431

432 re turn _ps i_dev
433

434 def _generate_weights ( s e l f , f _ t a r g e t ) :
435 _ x _ t r a j e c t o r y = s e l f . c s . r o l l _ ou t ()
436 _ps i , _sum_psi = s e l f . _genera te_ps i ( _ x _ t r a j e c t o r y )
437

438 _s = s e l f . _generate_ f ront_ term ( _x _ t r a j e c t o r y )
439 _sT = _s . T
440

441 i f s e l f . _ r eg re s s i on_ type == ’ Schaal ’ :
442

443 f o r dim in range ( s e l f . nr_dmps ) :
444 _k = s e l f . g [ : , dim] − s e l f . y0 [ : , dim]
445 f o r bf in range ( s e l f . n r_b f s ) :
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446 s e l f . _w[dim , bf ] = np . dot (np . dot ( _sT [dim , : ] , np . diag
( _ps i [ : , b f ]) ) , f _ t a r g e t [ : , dim]) / \

447 (np . dot (np . dot ( _sT [dim , : ] , np .
diag ( _ps i [ : , b f ]) ) , _s [ : , dim])
)

448

449 s e l f . _w = np . nan_to_num( s e l f . _w)
450

451 e l i f s e l f . _ r eg re s s i on_ type == ’ RidgeRegress ion ’ :
452 _regre s s ion_mat r i x = np . zeros (( s e l f . nr_bfs , s e l f . nr_bfs , s e l f

. nr_dmps ) )
453

454 i f s e l f . _ im i t a t i on_ type == ’ eye ’ :
455 f o r dim in range ( s e l f . nr_dmps ) :
456 _regre s s ion_mat r i x [ : , : , dim] = np . eye ( s e l f . n r_b f s )
457

458 e l i f s e l f . _ im i t a t i on_ type == ’ j e r k ’ :
459 _Gamma = s e l f . g ene ra t e_p s i _3 rd_de r i va t i v e ( _ x _ t r a j e c t o r y )
460 f o r dim in range ( s e l f . nr_dmps ) :
461 _regre s s ion_mat r i x [ : , : , dim] = _Gamma[ : , : , dim ] . T @

_Gamma[ : , : , dim]
462

463 e l s e :
464 r a i s e ValueError ( ’ Im i t a t i on_ type can e i t h e r be eye or

j e r k ’ )
465

466 _psi_new = np . zeros (( _ps i . shape [0] , _ps i . shape [1] , s e l f .
nr_dmps ) )

467 f o r dim in range ( s e l f . nr_dmps ) :
468 f o r bf in range ( s e l f . n r_b f s ) :
469 _psi_new [ : , bf , dim] = _ps i [ : , b f ] / _sum_psi ∗ _s [ : ,

dim]
470

471 f o r dim in range ( s e l f . nr_dmps ) :
472 _matr ix = np . l i n a l g . inv ( _psi_new [ : , : , dim ] . T @ _psi_new

[ : , : , dim] + \
473 s e l f . _reg_lambda ∗

_regre s s ion_mat r i x [ : , : , dim])
@ _psi_new [ : , : , dim ] . T

474 s e l f . _w[dim , : ] = np . dot ( _matrix , f _ t a r g e t [ : , dim])
475

476 s e l f . _w = np . nan_to_num( s e l f . _w)
477

478 # region Get te r and Se t t e r
479 @property
480 def c ( s e l f ) :
481 re turn s e l f . _c
482

483 @property
484 def h( s e l f ) :
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485 re turn s e l f . _h
486

487 @property
488 def p s i ( s e l f ) :
489 re turn s e l f . _p s i
490

491 # endregion
492

493

494 i f __name__ == ’ __main__ ’ :
495

496 b f s = 20
497 dmp = DmpDiscrete (nr_dmps=2, nr_b f s=bfs , dt=0.001 , r eg re s s i on_ type= ’

RidgeRegress ion ’ , reg_lambda=0.5 ∗ 1e−5)
498

499 dmp. cs . r o l l _ ou t ()
500 p s i _ a c t i v a t i o n s = dmp. p s i _ p l o t (dmp. cs . x _ t r a j e c t o r y )
501

502 p l t . f i g u r e (1 , f i g s i z e =(10, 3) )
503 p l t . p l o t (dmp. cs . time , dmp. cs . x _ t r a j e c t o r y )
504 p l t . x l abe l ( " time ( s ) " )
505 p l t . y l abe l ( " x value " )
506 p l t . t i g h t _ l a you t ()
507 p l t . s a v e f i g ( ’ CanonicalSystem . png ’ )
508

509 p l t . f i g u r e (2 , f i g s i z e =(10, 3) )
510

511 # p l t . subp lo t (211)
512 f o r i in range (dmp. nr_b f s ) :
513 p l t . p l o t (dmp. cs . time , dmp. p s i [ : , i ] )
514 p l t . x l abe l ( " time ( s ) " )
515 p l t . y l abe l ( " a c t i v a t i o n " )
516 p l t . t i g h t _ l a you t ()
517 p l t . s a v e f i g ( ’ P s i . png ’ )
518

519 p l t . f i g u r e (3 , f i g s i z e =(10, 3) )
520 #p l t . subp lo t (212)
521 f o r i in range (dmp. nr_b f s ) :
522 p l t . p l o t (dmp. cs . time , p s i _ a c t i v a t i o n s [ : , i , 0])
523 p l t . x l abe l ( " time ( s ) " )
524 p l t . y l abe l ( " a c t i v a t i o n " )
525 p l t . t i g h t _ l a you t ()
526 p l t . s a v e f i g ( ’ P s iSca l ed . png ’ )
527

528 # a s t r a i g h t l i n e to t a r g e t
529 path1 = np . s i n (np . arange (0 , 1 , 0.01) ∗ 5)
530 # a st range path to t a r g e t
531 path2 = np . zeros ( path1 . shape )
532 path2 [ i n t ( len ( path2 ) / 2.0) : ] = 0.5
533
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534 dmp. im i t a t i on_ l e a rn i ng ( y_des=np . array ([ path1 , path2 ]) . T)
535 # change the s c a l e of the movement
536 dmp. g [0 , 0] = 3
537 dmp. g [0 , 1] = 2
538

539 y_track , dy_track , ddy_track = dmp. r o l l _ ou t ()
540

541 p l t . f i g u r e (4 , f i g s i z e =(10, 6) )
542 p l t . subp lo t (211)
543 p l t . p l o t ( y_ t rack [ : , 0] , lw=2)
544 p l t . subp lo t (212)
545 p l t . p l o t ( y_ t rack [ : , 1] , lw=2)
546

547 p l t . subp lo t (211)
548 a = p l t . p l o t (dmp. y_des [ : , 0] / path1[−1] ∗ dmp. g [ : , 0] , " r−−" , lw=2)
549 p l t . t i t l e ( " x−coord inate " )
550 p l t . x l abe l ( " time (ms) " )
551 p l t . y l abe l ( " system t r a j e c t o r y " )
552 p l t . legend ([ ’ generated path ’ , ’ de s i red path ’ ] , l o c=" lower r i g h t " )
553 p l t . subp lo t (212)
554 b = p l t . p l o t (dmp. y_des [ : , 1] / path2[−1] ∗ dmp. g [ : , 1] , " r−−" , lw=2)
555 p l t . t i t l e ( " y−coord inate " )
556 p l t . x l abe l ( " time (ms) " )
557 p l t . y l abe l ( " system t r a j e c t o r y " )
558 p l t . legend ([ ’ generated path ’ , ’ de s i red path ’ ] , l o c=" lower r i g h t " )
559 p l t . t i g h t _ l a you t ()
560 p l t . s a v e f i g ( ’ Im i ta t ionLearn ing . png ’ )
561

562 p l t . show()

A.2.4 Experiment Reinforcement Learnig

1 from CPS_WS . s r c . cps_framework . s r c . RL_standard import CpsRl
2 import numpy as np
3 import time
4 import ma tp lo t l i b . pyp lo t as p l t
5 from CPS_WS . s r c . cps_framework . s r c . Franka_Robot import FrankaRobot
6 from csv import D i c tWr i t e r
7 from datet ime import datet ime
8

9

10 def wr i te_weights (nr_dmps , nr_bfs , s ca l ing , n r _ i t e r a t i on , tau , weights ,
rewards , compute_time , way_points , f i lename= ’ s ca l ing_we igh t s . csv ’ ) :

11 with open( fi lename , ’ a+ ’ , newline= ’ ’ ) as wr i t e_ob j :
12 now = datet ime .now()
13 f ie ld_names = [ ’ Time ’ , ’NrDmps ’ , ’ NrBfs ’ , ’ S ca l ing ’ , ’ Tau ’ , ’

N r I t e r a t i on s ’ ,
14 ’ Weights ’ , ’ Rewards ’ , ’ ComputeTime ’ , ’ NrWayPoints ’

, ’ WayPoints ’ ]
15 new_data = { ’ Time ’ : now, ’NrDmps ’ : nr_dmps , ’ NrBfs ’ : nr_bfs , ’

S ca l ing ’ : s ca l ing , ’ Tau ’ : tau ,
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16 ’ N r I t e r a t i on s ’ : n r _ i t e r a t i on , ’ Weights ’ : weights .
t o l i s t ( ) , ’ Rewards ’ : rewards . t o l i s t ( ) , ’
ComputeTime ’ : compute_time ,

