
Chair of Information Technology

Master's Thesis

Annotation of screencasts - Distinguishing
Between Relevant and Irrelevant Sections

Tabea Ulm, BSc
May 2022

Annotation of screencasts

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research
myself, using only literature cited in this volume.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die
angegebenen Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner uner-
laubten Hilfsmittel bedient habe.

Leoben,am

Datum Unterschrift

University of Leoben I Tabea Ulm

Annotation of screencasts Abstract

Abstract

This thesis proposes a method to annotate screencasts, in order to identify sections
of significance. The proposed approach quantifies the relevance frame by frame over
the duration of the recording, making it easier for an external observer to navigate to
sections of interest. Within this work, we implemented an approach for annotating
screencasts of programming activities. Given a recording of screencasts only, the pro-
posed method measures the amount of written code between each pair of subsequent
frames. The approach is divided into three steps: extracting the code editor of a devel-
opment environment, separating individual characters within those regions, and finally
analyzing changes of those characters between subsequent frames. The detection of
code editors is performed using computer vision methods that detect features charac-
teristic for those regions. Character segmentation algorithms are then applied to the
detected regions, in order to decide whether it contains a monospaced font, as this is a
distinct attribute for fonts used in code editors. Changes in those characters are then
analyzed, taking into account possible disturbances. The results were evaluated using
56 screencasts. The recordings originated from three different programming exercises,
completed by 20 different students, each student using one of two development envi-
ronments. The evaluation of those recordings result in a median accuracy of 83.4%
with a median F2 score of 81.5%.

University of Leoben II Tabea Ulm

Annotation of screencasts Kurzzusammenfassungo

Kurzzusammenfassung

Diese Arbeit beschreibt eine Methode, um Screencasts zu annotieren und signifikante
Abschnitte zu identifizieren. Der beschriebene Ansatz definiert ein Maß über die Dauer
der Aufzeichnung, dass die Relevanz von Abschnitten quantifiziert. Ziel ist es, einer
externen Betrachter zu ermöglichen, schnell zu relevanten Stellen in der Aufzeichnung
zu navigieren. Dieser Ansatz wurde für Screencasts von Programmieraktivitäten imple-
mentiert, indem ein Maß für die Menge an getippten Text zwischen Paaren von benach-
barten Frames ausgeben wird. Der hier beschriebene Ansatz lässt sich in drei Unterauf-
gaben teilen: Extrahieren des Code-Editors, Erfassen einzelner Zeichen und schließlich
die Bewertung der Unterschiede an Zeichen zwischen aufeinanderfolgender Frames. Die
Detektion der Code-Editoren erfolgt durch Anwendung von Computer Vision Metho-
den. Dabei werden charakteristische Merkmale detektiert und zur Rekonstruktion der
Editor-Fenster verwendet. In den detektierten Regionen werden anschließend Algo-
rithmen zur Zeichensegmentierung angewandt und anhand der Ergebnisse beurteilt, ob
sich der Inhalt, um Text in einer Monospace-Schriftart handelt. Diese sind charakteris-
tisch für Text Editoren von Entwicklungsumgebungen und werden deswegen zur Klas-
sifizierung der detektierten Bereiche verwendet. Abschließend werden die geänderten
segmentierten Zeichen evaluiert. Die Ergebnisse wurden anhand von 56 Screencasts
evaluiert. Die Aufzeichnungen stammen von drei unterschiedlichen Programmierauf-
gaben und wurden von 20 Studierenden gelöst. Die Studierenden verwendeten dafür
eine von zwei Entwicklungsumgebungen. Die Evaluierung dieser Screencasts ergab
einen mittleren Genauigkeitswert von 83.4% und ein mittleres F2-Maß von 81.5%.