17 ’ NrWayPoints ’ : way_points . shape [1] , ’ WayPoints ’ :
way_points . t o l i s t ( ) }

18

19 d i c t _w r i t e r = Dic tWr i t e r ( wr i te_ob j , f ie ldnames=fie ld_names )
20 #d i c t _w r i t e r . wri teheader ()
21 d i c t _w r i t e r . writerow (new_data )
22

23

24 def main () :
25 # Franka i n i t i a l i z a t i o n
26 p r i n t ( ’ I n i t i a l i z e Franka ’ )
27 robot = FrankaRobot ( i n v e r s e _ c on t r o l l e r=" CoppeliaSim " )
28

29 # Task Space Learning
30

31 # DMP Parameters
32 nr_dmps = 3 # x , y , z
33 nr_b f s = 25 # number of ba s i s func t i on s
34 tau = 10.0 # time s c a l i n g va r i a b l e
35 goal = robot . com . ge t _ob j e c t _po s i t i on ( ’ /pT ’ )
36 goal = goal [ : , np . newaxis ] . T
37 y0 = robot . com . ge t _ob j e c t _po s i t i on ( ’ /p0 ’ )
38 y0 = y0 [ : , np . newaxis ] . T
39

40 # RL Parameters and cos t f unc t i ona l parameters
41 max_itr = [200 , 200 , 200 , 200 , 200 , 200 , 200 , 200 , 200 , 200]
42 s c a l i n g = [True , True , True , True , True , False , False , False , False ,

Fa l se ]
43 goa l_pena l ty = 1e5
44 v i a_po in t_pena l t y = 1e5
45 v e l o c i t y _pena l t y = 1e3
46 a c ce l e r a t i on_pena l t y = 1e−2
47 p r i n t ( ’ Ready ’ )
48

49 # Via Po in t s
50 via_point_names = [ ’ /p1 ’ , ’ /p2 ’ , ’ /p3 ’ , ’ /p4 ’ ]
51 v ia_po in t_ t im ing = [0.2 ∗ tau , 0.4 ∗ tau , 0.6 ∗ tau , 0.8 ∗ tau ]
52 v i a_po in t s = np . zeros (( nr_dmps + 1 , len ( via_point_names ) ) )
53

54 # Generate Point ar ray
55 way_points = np . zeros (( nr_dmps + 1 , len ( via_point_names ) + 2) )
56 way_points [ :3 , 0] = y0
57 way_points [ :3 , −1] = goal
58 way_points [3 , −1] = 1.0 ∗ tau
59

60 f o r i , v i a in enumerate ( via_point_names ) :
61 _temp = robot . com . ge t _ob j e c t _po s i t i on ( v ia )
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62 _temp = np . append(_temp , v ia_po in t_ t im ing [ i ])
63 v i a_po in t s [ : , i ] = _temp
64 way_points [ : , i+1] = _temp
65

66 f o r i t e r a t i o n in range ( len ( max_itr ) ) :
67 p r i n t ( ’ S t a r t I t e r a t i o n Number : {} ’ . format ( i t e r a t i o n ) )
68 # I n i t i a l i z e RL
69 r l = CpsRl (nr_dmps=nr_dmps ,
70 nr_b f s=nr_bfs ,
71 tau=tau ,
72 y0=y0 ,
73 goal=goal ,
74 canonica l_ t ime=True ,
75 VarMin=−1e2 ,
76 VarMax=1e2 ,
77 MaxIt=max_itr [ i t e r a t i o n ] ,
78 s c a l i n g=s c a l i n g [ i t e r a t i o n ] ,
79 v i a_po in t s=v ia_po in t s ,
80 v ia_pena l t y=v ia_po in t_pena l ty ,
81 goa l_pena l ty=goal_penal ty ,
82 ve lo_pena l ty=ve lo c i t y _pena l t y ,
83 ac ce l e r a t e_pena l t y=acce l e r a t i on_pena l t y )
84

85 # S ta r t t imer
86 t i c = time . per f_counter ()
87

88 # RL runner
89 while not r l . cma . s top () :
90 r l . runner ()
91

92 # Stop t imer
93 toc = time . per f_counter ()
94

95 # eva lua te bes t s o l u t i on
96 f i na l _we i gh t s = r l . cma . Bes tSo l [ " Po s i t i on " ] . reshape ( r l .dmp.w. shape

)
97 r l .dmp.w = ( f i na l _we i gh t s ∗ r l . we igh t_sca le_ar ray )
98

99 y_track , dy_track , ddy_track = r l .dmp. r o l l _ ou t ()
100

101 # plo t the r e s u l t s
102 t ime_ s c a l e _p l o t t i n g = r l .dmp. cs . t ime_s teps / tau
103

104 p l t . f i g u r e ( i t e r a t i o n )
105

106 # plo t of s t a r t , goal and via−po in t s in each dimension
107 # x − coord inate
108 p l t . subp lo t (311)
109

110 p l t . p l o t ( y_ t rack [ : , 0] , lw=2)
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111

112 p l t . p l o t ( r l .dmp. cs . time [0] ∗ t ime_ s ca l e_p lo t t i ng , y0 [ : , 0] , ’ o ’ )
113 p l t . p l o t ( r l .dmp. cs . time[−1] ∗ t ime_ s ca l e_p lo t t i ng , goal [ : , 0] , ’ o

’ )
114 f o r i in range ( v i a_po in t s . shape [1]) :
115 p l t . p l o t ( v i a_po in t s [−1, i ] ∗ t ime_ s ca l e_p lo t t i ng , v i a _po in t s

[0 , i ] , ’ o ’ )
116

117 p l t . t i t l e ( "Number of Bas i s func t i on s = {} , s c a l i n g ={} " . format (
nr_bfs , s c a l i n g [ i t e r a t i o n ]) )

118

119 # y − coord inate
120 p l t . subp lo t (312)
121

122 p l t . p l o t ( y_ t rack [ : , 1] , lw=2)
123

124 p l t . p l o t ( r l .dmp. cs . time [0] ∗ t ime_ s ca l e_p lo t t i ng , y0 [ : , 1] , ’ o ’ )
125 p l t . p l o t ( r l .dmp. cs . time[−1] ∗ t ime_ s ca l e_p lo t t i ng , goal [ : , 1] , ’ o

’ )
126 f o r i in range ( v i a_po in t s . shape [1]) :
127 p l t . p l o t ( v i a_po in t s [−1, i ] ∗ t ime_ s ca l e_p lo t t i ng , v i a _po in t s

[1 , i ] , ’ o ’ )
128

129 # z − coord inate
130 p l t . subp lo t (313)
131

132 p l t . p l o t ( y_ t rack [ : , 2] , lw=2)
133

134 p l t . p l o t ( r l .dmp. cs . time [0] ∗ t ime_ s ca l e_p lo t t i ng , y0 [ : , 2] , ’ o ’ )
135 p l t . p l o t ( r l .dmp. cs . time[−1] ∗ t ime_ s ca l e_p lo t t i ng , goal [ : , 2] , ’ o

’ )
136 f o r i in range ( v i a_po in t s . shape [1]) :
137 p l t . p l o t ( v i a_po in t s [−1, i ] ∗ t ime_ s ca l e_p lo t t i ng , v i a _po in t s

[2 , i ] , ’ o ’ )
138 p l t . t i g h t _ l a you t ()
139 p l t . s a v e f i g ( ’ Sca l ing /DMP ’ + s t r ( i t e r a t i o n ) + ’ . png ’ )
140

141 # Reward P lo t
142

143 f i g2 = p l t . f i g u r e (2∗ i t e r a t i o n+1)
144 ax2 = f i g2 . add_subplot ()
145 i t e r a t i o n s = np . l i n space (0 , r l . cma . i t r , r l . cma . i t r )
146 ax2 . p l o t ( i t e r a t i o n s , r l . cma . Bes tCost )
147

148 ax2 . s e t _ y s c a l e ( ’ log ’ )
149 p l t . t i t l e ( "Max I t e r a t i o n s = {} , s c a l i n g ={} " . format ( max_itr [

i t e r a t i o n ] , s c a l i n g [ i t e r a t i o n ]) )
150 p l t . s a v e f i g ( ’ Sca l ing /Reward ’ + s t r ( i t e r a t i o n ) + ’ . png ’ )
151

152 p l t . show()
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153

154 wri te_weights (nr_dmps , nr_bfs , s c a l i n g [ i t e r a t i o n ] , max_itr [
i t e r a t i o n ] , tau , ( f i na l _we i gh t s ∗ r l . we igh t_sca le_ar ray ) ,

155 r l . cma . Bes tCost . T , toc − t i c , way_points , ’ S ca l ing /
s c a l i n g . csv ’ )

156

157 p r i n t ( f " Computing time of the re in forcement a lgor i thm : {( toc −
t i c ) / 60} minutes ! " )

158

159

160 i f __name__ == " __main__ " :
161 main ()

A.2.5 Experiment Imitation Learning

1 from CPS_WS . s r c . cps_framework . s r c . RL_standard import CpsRl
2 import numpy as np
3 import time
4 import ma tp lo t l i b . pyp lo t as p l t
5 from CPS_WS . s r c . cps_framework . s r c . Franka_Robot import FrankaRobot
6 from csv import D i c tWr i t e r
7 from datet ime import datet ime
8

9

10 rnd_gen = np . random . de fau l t_ rng ()
11

12

13 def wr i te_weights (nr_dmps , nr_bfs , s ca l ing , n r _ i t e r a t i on , tau , weights ,
rewards , compute_time , way_points , f i lename= ’ imi ta t i on_we igh t s . csv ’ ) :

14 with open( fi lename , ’ a+ ’ , newline= ’ ’ ) as wr i t e_ob j :
15 now = datet ime .now()
16 f ie ld_names = [ ’ Time ’ , ’NrDmps ’ , ’ NrBfs ’ , ’ S ca l ing ’ , ’ Tau ’ , ’

N r I t e r a t i on s ’ ,
17 ’ Weights ’ , ’ Rewards ’ , ’ ComputeTime ’ , ’ NrWayPoints ’

, ’ WayPoints ’ ]
18 new_data = { ’ Time ’ : now, ’NrDmps ’ : nr_dmps , ’ NrBfs ’ : nr_bfs , ’

S ca l ing ’ : s ca l ing , ’ Tau ’ : tau ,
19 ’ N r I t e r a t i on s ’ : n r _ i t e r a t i on , ’ Weights ’ : weights .

t o l i s t ( ) , ’ Rewards ’ : rewards . t o l i s t ( ) , ’
ComputeTime ’ : compute_time ,

20 ’ NrWayPoints ’ : way_points . shape [1] , ’ WayPoints ’ :
way_points . t o l i s t ( ) }

21

22 d i c t _w r i t e r = Dic tWr i t e r ( wr i te_ob j , f ie ldnames=fie ld_names )
23 #d i c t _w r i t e r . wri teheader ()
24 d i c t _w r i t e r . writerow (new_data )
25

26

27 def va ry_v i a_po in t s ( v i a_po in t s _a r r ay ) :
28 _mean = 0
29 _sigma = 0.05
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30 f o r i in range ( v i a_po in t s _a r r ay . shape [1]) :
31 _x , _y , _z , _ t = v i a_po in t s _a r r ay [ : , i ]
32 _x += rnd_gen . normal (_mean , _sigma )
33 _y += rnd_gen . normal (_mean , _sigma )
34 _z += rnd_gen . normal (_mean , _sigma )
35 v i a_po in t s _a r r ay [ : , i ] = np . ar ray ([ _x , _y , _z , _ t ])
36

37 re turn v i a_po in t s _a r r ay
38

39

40 def main () :
41 # Franka i n i t i a l i z a t i o n
42 p r i n t ( ’ i n i t ’ )
43 robot = FrankaRobot ( i n v e r s e _ c on t r o l l e r=" CoppeliaSim " )
44

45 # Task Space Learning
46

47 # DMP Parameters
48 nr_dmps = 3 # x , y , z
49 nr_b f s = 25 # number of ba s i s func t i on s
50 tau = 10.0 # time s c a l i n g va r i a b l e
51 goal = robot . com . ge t _ob j e c t _po s i t i on ( ’ /pT ’ )
52 goal = goal [ : , np . newaxis ] . T
53 y0 = robot . com . ge t _ob j e c t _po s i t i on ( ’ /p0 ’ )
54 y0 = y0 [ : , np . newaxis ] . T
55

56 # RL Parameters and cos t f unc t i ona l parameters
57 max_itr = [200 , 200 , 200 , 200 , 200 , 200 , 200 , 200 , 200 , 200]
58 goa l_pena l ty = 1e5
59 v i a_po in t_pena l t y = 1e5
60 v e l o c i t y _pena l t y = 1e3
61 a c ce l e r a t i on_pena l t y = 1e−2
62 p r i n t ( ’ Ready ’ )
63

64 # Via Po in t s
65 via_point_names = [ ’ /p1 ’ , ’ /p2 ’ , ’ /p3 ’ , ’ /p4 ’ ]
66 v ia_po in t_ t im ing = [0.2 ∗ tau , 0.4 ∗ tau , 0.6 ∗ tau , 0.8 ∗ tau ]
67 v i a _ po i n t s _ f i x = np . zeros (( nr_dmps + 1 , len ( via_point_names ) ) )
68

69 # Generate Point ar ray
70 way_points = np . zeros (( nr_dmps + 1 , len ( via_point_names ) + 2) )
71 way_points [ :3 , 0] = y0
72 way_points [ :3 , −1] = goal
73 way_points [3 , −1] = 1.0 ∗ tau
74

75 f o r i , v i a in enumerate ( via_point_names ) :
76 _temp = robot . com . ge t _ob j e c t _po s i t i on ( v ia )
77 _temp = np . append(_temp , v ia_po in t_ t im ing [ i ])
78 v i a _ po i n t s _ f i x [ : , i ] = _temp
79 way_points [ : , i + 1] = _temp
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80

81 f o r i t e r a t i o n in range ( len ( max_itr ) ) :
82 p r i n t ( ’ S t a r t I t e r a t i o n Number : {} ’ . format ( i t e r a t i o n ) )
83 v i a_po in t s = vary_v i a_po in t s ( v i a _ po i n t s _ f i x )
84 way_points [ : , 1:5] = v i a_po in t s
85 # I n i t i a l i z e RL
86 r l = CpsRl (nr_dmps=nr_dmps ,
87 nr_b f s=nr_bfs ,
88 tau=tau ,
89 y0=y0 ,
90 goal=goal ,
91 canonica l_ t ime=True ,
92 VarMin=−1e2 ,
93 VarMax=1e2 ,
94 MaxIt=max_itr [ i t e r a t i o n ] ,
95 s c a l i n g=False ,
96 v i a_po in t s=v ia_po in t s ,
97 v ia_pena l t y=v ia_po in t_pena l ty ,
98 goa l_pena l ty=goal_penal ty ,
99 ve lo_pena l ty=ve lo c i t y _pena l t y ,
100 ac ce l e r a t e_pena l t y=acce l e r a t i on_pena l t y )
101

102 # S ta r t t imer
103 t i c = time . per f_counter ()
104

105 # RL runner
106 while not r l . cma . s top () :
107 r l . runner ()
108

109 # Stop t imer
110 toc = time . per f_counter ()
111

112 # eva lua te bes t s o l u t i on
113 f i na l _we i gh t s = r l . cma . Bes tSo l [ " Po s i t i on " ] . reshape ( r l .dmp.w. shape

)
114 r l .dmp.w = ( f i na l _we i gh t s ∗ r l . we igh t_sca le_ar ray )
115

116 y_track , dy_track , ddy_track = r l .dmp. r o l l _ ou t ()
117

118 # plo t the r e s u l t s
119 t ime_ s c a l e _p l o t t i n g = r l .dmp. cs . t ime_s teps / tau
120

121 p l t . f i g u r e ( i t e r a t i o n )
122

123 # plo t of s t a r t , goal and via−po in t s in each dimension
124 # x − coord inate
125 p l t . subp lo t (311)
126

127 p l t . p l o t ( y_ t rack [ : , 0] , lw=2)
128
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129 p l t . p l o t ( r l .dmp. cs . time [0] ∗ t ime_ s ca l e_p lo t t i ng , y0 [ : , 0] , ’ o ’ )
130 p l t . p l o t ( r l .dmp. cs . time[−1] ∗ t ime_ s ca l e_p lo t t i ng , goal [ : , 0] , ’ o

’ )
131 f o r i in range ( v i a_po in t s . shape [1]) :
132 p l t . p l o t ( v i a_po in t s [−1, i ] ∗ t ime_ s ca l e_p lo t t i ng , v i a _po in t s

[0 , i ] , ’ o ’ )
133

134 p l t . t i t l e ( "Number of Bas i s func t i on s = {} " . format ( nr_b f s ) )
135

136 # y − coord inate
137 p l t . subp lo t (312)
138

139 p l t . p l o t ( y_ t rack [ : , 1] , lw=2)
140

141 p l t . p l o t ( r l .dmp. cs . time [0] ∗ t ime_ s ca l e_p lo t t i ng , y0 [ : , 1] , ’ o ’ )
142 p l t . p l o t ( r l .dmp. cs . time[−1] ∗ t ime_ s ca l e_p lo t t i ng , goal [ : , 1] , ’ o

’ )
143 f o r i in range ( v i a_po in t s . shape [1]) :
144 p l t . p l o t ( v i a_po in t s [−1, i ] ∗ t ime_ s ca l e_p lo t t i ng , v i a _po in t s

[1 , i ] , ’ o ’ )
145

146 # z − coord inate
147 p l t . subp lo t (313)
148

149 p l t . p l o t ( y_ t rack [ : , 2] , lw=2)
150

151 p l t . p l o t ( r l .dmp. cs . time [0] ∗ t ime_ s ca l e_p lo t t i ng , y0 [ : , 2] , ’ o ’ )
152 p l t . p l o t ( r l .dmp. cs . time[−1] ∗ t ime_ s ca l e_p lo t t i ng , goal [ : , 2] , ’ o

’ )
153 f o r i in range ( v i a_po in t s . shape [1]) :
154 p l t . p l o t ( v i a_po in t s [−1, i ] ∗ t ime_ s ca l e_p lo t t i ng , v i a _po in t s