University of Leoben III Tabea Ulm

Annotation of screencasts Contents

Contents

Affidavit I

Abstract II

Kurzzusammenfassung III

List of Figures VII

List of Tables IX

1 Introduction 1
1.1 Problem Motivation . 1
1.2 Research Theme . 1

1.2.1 Relevant Image Sections . 2
1.2.2 Relevant Actions . 2

1.3 Evaluation Method . 3
1.3.1 Evaluation of Available Screencasts 3
1.3.2 Separation Into Implementation and Evaluation Data 4
1.3.3 Method of Performance Evaluation 6

2 Related Work 9
2.1 Transcribing Code . 9

2.1.1 CodeTube . 9
2.1.2 ACE . 10
2.1.3 psc2code . 10
2.1.4 Codemotion . 11

2.2 Locating Source Code . 11
2.2.1 Identifying Source Code . 11
2.2.2 Identifying Code Fragments . 12

2.3 Event Detection . 12
2.3.1 Classifying Actions . 12

2.4 Significance of This Work . 13

University of Leoben IV Tabea Ulm

Annotation of screencasts Contents

3 Algorithmic Approach 15
3.1 Initial Definitions . 15
3.2 Frame Layout Detection . 16

3.2.1 Emphasize Relevant Features 18
3.2.2 Extract Border Parallel Lines 21
3.2.3 Construct Possible ROIs . 23
3.2.4 Analyze Geometric Properties 25
3.2.5 Group Frames According to Frame Layout 28

3.3 Grid Analysis . 29
3.3.1 Row and Column Period . 30
3.3.2 Period per Frame . 36
3.3.3 Period per Section . 36
3.3.4 Text Editor Classification . 39

3.4 Analysis of Textual Changes . 40
3.4.1 Preprocessing . 41
3.4.2 Determining Change Values . 42
3.4.3 Processing of Larger Textual Changes 44

3.5 Discarded Approaches . 49

4 Implementation 50
4.1 Usage Specifications . 50

4.1.1 Requirements for Input . 50
4.1.2 Resulting Data . 51

4.2 Project Structure . 52
4.2.1 Implementation of Frame Layout Detection 53
4.2.2 Implementation of Grid Analysis 53
4.2.3 Implementation of Analysis of Textual Changes 54

5 Evaluation 55
5.1 Setup . 55

5.1.1 Ground Truth . 55
5.1.2 Technical Setup . 56

5.2 Results . 56
5.2.1 Evaluation of Accuracy . 56
5.2.2 Evaluation of Precision and Recall 58
5.2.3 Analysis of a-typing . 60
5.2.4 Evaluation of Larger Textual Changes 63
5.2.5 Exemplary Study for Night Mode 64

University of Leoben V Tabea Ulm

Annotation of screencasts Contents

6 Conclusion 66
6.1 Summary . 66
6.2 Further Research . 66

Appendix XV
I Input Data Analysis . XV
II UML class diagramm .XVII
III Code Documentation .XVII

University of Leoben VI Tabea Ulm

Annotation of screencasts List of Figures

List of Figures

1.1 Distribution of available inputs according to IDE and UI settings. . . . 4

3.1 Visualization of the coordinate system. 15
3.2 Input image for ROI detection. 17
3.3 Examples of one-dimensional edge detection. 19
3.4 Pixels considered for derivative calculation. 19
3.5 Input images; Estimated vertical derivatives; Estimated horizontal deriva-

tives. 21
3.6 Example image for Hough Transform. 22
3.7 Representation of Hough space for the example image. 22
3.8 Right: corner region; Left: all detected lines. 24
3.9 Right: all detected lines; Left: reduced set of lines. 24
3.10 Example of partial and full overlap. 25
3.11 Input image; Green: all detected ROIs; Red: resulting ROIs 26
3.12 Remaining ROIs for different IDEs. 27
3.13 All detected possible ROIs; Remaining possible ROIs with hierarchy. . . 28
3.14 Relevant ROI for different IDEs. 30
3.15 Input image for row and column detection. 31
3.16 Example image after applying an adaptive threshold. 32
3.17 Average pixel values per row (left) and column (right). 33
3.18 Autocorrelation results per row (left) and column (right). 35
3.19 Detected grid for example image. 35
3.20 Comparison of all detected ROIs (left) and the resulting ROIs of this