[2 , i ] , ’ o ’ )
155 p l t . t i g h t _ l a you t ()
156 p l t . s a v e f i g ( ’ Im i t a t i on /DMP ’ + s t r ( i t e r a t i o n ) + ’ . png ’ )
157

158 # Reward P lo t
159

160 f i g2 = p l t . f i g u r e (2 ∗ i t e r a t i o n + 1)
161 ax2 = f i g2 . add_subplot ()
162 i t e r a t i o n s = np . l i n space (0 , r l . cma . i t r , r l . cma . i t r )
163 ax2 . p l o t ( i t e r a t i o n s , r l . cma . Bes tCost )
164

165 ax2 . s e t _ y s c a l e ( ’ log ’ )
166 p l t . t i t l e ( "Max I t e r a t i o n s = {} " . format ( max_itr [ i t e r a t i o n ]) )
167 p l t . s a v e f i g ( ’ Im i t a t i on /Reward ’ + s t r ( i t e r a t i o n ) + ’ . png ’ )
168

169 p l t . show()
170

171 wri te_weights (nr_dmps , nr_bfs , False , max_itr [ i t e r a t i o n ] , tau ,
172 ( f i na l _we i gh t s ∗ r l . we igh t_sca le_ar ray ) ,
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173 r l . cma . Bes tCost . T , toc − t i c , way_points , ’
Im i t a t i on /weights . csv ’ )

174

175 p r i n t ( f " Computing time of the re in forcement a lgor i thm : {( toc −
t i c ) / 60} minutes ! " )

176

177

178 i f __name__ == " __main__ " :
179 main ()

A.2.6 Evalutaion

1 import csv
2 import ma tp lo t l i b . pyp lo t as p l t
3 import numpy as np
4 from mpl_ too l k i t s import mplot3d
5

6 # from DMP import DmpDiscrete
7 # from Franka_Robot import FrankaRobot
8 from CPS_WS . s r c . cps_framework . s r c .DMP import DmpDiscrete
9 from CPS_WS . s r c . cps_framework . s r c . Franka_Robot import FrankaRobot
10

11

12 def import_weight_data ( f i lename= ’ . . / s r c / Sca l ing / s c a l i n g . csv ’ ) :
13 with open( fi lename , ’ r ’ ) as c s v f i l e :
14 reader = csv . DictReader ( c s v f i l e )
15 # headers = reader . f ie ldnames
16

17 # get array in format ion from the csv
18 _nr_dmp = []
19 _nr_bf s = []
20 _n r _ i t e r a t i o n = []
21 _tau = []
22 _sca led = []
23 _ r ewa rd s_ l i s t = []
24 _we i gh t s _ l i s t = []
25 _waypo in t _ l i s t = []
26 _nr_waypoints = []
27 _n r_ l i n e s = 0
28 _nr_sca led = 0
29 _nr_non_scaled = 0
30 f o r _row in reader :
31 _nr_dmp . append( i n t (_row[ ’NrDmps ’ ] ) )
32 _nr_bf s . append( i n t (_row[ ’ NrBfs ’ ] ) )
33 _n r _ i t e r a t i o n . append( i n t (_row[ ’ N r I t e r a t i on s ’ ] ) )
34 _tau . append( f l o a t (_row[ ’ Tau ’ ]) )
35 i f _row[ ’ Sca l ing ’ ] == ’ True ’ :
36 _sca led . append( True )
37 _nr_sca led += 1
38 e l s e :
39 _sca led . append( Fa l se )
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40 _nr_non_scaled += 1
41

42 _nr_waypoints . append( i n t (_row[ ’ NrWayPoints ’ ] ) )
43

44 _ r ewa rd s_ l i s t . append(_row[ ’ Rewards ’ ] )
45 _we i gh t s _ l i s t . append(_row[ ’ Weights ’ ] )
46 _waypo in t _ l i s t . append(_row[ ’ WayPoints ’ ] )
47

48 _n r_ l i n e s += 1
49

50 # Export Weights , Rewards and Waypoints to Numpy ar ray s
51

52 # i n i t Numpy ar ray s
53 _rewards = np . zeros ([ _nr_ l ines , _ n r _ i t e r a t i o n [0] − 1])
54 _weights = np . zeros ([ _nr_dmp [0] , _nr_b f s [0] , _n r _ l i n e s ])
55 _way_points = np . zeros ([ _nr_dmp[0] + 1 , _nr_waypoints [0] ,

_n r _ l i n e s ])
56

57 # I t e r a t i o n over a l l l i n e s
58 f o r i in range ( _n r _ l i n e s ) :
59 _reward_str = _ rewa rd s_ l i s t [ i ] . s t r i p ( ’ [ ] ’ )
60 _rewards [ i , : ] = np . f roms t r ing ( _reward_str , dtype=np . f loa t32 ,

sep= ’ , ’ )
61

62 _we ight_s t r = _we i gh t s _ l i s t [ i ] . s t r i p ( ’ [ ] ’ )
63 _we ight_s t r = _weight_s t r . r ep lace ( ’ [ ’ , ’ ’ ) . r ep lace ( ’ ] ’ , ’ ’ )
64 _weight = np . f roms t r ing ( _weight_s t r , dtype=np . f loa t32 , sep= ’ ,

’ )
65 _weight = _weight . reshape (( _nr_dmp[ i ] , _nr_b f s [ i ]) )
66 _weights [ : , : , i ] = _weight
67

68 _way_point_s t r = _waypo in t _ l i s t [ i ] . r ep lace ( ’ [ ’ , ’ ’ ) . r ep lace ( ’
] ’ , ’ ’ )

69 _way_point = np . f roms t r ing ( _way_point_str , dtype=np . f loa t32 ,
sep= ’ , ’ )

70 _way_point = _way_point . reshape (( _nr_dmp[ i ] + 1 ,
_nr_waypoints [ i ] ) )

71 _way_points [ : , : , i ] = _way_point
72

73 temp_dict = { ’ nr_dmps ’ : _nr_dmp , ’ n r_b f s ’ : _nr_bfs , ’
n r _ i t e r a t i o n s ’ : _n r _ i t e r a t i on , ’ s ca l ed ’ : _scaled ,

74 ’ n r_o f_ s ca l ed ’ : _nr_scaled , ’ nr_of_non_scaled ’ :
_nr_non_scaled ,

75 ’ tau ’ : _tau , ’ weights ’ : _weights , ’ rewards ’ :
_rewards ,

76 ’ nr_way_points ’ : _nr_waypoints , ’ way_points ’ :
_way_points }

77

78 re turn temp_dict
79
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80

81 def read_record ings ( f i lename= ’ Im i t a t i on / record ings . csv ’ ) :
82 with open( fi lename , ’ r ’ ) as read_obj :
83 reader = csv . DictReader ( read_obj )
84

85 _ r e c o r d i n g _ l i s t = []
86 f o r _row in reader :
87 _record ing = {}
88 _record ing [ ’ Type ’ ] = _row[ ’ Type ’ ]
89

90 _ t ime_s t r = _row[ ’ Time ’ ]
91 _ t ime_s t r = _ t ime_s t r . r ep lace ( ’ [ ’ , ’ ’ ) . r ep lace ( ’ ] ’ , ’ ’ )
92 _record ing [ ’ Time ’ ] = np . f roms t r ing ( _ t ime_s t r , dtype=np .

f loa t32 , sep= ’ , ’ )
93

94 _ t r a j e c t o r y _ s t r = _row[ ’ S t a t e s ’ ]
95 _ t r a j e c t o r y _ s t r = _ t r a j e c t o r y _ s t r . r ep lace ( ’ [ ’ , ’ ’ ) . r ep lace ( ’ ]

’ , ’ ’ )
96 _ t r a j e c t o r y = np . f roms t r ing ( _ t r a j e c t o r y _ s t r , dtype=np . f loa t32

, sep= ’ , ’ )
97 _record ing [ ’ S t a t e s ’ ] = _ t r a j e c t o r y . reshape ( _record ing [ ’ Time ’

] . shape [0] , i n t (_row[ ’NrDmps ’ ]) )
98

99 _ r e c o r d i n g _ l i s t . append( _record ing )
100

101 re turn _ r e c o r d i n g _ l i s t
102

103

104 def wr i t e_ reco rd ings ( r e c o r i n g _ l i s t , f i lename= ’ Im i t a t i on / record ings . csv ’ ) :
105 with open( fi lename , ’ a+ ’ , newline= ’ ’ ) as wr i t e_ob j :
106 f ie ld_names = [ ’ Type ’ , ’ Time ’ , ’ S t a t e s ’ , ’NrDmps ’ ]
107

108 d i c t _w r i t e r = csv . D i c tWr i t e r ( wr i te_ob j , f ie ldnames=fie ld_names )
109 d i c t _w r i t e r . wri teheader ()
110

111 f o r i in range ( len ( r e c o r i n g _ l i s t ) ) :
112 new_data = { ’ Type ’ : r e c o r i n g _ l i s t [ i ][ ’ Type ’ ] ,
113 ’ Time ’ : r e c o r i n g _ l i s t [ i ] [ ’ Time ’ ] . t o l i s t ( ) ,
114 ’ S t a t e s ’ : r e c o r i n g _ l i s t [ i ] [ ’ S t a t e s ’ ] . t o l i s t ( ) ,
115 ’NrDmps ’ : r e c o r i n g _ l i s t [ i ] [ ’ S t a t e s ’ ] . shape [1]}
116

117 d i c t _w r i t e r . writerow (new_data )
118

119

120 def compute_ t ra jec tory ( data , i ) :
121 weights = data [ ’ weights ’ ]
122 way_points = data [ ’ way_points ’ ]
123

124 nr_dmps = data [ ’ nr_dmps ’ ][0]
125 _y t rack = _dytrack = _ddytrack = None
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126

127 dt = 0.01
128

129 i f nr_dmps == 3:
130 _x = np . zeros (( i n t (1 .0 / dt ∗ data [ ’ tau ’ ] [0]) , 1) )
131 _y = np . zeros ( _x . shape )
132 _z = np . zeros ( _x . shape )
133

134 _dx = np . zeros ( _x . shape )
135 _dy = np . zeros ( _x . shape )
136 _dz = np . zeros ( _x . shape )
137

138 _ddx = np . zeros ( _x . shape )
139 _ddy = np . zeros ( _x . shape )
140 _ddz = np . zeros ( _x . shape )
141

142 _dmp = DmpDiscrete (nr_dmps=data [ ’ nr_dmps ’ ][ i ] , n r_b f s=data [ ’ n r_b f s ’ ] [
i ] , tau=data [ ’ tau ’ ][ i ] )

143

144 _y0 = way_points [ :3 , 0 , i ]
145 _y0 = _y0 [ : , np . newaxis ] . T
146 _dmp . y0 = _y0
147

148 _g = way_points [ :3 , −1, i ]
149 _g = _g [ : , np . newaxis ] . T
150 _dmp . g = _g
151

152 _dmp .w = weights [ : , : , i ]
153

154 # r o l l out of the dmp
155 _ytrack , _dytrack , _ddytrack = _dmp . r o l l _ ou t ()
156

157 time = _dmp . cs . time
158

159 # save the r e s u l t s f o r each dimension
160 _x , _y , _z , _dx , _dy , _dz , _ddx , _ddy , _ddz = None , None , None , None ,

None , None , None , None , None
161 i f nr_dmps == 3:
162 _x = _yt rack [ : , 0]
163 _y = _yt rack [ : , 1]
164 _z = _yt rack [ : , 2]
165

166 _dx = _dytrack [ : , 0]
167 _dy = _dytrack [ : , 1]
168 _dz = _dytrack [ : , 2]
169

170 _ddx = _ddytrack [ : , 0]
171 _ddy = _ddytrack [ : , 1]
172 _ddz = _ddytrack [ : , 2]
173
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174 re turn _x , _y , _z , _dx , _dy , _dz , _ddx , _ddy , _ddz , time
175

176

177 def compute_mean_of_recording ( r e c o r d i n g _ l i s t ) :
178 _max_length = len ( r e c o r d i n g _ l i s t [0][ ’ S t a t e s ’ ] [0 , : ] )
179 _time = None
180 f o r i in range ( len ( r e c o r d i n g _ l i s t ) ) :
181 i f _max_length <= len ( r e c o r d i n g _ l i s t [ i ][ ’ S t a t e s ’ ] ) :
182 _max_length = len ( r e c o r d i n g _ l i s t [ i ] [ ’ S t a t e s ’ ] )
183 _time = r e c o r d i n g _ l i s t [ i ] [ ’ Time ’ ]
184

185 _nan_array = np . empty (( _max_length , len ( r e c o r d i n g _ l i s t ) ) )
186 _nan_array [ : , : ] = np .NaN
187

188 i f r e c o r d i n g _ l i s t [0][ ’ Type ’ ] == " task " :
189 _x = _nan_array . copy ()
190 _y = _nan_array . copy ()
191 _z = _nan_array . copy ()
192

193 f o r i in range ( len ( r e c o r d i n g _ l i s t ) ) :
194 _ar ray_ length = len ( r e c o r d i n g _ l i s t [ i ][ ’ S t a t e s ’ ] )
195 _x [ : _array_ length , i ] = r e c o r d i n g _ l i s t [ i ][ ’ S t a t e s ’ ] [ : , 0]
196 _y [ : _array_ length , i ] = r e c o r d i n g _ l i s t [ i ] [ ’ S t a t e s ’ ] [ : , 1]
197 _z [ : _array_ length , i ] = r e c o r d i n g _ l i s t [ i ] [ ’ S t a t e s ’ ] [ : , 2]
198

199 _x_mean = np . nanmean(_x , ax i s=1)
200 _y_mean = np . nanmean(_y , ax i s=1)
201 _z_mean = np . nanmean( _z , a x i s=1)
202

203 _tra jec tory_mean = np . vs tack (( _x_mean , _y_mean , _z_mean) )
204

205 re turn _tra jectory_mean , _time
206

207

208 def per form_imi ta t ion ( t r a j e c t o r y , nr_b f s=25, tau=1.0 , y0=None , g=None ,
r eg re s s i on_ type=" RidgeRegress ion " , im i t a t i on_ t ype=" eye " ) :

209 # i n i t i a l i z e DMPs
210 _dmp = DmpDiscrete (nr_dmps=t r a j e c t o r y . shape [0] , nr_b f s=nr_bfs , tau=

tau , r eg re s s i on_ type=regres s ion_ type , im i t a t i on_ t ype=
imi t a t i on_ t ype )

211

212 # se t s t a r t and end
213 f o r i in range (_dmp . nr_dmps ) :
214 _dmp . y0 [0 , i ] = y0[ i ]
215 _dmp . g [0 , i ] = g[ i ]
216

217 # Perform Imi t a t i on Learning
218 _dmp . im i t a t i on_ l e a rn i ng ( t r a j e c t o r y . T)
219

220 _ytrack , _dytrack , _ddytrack = _dmp . r o l l _ ou t ()
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221

222 re turn _dmp . cs . time , _y t rack . T , _dytrack . T , _ddytrack . T
223

224

225 def p l o t _ r l ( data ) :
226 way_points = data [ ’ way_points ’ ]
227 nr_dmps = data [ ’ nr_dmps ’ ][0]
228

229 _scaled_y , _scaled_dy , _scaled_ddy = None , None , None
230 _non_scaled_y , _non_scaled_dy , _non_scaled_ddy = None , None , None
231

232 dt = 0.01
233 time = None
234 _x , _y , _z , _dx , _dy , _dz , _ddx , _ddy , _ddz = None , None , None , None ,

None , None , None , None , None
235 i f nr_dmps == 3:
236 _x = np . zeros (( i n t (1 .0 / dt ∗ data [ ’ tau ’ ] [0]) , data [ ’ n r_o f_ sca led

’ ] + data [ ’ nr_of_non_scaled ’ ] ) )
237 _y = np . zeros ( _x . shape )
238 _z = np . zeros ( _x . shape )
239

240 _dx = np . zeros ( _x . shape )
241 _dy = np . zeros ( _x . shape )
242 _dz = np . zeros ( _x . shape )
243

244 _ddx = np . zeros ( _x . shape )
245 _ddy = np . zeros ( _x . shape )
246 _ddz = np . zeros ( _x . shape )
247

248 f o r i in range ( data [ ’ n r_o f_ sca led ’ ] + data [ ’ nr_of_non_scaled ’ ]) :
249 _x [ : , i ] , _y [ : , i ] , _z [ : , i ] , \
250 _dx [ : , i ] , _dy [ : , i ] , _dz [ : , i ] , \
251 _ddx [ : , i ] , _ddy [ : , i ] , _ddz [ : , i ] , time = compute_t ra jec tory (

data , i )
252

253 i f nr_dmps == 3:
254 # fo r the sca led DMPs
255 _x_mean_scaled = _x [ : , : 5 ] .mean( ax i s=1)
256 _y_mean_scaled = _y [ : , : 5 ] .mean( ax i s=1)
257 _z_mean_scaled = _z [ : , : 5 ] .mean( ax i s=1)
258

259 _x_s td_sca led = _x [ : , : 5 ] . s td ( ax i s=1)
260 _y_s td_sca led = _y [ : , : 5 ] . s td ( ax i s=1)
261 _z_s td_sca l ed = _z [ : , : 5 ] . s td ( ax i s=1)
262

263 _x_conf idence_sca led = 1.96 ∗ _x_s td_sca led / np . s q r t ( data [ ’
n r_o f_ sca l ed ’ ] )

264 _y_conf idence_sca led = 1.96 ∗ _x_s td_sca led / np . s q r t ( data [ ’
n r_o f_ sca l ed ’ ] )

265 _z_conf idence_sca led = 1.96 ∗ _z_s td_sca l ed / np . s q r t ( data [ ’
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nr_o f_ sca l ed ’ ] )
266

267 _tra j_sca led_mean = np . vs tack (( _x_mean_scaled , _y_mean_scaled ,
_z_mean_scaled ) )

268 _ t r a j _ s c a l ed_con f i dence = np . vs tack (( _x_conf idence_sca led ,
_y_conf idence_sca led , _z_conf idence_sca led ) )

269

270 # fo r the non sca led DMPs
271 _x_mean_non_scaled = _x [ : , 5 : ] .mean( ax i s=1)
272 _y_mean_non_scaled = _y [ : , 5 : ] .mean( ax i s=1)
273 _z_mean_non_scaled = _z [ : , 5 : ] .mean( ax i s=1)
274