method (right). 36
3.21 Example ROI structure for determining period values per section. . . . 37
3.22 Demonstration of voting algorithm. 38
3.23 Resulting ROI structure for the example. 39
3.24 Example of additive and subtractive change images. 42
3.25 Example of gird cells for which a change occurred. 43
3.26 Example of change images with horizontal shift and area of largest co-

herent change. 45
3.27 Representation of subparts for subsequent images with a shift. 46

University of Leoben VII Tabea Ulm

Annotation of screencasts List of Figures

3.28 Example of change images with autocomplete box. 47
3.29 Possible rectangles for further processing. 48

4.1 Interactions between logic classes. 53

5.1 Box plot of accuracy. 57
5.2 Scatter plot of precision and recall. 59
5.3 Box plot of F2 score. 60
5.4 ROC curve. 62
5.5 Precision-Recall curve. 63

I Package videoanalysis: classes and their dependenciesXVII

University of Leoben VIII Tabea Ulm

Annotation of screencasts List of Tables

List of Tables

3.1 Overview of methods used for ROI detection. 18
3.2 Overview of methods used for period detection. 31

5.1 Confusion matrix. 56
5.2 Resulting p-values for group pairings. 58
5.3 Relative rank of larger textual changes. 64
5.4 Results of exemplary study. 64

University of Leoben IX Tabea Ulm

Annotation of screencasts Chapter 1. Introduction

1. Introduction

1.1. Problem Motivation
Due to the exceptional situation caused by the COVID-19 pandemic, lectures are in-
creasingly held remotely, making interactions between students and teachers more diffi-
cult. Therefore, this situation calls for unconventional teaching methods. One possibil-
ity for distance learning is that students record their screens, and the instructors then
evaluate the screencasts. Compared to other monitoring techniques, such as tracking
key board inputs, display recordings have the advantage of being non-invasive. Starting
a recording takes little to no effort for students and teachers and may not even require
additional applications on students’ devices. However, evaluation of these recordings
is very labor-intensive, since every recording has to be scanned for every student who
takes part in the course.

For this reason, it would be very convenient to have a program that recognizes relevant
time codes in a video recording in order to reduce the manual effort required for eval-
uation. Relevant time codes are those in which the user carries out defined activities.
The time codes of these activities are to be made available to the evaluating persons.
Based on these timestamps, it should be possible to better navigate a screen recording.

1.2. Research Theme
Within this work the following question shall be answered:

RQ: How can relevant semantic content in screencasts be detected?

The input data for this work consists of screencasts from programming activities. The
relevant content to be detected for this use case is the modification of text inside a
development environment. We therefore want to identify text editors and analyze the
actions within. To achieve this goal, the research question can be divided as follows:

RQ1: How can semantically significant areas for programming activities in
a screen recording be detected?

University of Leoben 1 Tabea Ulm

Annotation of screencasts Chapter 1. Introduction

RQ2: Within those significant areas, which methods can be applied to
identify text changes by users?

1.2.1. Relevant Image Sections

The screencasts used for this work are evaluated as a consecutive sequence of images.
Each image is denoted as a frame. Within each frame we want to define the areas that
are considered to be semantically relevant.

For this particular use case, we are only focusing on programming activities. Therefore,
semantically relevant sections are text editors in which code can be written. As each
user has different preferences regarding development environment and user interface,
no additional assumptions regarding the representation of the code like fonts or color-
ing can be made.

The default setting in all prevailing operating systems is, that text from the keyboard
can only be entered into windows that are located at the topmost layer. Consequently,
we can restrict the analysis of textual changes to such windows.