275 _x_std_non_scaled = _x [ : , : 5 ] . s td ( ax i s=1)
276 _y_std_non_scaled = _y [ : , : 5 ] . s td ( ax i s=1)
277 _z_std_non_sca led = _z [ : , : 5 ] . s td ( ax i s=1)
278

279 _x_conf idence_non_scaled = 1.96 ∗ _x_std_non_scaled / np . s q r t (
data [ ’ nr_of_non_scaled ’ ] )

280 _y_conf idence_non_scaled = 1.96 ∗ _x_std_non_scaled / np . s q r t (
data [ ’ nr_of_non_scaled ’ ] )

281 _z_conf idence_non_scaled = 1.96 ∗ _z_std_non_sca led / np . s q r t (
data [ ’ nr_of_non_scaled ’ ] )

282

283 _traj_non_scaled_mean = np . vs tack (( _x_mean_non_scaled ,
_y_mean_non_scaled , _z_mean_non_scaled ) )

284 _ t ra j _non_sca led_con f idence = np . vs tack (( _x_conf idence_non_scaled
, _y_conf idence_non_scaled ,

285 _z_conf idence_non_scaled
) )

286

287 # plo t the sca led DMPs
288 _ f i g_ s ca l ed , _axs_sca led = p l t . subp lo t s (nr_dmps , f i g s i z e =(10, 7) )
289

290 f o r i in range (nr_dmps ) :
291 _axs_sca led [ i ] . p l o t ( time , _t ra j_sca led_mean [ i , : ] , co lo r= ’

s t e e l b l u e ’ )
292 _axs_sca led [ i ] . f i l l _ be tween ( time , _t ra j_sca led_mean [ i , : ] +

_ t r a j _ s c a l ed_con f i dence [ i , : ] ,
293 _tra j_sca led_mean [ i , : ] −

_ t r a j _ s c a l ed_con f i dence [ i , : ] ,
co lo r= ’ l i g h t s t e e l b l u e ’ )

294 f o r j in range ( data [ ’ nr_way_points ’ ] [0]) :
295 _axs_sca led [ i ] . p l o t ( way_points [−1, j ] , way_points [ i , j ] , ’ o ’ )
296

297 i f nr_dmps == 3:
298 _axs_sca led [0 ] . s e t _ y l a b e l ( ’ x−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
299 _axs_sca led [1 ] . s e t _ y l a b e l ( ’ y−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
300 _axs_sca led [2 ] . s e t _ y l a b e l ( ’ z−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
301 _axs_sca led [2 ] . s e t _ x l a b e l ( ’ Time [ s ] ’ , f o n t s i z e= ’ l a rge ’ )
302 _ f i g _ s c a l ed . t i g h t _ l a you t ()
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303 p l t . s a v e f i g ( ’ P l o t s /DMPs200Scale . png ’ )
304

305 # plo t the non−sca led DMPs
306 _f ig_non_sca led , _axs_non_scaled = p l t . subp lo t s (nr_dmps , f i g s i z e =(10,

7) )
307

308 f o r i in range (nr_dmps ) :
309 _axs_non_scaled [ i ] . p l o t ( time , _traj_non_scaled_mean [ i , : ] , co lo r=

’ s t e e l b l u e ’ )
310 _axs_non_scaled [ i ] . f i l l _ be tween ( time , _traj_non_scaled_mean [ i , : ]

+ _t ra j_non_sca led_con f idence [ i , : ] ,
311 _traj_non_scaled_mean [ i , : ] −

_t ra j_non_sca led_con f idence [ i ,
: ] ,

312 co lo r= ’ l i g h t s t e e l b l u e ’ )
313

314 f o r j in range ( data [ ’ nr_way_points ’ ] [0]) :
315 _axs_non_scaled [ i ] . p l o t ( way_points [−1, j ] , way_points [ i , j ] ,

’ o ’ )
316

317 i f nr_dmps == 3:
318 _axs_non_scaled [0 ] . s e t _ y l a b e l ( ’ x−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
319 _axs_non_scaled [1 ] . s e t _ y l a b e l ( ’ y−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
320 _axs_non_scaled [2 ] . s e t _ y l a b e l ( ’ z−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
321 _axs_non_scaled [2 ] . s e t _ x l a b e l ( ’ Time [ s ] ’ , f o n t s i z e= ’ l a rge ’ )
322

323 _ f ig_non_sca led . t i g h t _ l a you t ()
324 p l t . s a v e f i g ( ’ P l o t s /DMPs200NonScale . png ’ )
325

326 re turn _tra j_scaled_mean , _traj_non_scaled_mean , _axs_sca led ,
_axs_non_scaled

327

328

329 def plot_reward ( data ) :
330 rewards = data [ ’ rewards ’ ]
331

332 _sca led = None
333 _non_scaled = None
334 f o r i in range ( data [ ’ n r_o f_ sca led ’ ] + data [ ’ nr_of_non_scaled ’ ]) :
335 i f data [ ’ s ca l ed ’ ][ i ] :
336 i f _ sca led i s None :
337 _sca led = data [ ’ rewards ’ ] [ i ]
338 e l s e :
339 _sca led = np . vs tack (( _scaled , data [ ’ rewards ’ ] [ i ] ) )
340 e l s e :
341 i f _non_scaled i s None :
342 _non_scaled = data [ ’ rewards ’ ][ i ]
343 e l s e :
344 _non_scaled = np . vs tack (( _non_scaled , data [ ’ rewards ’ ][ i ] )

)
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345

346 # generate a f i gu r e f o r s ca l ed and non−sca led t r a j e c t o r y Learning
347 nr_rewards = rewards [0 ] . shape [0]
348 ep isodes = np . arange ( nr_rewards )
349

350 i f _ sca led i s not None :
351 # compute the mean of each episode
352 reward_mean = _sca led .mean( ax i s=0)
353 reward_std = _sca led . s td ( ax i s=0)
354 reward_confidence = 1.96 ∗ reward_std / np . s q r t ( data [ ’

n r_o f_ sca l ed ’ ] )
355

356 f i g _ s ca l ed , ax_sca led = p l t . subp lo t s ( f i g s i z e =(10, 7) )
357 ax_sca led . p l o t ( episodes , reward_mean , co lo r= ’ s t e e l b l u e ’ )
358 ax_sca led . f i l l _ be tween ( episodes , reward_mean + reward_confidence ,

reward_mean − reward_confidence ,
359 co lo r= ’ l i g h t s t e e l b l u e ’ )
360 ax_sca led . s e t _ y s c a l e ( ’ log ’ )
361 ax_sca led . s e t _ x l a b e l ( ’ Episodes ’ , f o n t s i z e= ’ l a rge ’ )
362 ax_sca led . s e t _ y l a b e l ( ’ Cost value ’ , f o n t s i z e= ’ l a rge ’ )
363 ax_sca led . se t_y l im ([1e2 , 5 ∗ 1e5 ])
364 p l t . s a v e f i g ( ’ P l o t s /Reward200Scale . png ’ )
365

366 i f _non_scaled i s not None :
367 # compute the mean of each episode
368 reward_mean = _non_scaled .mean( ax i s=0)
369 reward_std = _non_scaled . s td ( ax i s=0)
370 reward_confidence = 1.96 ∗ reward_std / np . s q r t ( data [ ’

nr_of_non_scaled ’ ])
371

372 f i g _ s ca l ed , ax_non_scaled = p l t . subp lo t s ( f i g s i z e =(10, 7) )
373 ax_non_scaled . p l o t ( episodes , reward_mean , co lo r= ’ s t e e l b l u e ’ )
374 ax_non_scaled . f i l l _ be tween ( episodes , reward_mean +

reward_confidence , reward_mean − reward_confidence ,
375 co lo r= ’ l i g h t s t e e l b l u e ’ )
376 ax_non_scaled . s e t _ y s c a l e ( ’ log ’ )
377 ax_non_scaled . s e t _ x l a b e l ( ’ Episodes ’ , f o n t s i z e= ’ l a rge ’ )
378 ax_non_scaled . s e t _ y l a b e l ( ’ Cost value ’ , f o n t s i z e= ’ l a rge ’ )
379 ax_non_scaled . se t_y l im ([1e2 , 5 ∗ 1e5 ])
380 p l t . s a v e f i g ( ’ P l o t s /Reward200NonScale . png ’ )
381

382

383 def p l o t _ t a sk_ r e co rd ing s ( r e c o r d i n g _ l i s t , u s ed_ t r a j e c t o r i e s , data ) :
384 _ f i g_ re c , _axs_rec = p l t . subp lo t s (3 , f i g s i z e =(10, 7) )
385

386 # plo t the t r a j e c t o r i e s of the s imulated robot
387 f o r i in range ( len ( r e c o r d i n g _ l i s t ) ) :
388 t r a j e c t o r y = r e c o r d i n g _ l i s t [ i ][ ’ S t a t e s ’ ]
389 time = r e c o r d i n g _ l i s t [ i ][ ’ Time ’ ]
390

Page 88 of 98



A Motor Control Learning Framework for Cyber-Physical-Systems

391 f o r j in range ( data [ ’ nr_dmps ’ ] [0]) :
392 _axs_rec [ j ] . p l o t ( time , t r a j e c t o r y [ : , j ] )
393

394 # plo t the way po in t s
395 f o r i in u s e d _ t r a j e c t o r i e s :
396 _way_points = data [ ’ way_points ’ ] [ : , : , i ]
397 f o r j in range ( data [ ’ nr_dmps ’ ] [0]) :
398 f o r k in range (1 , data [ ’ nr_way_points ’ ][0] − 1) :
399 _axs_rec [ j ] . p l o t ( _way_points [−1, k ] , _way_points [ j , k ] , ’

x ’ )
400

401 _axs_rec [ j ] . p l o t ( _way_points [−1, 0] , _way_points [ j , 0] , ’ o ’ )
402 _axs_rec [ j ] . p l o t ( _way_points [−1, −1], _way_points [ j , −1], ’ o ’

)
403

404 f i g , ax = p l t . subp lo t s ()
405 f o r i in range ( len ( r e c o r d i n g _ l i s t ) ) :
406 time = r e c o r d i n g _ l i s t [ i ][ ’ Time ’ ]
407 ax . p l o t ( range ( time . shape [0]) , time )
408

409

410 def p l o t _ t a s k _ t r a j e c t o r y ( data , u s e d _ t r a j e c t o r i e s ) :
411 _fig_demo , _axs_demo = p l t . subp lo t s (3 , f i g s i z e =(10, 7) )
412

413 f o r i in u s e d _ t r a j e c t o r i e s :
414 _way_points = data [ ’ way_points ’ ] [ : , : , i ]
415

416 f o r j in range (3) :
417 _x , _y , _z , _ , _ , _ , _ , _ , _ , time = compute_ t ra jec tory ( data ,

i )
418 _ t r a j e c t o r y = np . vs tack (( _x , _y , _z ) )
419 _axs_demo[ j ] . p l o t ( time , _ t r a j e c t o r y [ j , : ] )
420

421 f o r k in range (1 , data [ ’ nr_way_points ’ ][0] − 1) :
422 _axs_demo[ j ] . p l o t ( _way_points [−1, k ] , _way_points [ j , k ] ,

’ x ’ )
423

424 _axs_demo[ j ] . p l o t ( _way_points [−1, 0] , _way_points [ j , 0] , ’ o ’ )
425 _axs_demo[ j ] . p l o t ( _way_points [−1, −1], _way_points [ j , −1], ’ o

’ )
426

427 _axs_demo [0 ] . s e t _ y l a b e l ( ’ x−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
428 _axs_demo [1 ] . s e t _ y l a b e l ( ’ y−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
429 _axs_demo [2 ] . s e t _ y l a b e l ( ’ z−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
430 _axs_demo [2 ] . s e t _ x l a b e l ( ’ Time [ s ] ’ , f o n t s i z e= ’ l a rge ’ )
431

432 _fig_demo . t i g h t _ l a you t ()
433

434

435 def p l o t _ im i t a t i on_ l e a rn i ng ( demonstration , demo_time , imi ta t ion ,
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im i t a t i on_ t ime ) :
436 f i g _ im i t a t i on , axe s_ im i t a t i on = p l t . subp lo t s ( demonstrat ion . shape [0] ,

f i g s i z e =(10, 7) )
437

438 p l o t _mu l t i _ t r a j e c t o r y ( demonstration , demo_time , f i g _ im i t a t i on ,
axe s_ im i t a t i on )

439 p l o t _mu l t i _ t r a j e c t o r y ( imi ta t ion , imi ta t ion_t ime , f i g _ im i t a t i on ,
axe s_ im i t a t i on )

440

441 i f demonstrat ion . shape [0] == 3:
442 axe s_ im i t a t i on [0 ] . s e t _ y l a b e l ( ’ x−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
443 axe s_ im i t a t i on [1 ] . s e t _ y l a b e l ( ’ y−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
444 axe s_ im i t a t i on [2 ] . s e t _ y l a b e l ( ’ z−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
445 axe s_ im i t a t i on [2 ] . s e t _ x l a b e l ( ’ Time [ s ] ’ , f o n t s i z e= ’ l a rge ’ )
446 p l t . s a v e f i g ( ’ P l o t s / Imitat ionRR . png ’ )
447

448

449

450 def p l o t _mu l t i _ t r a j e c t o r y ( t r a j e c t o r y , time , f i gu r e=None , axes=None) :
451 _ f i g = _axes = None
452

453 i f f i g u r e i s None :
454 _ f ig , _axes = p l t . subp lo t s ( t r a j e c t o r y . shape [0] , f i g s i z e =(10, 7) )
455 e l s e :
456 _ f i g = f i gu r e
457 _axes = axes
458

459 f o r i in range ( t r a j e c t o r y . shape [0]) :
460 _axes [ i ] . p l o t ( time , t r a j e c t o r y [ i , : ] )
461

462 i f t r a j e c t o r y . shape [0] == 3:
463 _axes [0 ] . s e t _ y l a b e l ( ’ x−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
464 _axes [1 ] . s e t _ y l a b e l ( ’ y−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
465 _axes [2 ] . s e t _ y l a b e l ( ’ z−pos t ion [m] ’ , f o n t s i z e= ’ l a rge ’ )
466 _axes [2 ] . s e t _ x l a b e l ( ’ Time [ s ] ’ , f o n t s i z e= ’ l a rge ’ )
467

468 _ f i g . t i g h t _ l a you t ()
469

470

471 def p l o t _3d_ t r a j e c t o r y ( data , t r a j e c t o r y ) :
472 way_points = data [ ’ way_points ’ ]
473

474 f i g3d = p l t . f i g u r e ()
475 axes = p l t . axes ( p ro j e c t i on= ’ 3d ’ )
476

477 # Tra j e c t o r y p l o t t i n g
478 axes . plot3D ( t r a j e c t o r y [0 , : ] , t r a j e c t o r y [1 , : ] , t r a j e c t o r y [2 , : ] )
479 # axes . v i ew_ in i t (60 , 35)
480

481 # plo t the via−po in t s
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482 f o r i in range ( data [ ’ nr_way_points ’ ] [0]) :
483 axes . plot3D (way_points [0 , i ] , way_points [1 , i ] , way_points [2 , i ] ,

’ o ’ )
484

485 axes . s e t _ x l a b e l ( ’ x (m) ’ )
486 axes . s e t _ y l a b e l ( ’ y (m) ’ )
487 axes . s e t _ z l a b e l ( ’ z (m) ’ )
488

489 p l t . s a v e f i g ( ’ P l o t s / Tra jec tory3D . png ’ )
490

491

492 def p e r f o rm_ t r a j e c t o r i e s ( data , robot , u s ed_ t r a j e c t o r i e s , record ing_type="
task " ) :

493 _ r e c o r d i n g _ l i s t = []
494

495 # run the paths
496 f o r i in u s e d _ t r a j e c t o r i e s :
497 p r i n t ( " T r a j e c t o r y number : {} " . format ( i ) )
498

499 # compute the t r a j e c t o r y
500 _x , _y , _z , _ , _ , _ , _ , _ , _ , time = compute_ t ra jec tory ( data , i )
501 _ t r a j e c t o r y = np . vs tack (( _x , _y , _z ) )
502

503 robot . r e s e t _ t a r ge t _po se ()
504

505 robot . com . sim . s t a r t S imu l a t i on ()
506 p r i n t ( " S imulat ion s t a r t ed ! " )
507

508 _recording_temp = robot . j a cob i an_ inve r s e_ con t ro l ( _ t r a j e c t o r y ,
record ing_type=record ing_type )

509

510 robot . com . sim . s topSimulat ion ()
511 p r i n t ( " S imulat ion stopped ! " )
512 _ r e c o r d i n g _ l i s t . append( _recording_temp )
513

514 re turn _ r e c o r d i n g _ l i s t
515

516

517 def pe r fo rm_ t ra j e c to r y ( robot , t r a j e c t o r y ) :
518 # re s e t t a r g e t s t a t e
519 robot . r e s e t _ t a r ge t _po se ()
520

521 # s t a r t s imula t ion
522 robot . com . sim . s t a r t S imu l a t i on ()
523 p r i n t ( " S imulat ion s t a r t ed ! " )
524

525 # t r a ve r s e t r a j e c t o r y
526 recording_temp = robot . j a cob i an_ inve r s e_ con t ro l ( t r a j e c t o r y )
527

528 # stop s imula t ion

Page 91 of 98



A Motor Control Learning Framework for Cyber-Physical-Systems

529 robot . com . sim . s topSimulat ion ()
530 p r i n t ( " S imulat ion stopped ! " )
531

532

533 i f __name__ == " __main__ " :
534 da ta_ r l = import_weight_data ( ’ Sca l ing / s c a l i n g . csv ’ )
535 plot_reward ( da t a_ r l )
536 sca led , non_scaled , axes_sca led , axes_non_scaled = p l o t _ r l ( da t a_ r l )
537 # p lo t _3d_ t r a j e c t o r y ( data_r l , s ca l ed )
538

539 # Franka i n i t i a l i z a t i o n
540 p r i n t ( ’ I n i t i a l i z e Franka ’ )
541 panda = FrankaRobot ( i n v e r s e _ c on t r o l l e r=" CoppeliaSim " )
542