1.2.2. Relevant Actions

Within the marked areas, we want to identify times in which a user performs relevant
actions. For solving a programming exercise, semantically relevant actions are foremost
the modification of text.

For further description of those relevant actions, we need to understand how changes
within a video can be detected. As mentioned, a video is described as a consecutive
sequence of images. We will refer to the number of images as n. Each of those frames
consists of a fixed number of pixels. Whenever an action is performed, it results in the
change of pixel values between two consecutive frames.

Of course, not all changes in pixel values are semantically relevant. As mentioned in
Section 1.2.1, we restrict the area of evaluation to code editors, which are located on
the topmost layer. When programming, not semantically relevant actions will occur
inside a code editor as well, for example scrolling, moving the cursor or the pop-up
of windows and auto-complete-boxes. Therefore, it becomes necessary to distinguish
between relevant and irrelevant actions. As mentioned, we want to restrict this analysis
to textual changes. We need to classify all changes in pixel values into relevant and

University of Leoben 2 Tabea Ulm

Annotation of screencasts Chapter 1. Introduction

irrelevant actions.

Definition 1.2.1. We define a typing function as a discrete function t : {1 . . . n−1} →
Z which measures the textual changes in a fixed time interval.

This function will give a measure for the number of characters which have been changed
between two consecutive frames. Notably, the results of the typing function can be pos-
itive or negative. A positive value corresponds to additional textual changes like typing
characters. Likewise, a negative value is related to a subtractive action like the deletion
of text. The replacement of preexisting text results in a change value of zero, as the
amount of added and subtracted characters is equal.

Definition 1.2.2. Given a frame interval [j, k], j < k, we say that a user is a-typing
over this interval, if the sum of the absolute values of t in this interval lies above a
certain threshold a:

k∑
i=j
|t(i)| > a, j, k ∈ {1 . . . n− 1}

1.3. Evaluation Method

1.3.1. Evaluation of Available Screencasts

The available screencasts are from six different Java programming exercises. Each ex-
ercise has been done by 28-44 students on their personal computers. Most students
participated in more than one exercise. In total there are 225 screencasts available, 8
of which can not be evaluated as the code editor is not visible or not fully visible in
these screencasts due to technical difficulties when recorded. In the following analysis
those screencasts have been excluded.

As stated in our research theme, the method should detect text editor windows in
which code is written. As the detection of editors from screencasts depends on their
appearance, our available data will be analyzed in terms of used development environ-
ment (IDE) and user interface (UI) settings.

University of Leoben 3 Tabea Ulm

Annotation of screencasts Chapter 1. Introduction

There where no specifications regarding development environment or user interface for
the exercises, resulting in a large number of possible settings. However, in all screen-
casts the students used one of two IDEs. In 154 screencasts (71,0%), the exercises have
been solved with BlueJ [13]. In the remaining 63 screencasts (29,0%) the students used
Eclipse [8].

Regarding the user interface, all except one student have not made any relevant changes
to the default settings of their IDE. Only one student, who used Eclipse, has changed
the user interface to night mode.

For further analysis, we group the screencasts according to the used IDE and UI-
settings. The following list represents the number of screencasts in each category:

1. 154 (71,0%) screencasts BlueJ
all with default UI-settings

2. 63 (29,0%) screencasts Eclipse
57 (26,3%) screencasts with default UI-settings
6 (2,8%) screencasts with night mode

Figure 1.1.: Distribution of available inputs according to IDE and UI settings.

1.3.2. Separation Into Implementation and Evaluation Data

The screencasts will be divided into one group for development and a separate group
for evaluation. The screencasts in the development group will be used to implement
the proposed method and test the code in the implementation phase. The screencasts

University of Leoben 4 Tabea Ulm

Annotation of screencasts Chapter 1. Introduction

in the evaluation group are used to determine the performance of the proposed method.
A detailed description of the evaluation method will be given in chapter 1.3.3. Because
of the strong dependency on the appearance of code editors, we will include all varia-
tions of IDE and UI settings in both groups.