543 # Imi t a t i on l ea rn ing
544

545 data_im = import_weight_data ( ’ Im i t a t i on /weights . csv ’ )
546 used_ t r a j = [0 , 1 , 2 , 4 , 8 , 10 , 12 , 13 , 14 , 15 , 16 , 18]
547 record ings = pe r f o rm_ t r a j e c t o r i e s ( data_im , panda , u sed_ t r a j )
548 wr i t e_ reco rd ings ( record ings )
549

550 p l o t _ t a s k _ t r a j e c t o r y ( data_im , u sed_ t r a j )
551 rec_ load = read_record ings ( ’ Im i t a t i on / record ings . csv ’ )
552 mean_tra jectory , mean_time = compute_mean_of_recording ( rec_ load )
553 pe r fo rm_ t ra j e c to r y (panda , mean_tra jec tory )
554 p lo t _ t a sk_ r e co rd ing s ( rec_load , used_t ra j , data_im )
555

556 # get s t a r t s t a t e s and goal s t a t e s from weights . csv f o r Im i t a t i on
Learning

557 s t a r t _ y = data_im [ ’ way_points ’ ] [ : 3 , 0 , 0]
558 goal_y = data_im [ ’ way_points ’ ] [ : 3 , −1, 0]
559

560 # Imi t a t i on Learning
561 r eg re s s i on_ type = " RidgeRegress ion "
562 im i t a t i on_ t ype = " eye "
563 im i t a t i on_ t , imi ta t ion_y , _ , _ = per form_imi ta t ion ( mean_tra jectory ,
564 nr_b f s=25,
565 tau=9.5 ,
566 y0=s ta r t _y ,
567 g=goal_y ,
568 r eg re s s i on_ type=

regres s ion_ type
,

569 im i t a t i on_ t ype=
imi t a t i on_ t ype )

570

571 p l o t _ im i t a t i on_ l e a rn i ng ( mean_tra jectory , mean_time , imi ta t ion_y ,
im i t a t i on_ t )

572

573 pe r fo rm_ t ra j e c to r y (panda , im i t a t i on_y )
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574 p l o t _3d_ t r a j e c t o r y ( data_r l , im i t a t i on_y )
575

576 p l t . show()
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B APPENDIX TWO

B.1 Abbreviations

C-Space - Configuration Space
CMA-ES - Covariance Matrix Adaption Evolution Strategy
DH - Denavit-Hartenberg
DMP - Dynamic Movement Primitives
DOF - degree of freedom
IM - Imitation Learning
MDP - Markov Decision Process
ProMP - Probabilistic Movement Primitives
RL - Reinforcement Learning
ROS - Robot Operating System

B.2 Symbols

The usual vector notation was used, where the scalars are lower case letters, a, row vectors are written
in bold, v, and matrices are written in bold and capital letters,M. A list of all symbols is given arranged
according to the sections of the thesis.

B.2.1 Robot Basics

X,Y, Z, coordinate of the position
θ, ϕ, ψ, coordinate of the orientation
N , number of ridgid bodies
m, number of the DOFs of the ridgid bodies
J , number of Joints
fi, DOFs of the corresponding joint i

B.2.2 Kinematics and Dynamics

x̂, ŷ, ẑ, transformed coordinates
x, y, z, input coodrinates
θ, ϕ, ψ, angles of rotation referred to the x, y, z-axis
a, b, c, displacements along the x, y, z- axis
q, configuration of a robot
x, state of the end-effector (x, y, z, θ, ϕ, ψ)
Ti−1,i, Transformation Matrix
θi, DH-Parameter: joint angle
di, DH-Parameter: link offset
ai, DH-Parameter: link length
αi, DH-Parameter: link twist

B.2.3 Robot Control

J, Jacobian Matrix
δx, change of the Cartisian position of the end-effector
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δq, change of the joint angles of the robot
η, step size of the Inverse Controller
τ , torque of the revolute joints
F , force vector

B.2.4 Reinforcement Learning (RL)

at, action at time t
st, state at time t
fπ, deterministic policy
π(at|st), stochastic policy for the given state st to perform the action at
R(τ), return of the trajectory τ
rt, reward at time t

B.2.5 CMA-ES

n, search space dimension
g, generation counter λ ≥ 2, population size, sample size
w′
i, weight helper parameter

µ < λ, number of positively selected search point in the population
µeff , the variance effective selection mass of the mean
cσ < 1, learning rate for the cumulation for the step-size control
dσ ≈ 0, damping parameter for the step-size update
cc ≤ 1, learning rate for cumulation for the rank-one update of the covariance matrix
c1 ≤ 1− cµ, learning rate for the rank-one update of the covariance matrix update
cµ, learning rate for the rank-µ update of the covariance matrix update
α−
µ , α

−
µeff

, α−
posdef , helper parameter

wi, weight of the CMA-ES Algorithm
σ(g) > 0, step-size
B ∈ Rn, an orthogonal matrix. Columns of mathbfB are eigenvectors of C with unit length and
correspond to the diagonal elements of D
C(g) ∈ Rn×n, covariance matrix at generation g
D ∈ Rn×n diagonal matrix with the squared eigenvalues of C
m(g) ∈ Rn, mean value of the search distribution at generation g
xi ∈ Rn, i-th sample of the multivariant normal distribution
p ∈ Rn, evolution path, a sequence of successive (normalized) steps, the strategy takes over a number
of generations.

B.2.6 Dynamic Movement Primitive

τ , temporal scaling factor
αz, βz, spring and damping coeffitients
g, goal state
y0, initial state
y, position
ẏ, velocity of y
ÿ, acceloration of y
f , forcing term
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Ψi, i-th base function
wi, i-th weight
ci, i-th mean value of the base function
σi, i-th standard deviation of the base function
x, variable of the canonical system for a discrete DMP
ϕ, variable of the canonical system for a harmonic DMP
ax, decay parameter of the canonical system
Γ, third derivatieve of the base functions
λ, penalty term of the regression
C(τ), cost function for the trajectory τ of the RL Algorithm
R, penalty matrizes of the cost function C(τ)

B.2.7 Experiments

d, Number of Dynamic Movement Primitives
b, Number of basis functions
xi ∈ Rdb×1, non-scaled weight vector of the DMPs
cscale ∈ Rdb×1, scaling vector

C APPENDIX THREE

C.1 CMA-ES Parameters

In the 4 the parameters of the CMA-ES algorithm are described and their initialization is given.

C.2 Robot Specifications

In the tables given here, the Cartesian and joint limits of the Franka Emika Panda are given.

C.2.1 Cartesian Limits

C.2.2 Joint Limits
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Symbol Name Equation

n
search space
dimension

λ
population size,
sample size λ = 4 + ⌊3 ln(n)⌋

w′
i

weight
helper parameter w′

i = ln
(
λ+1
2

)
− ln(i), for i = 1; ..., λ

µ
number of (positively)
selected search points
in the population

µ = |{wi > 0}| = ⌊λ/2⌋

µeff

variance effective
selection mass
for the mean

µeff =
(
∑µ

i=1 w
′
i)

2∑µ
i=1 w

′2
i
∈ [1, µ]

µ−eff negative µeff µ−eff =
(
∑λ

i=µ+1 w
′
i)

2∑λ
i=µ+1 w

′2
i

∈ [1, µ]

cσ

learning rate for
the cumulation for
the step-size control

cσ =
µeff+2

n+µeff+5

dσ
damping parameter
for step size update dσ = 1 + 2max(0,

√
µeff−1
n+1 ) + cσ

cc

learning rate for
the cumulation for
the rank-one update of
the covariance matrix

cc =
4+µeff/n

n+4+2 µeff/n

c1

learning rate for
the rank-one update of
the covariance matrix update

c1 =
αcov

(n+1.3)2+µeff
with αcov = 2

cµ

learning rate for
the rank-µ update of
the covariance matrix update

cµ = min(1− c1, αcov
µeff−2+1/µeff

(n+2)2+αcovµeff/2
) with αcov = 2

α−
µ helper parameter α−

µ = 1 + c1/cµ

α−
µeff

helper parameter αµeff
= 1 +

2µ−
eff

µeff+2

α−
posdef helper parameter α−

posdef =
1−c1−cµ

ncµ

wi weights
wi =


1∑
|w′

j |+
w′
i if w′

i ≥ 0

min(α−
µ ,α−

µeff
,α−

posdef )∑
|w′

j |−
w′
i if w′

i < 0

Table 4: This table lists the CMA-ES parameters.
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Name Translation Rotation Elbow
ṗmax 1.7m

s 2.5 rad
s 2.175 rad

s

p̈max 13.0m
s2

25.0 rad
s2

10.0 rad
s2...

p max 6500.0m
s3

12500.0 rad
s3

5000.0 rad
s3

Table 5: Cartesian Limits of the Franka Emika Panda

Name Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Unit
qmax 2.8973 1.7628 2.8973 -0.0698 2.8973 3.7525 2.8973 rad

qmin -2.8973 -1.7628 -2.8973 -3.0718 -2.8973 -0.0175 -2.8973 rad

q̇max 2.175 2.175 2.175 2.175 2.610 2.610 2.610 rad
s

q̈max 15 7.5 10 12.5 15 20 20 rad
s2...

q max 7500 3750 5000 6250 7500 10000 10000 rad
s3

τjmax 87 87 87 87 12 12 12 Nm

τ̇jmax 1000 1000 1000 1000 1000 1000 1000 Nm
s

Table 6: Cartesian Limits of the Franka Emika Panda
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