Notably from the data evaluation above, the sample sizes of each subgroup of IDE
and UI settings vary significantly in size. In order to make any predictions about the
behavior of the proposed method on new students, we need at least four people in
each subgroup - two for development and two for evaluation. To ensure a scientific
approach, subgroups with less than four students will therefore not be included in de-
velopment. This restriction concerns the screencasts, which use Eclipse in night mode.
For evaluation, those screencasts will be analyzed separately in a qualitative study.
This restriction to sample size effects 2,3% of the users and 2,8% of the number of
screencasts.

For development and a detailed evaluation of the results, only the following two sub-
groups of user remain: BlueJ user with default UI settings and Eclipse user with default
UI settings. Those two subgroups contain 97,7% of all students and 97,2% of the to-
tal number of screencasts. The division of those screencasts will be done to meet the
following criteria:

• Half of the exercises (three) must only be used for evaluation.

• Half of all BlueJ users with default UI settings must only be used for evaluation.

• Half of all Eclipse users with default UI settings must only be used for evaluation.

When applying those criteria on the available data, 49 screencasts of three different
exercises remain for development. The screencasts are from 22 different students. In
34 of the screencasts, the exercises have been solved using BlueJ and in 15 screencasts
Eclipse has been used.

The remaining group of 162 screencasts does also contain students and exercises, which
have been used to develop the method and are therefore ”known” to our program. Thus,
when evaluating the proposed method, we have to distinguish between three groups:

• screencasts of known exercises, done by new students (42)

• screencasts of new exercises, done by known students (64)

• screencasts of new exercises, done by new students (56)

University of Leoben 5 Tabea Ulm

Annotation of screencasts Chapter 1. Introduction

As specified in the introduction, our proposed method will be applied to future exer-
cises and new students. The most conclusive results can therefore be obtained when
evaluating the screencasts of new exercises and new students. Consequently, we will
restrict the evaluation group to the 56 screencasts in this subgroup.

The appendix includes a detailed list of the available screencasts. All information re-
garding the number of students per exercise for different IDE and UI settings can be
found there (I).

1.3.3. Method of Performance Evaluation

As stated in chapter 1.2.2, the goal of our method is to identify textual changes. Ac-
cording to the definition 1.2.2, the detection of a-typing depends on the adjustable
constant a. This constant is a threshold for detecting the respective action in the spec-
ified interval. The lower the threshold is, the more time intervals will be classified as
containing the relevant action. As our goal is to assist people in finding semantically
relevant parts of a recording, we have to assume that each person has a subjective view
of what they consider to be relevant. Therefore, this constant will remain an input
parameter for our method.

When evaluating the proposed method, we first split all given screencasts into one-
minute long time intervals. We then manually define for each time interval if typing
actions are detected, describing the ideal outcome of our proposed method. Those
detection values will be compared to the output function of our program.

For evaluation, we need to calculate the a-typing value as specified in the definition
1.2.2 for each interval. Those results will be compared to the manually defined typing
activities. Both events are described as a binary outcome: the detection of typing or
non-typing in a certain interval and whether a user is actually typing or not. To repre-
sent all possible combinations of detected and actual activities, we will use a confusion
matrix to visualize the outcome of the proposed method. Within the confusion matrix,
the absolute and relative number of intervals in each category are displayed.

For a given value of a we use, as an initial estimate for the performance of our method,
the percentage of accurately detected intervals. The performance of the proposed
method is adequate, if for every screencast in the evaluation group, the accuracy is at
least two thirds. In addition to accuracy, we will use an analysis of precision and recall
as further performance indicators.

University of Leoben 6 Tabea Ulm

Annotation of screencasts Chapter 1. Introduction

When evaluating falsely predicted intervals, we need to consider them in terms of our
specific use case. As stated in the research theme, our proposed method should de-
tect typing, with the goal that a tutor can find semantically relevant parts of a screen
recording. Typically, a tutor will watch all sections which have been classified as con-
taining typing. If they come across a section which is a false positive, they can easily
identify the video section as not relevant and will move on to the next interval. On
the other hand, a false negative interval might lead to an extensive search as to when
a student is writing certain parts of a code. If a false negative interval directly follows
a true positive though, a tutor will most likely resume watching the recording as they
can identify this section as relevant.

When evaluating our proposed method, those user behaviors effect the interpretation
of our performance indicators. The autonomous identification of false positives means
that a high precision rate is not as significant as a high recall rate. When evaluating
false negatives, the severity of a wrong classification mostly depends on the classifica-
tion of subsequent intervals. As mentioned all false negative intervals which directly
follow a true positive will have virtually no impact.

So far, the described evaluation methods for accuracy, precision and recall use typing
as a binary action and do not take into account, how many characters have been typed
during a specific interval. To measure the accuracy of the typing function, we will
further compare the outcome of the function in specific intervals with the total number
of characters which have been altered in that time span. It is expected that the value
of the proposed method will be higher, the more characters have been added during
that time.

For this evaluation, we will use time intervals in which the user performs copy and
paste actions. A distinctive feature of our input data is, that at the beginning of
the implementation phase, the user is performing at least one copy and paste action.
We restrict the analysis of larger textual changes to the intervals, in which this action
occurs. For evaluation, we will compare the typing rates of those intervals to the typing
rates of all positively identified intervals.
The number of characters which are added, will be identified manually and compared
to the output of the proposed method. Using the correlation coefficient, we can esti-
mate the accuracy of the typing function.

In addition to these evaluations, an exemplary study will be done on the behavior

University of Leoben 7 Tabea Ulm

Annotation of screencasts Chapter 1. Introduction

of the proposed method on unknown IDEs and UI settings. The data for this study
consists of all screencasts with night mode settings as they have not yet been included
due to their small user sample sizes. The goal of this study is to give an idea on how
the program will perform under unknown settings and lay a foundation for further
research and development.

University of Leoben 8 Tabea Ulm

Annotation of screencasts Chapter 2. Related Work

2. Related Work

Since programming screencasts, such as online tutorials, have become a popular re-
source for developers, scientific research has been conducted in order to extract seman-
tically relevant content of a recording. Within this section, related papers are grouped
according to their research question and therefore the content, they wish to extract.

2.1. Transcribing Code
A common research question for analyzing programming screencasts is the extraction
of written code from image data. Although our method should not result in the code
itself, it is possible to apply similar methods for obtaining the change rates of text.

2.1.1. CodeTube

One paper from 2016, which proposes a method for extracting code from screencasts,
has the descriptive title ”Too long; didn’t watch! Extracting Relevant Fragments from
Software Development Video Tutorials” [18]. As the title suggests, the authors intro-
duce a method for obtaining semantically relevant sections of a screeencast. Similarly
to our use case, they define relevant sections as frames, in which source code is visible
within an IDE. The paper then proposes a method for obtaining a transcript for a
coherent segment of code. This method has been implemented in a web-application
called CodeTube.

In order to determine, whether a frame contains code, CodeTube uses the geometric
properties of text editors as well as key words of the respective programming language.
The distinctive attributes for text editors, which are used for this detection, are that
they can be described as rectangles with border-parallel lines. Each side has to have
a minimum length relative to the height and width of the screen. In addition to those
properties, an OCR tool is used to extract the text within each frame. The extracted
text is then used as an indicator for semantically relevant frames. Only frames, which

University of Leoben 9 Tabea Ulm

Annotation of screencasts Chapter 2. Related Work

contain key words, are further considered. In contract to our use case, CodeTube then
uses a combination of noisy text fragments to reconstruct the original text. We on the
other hand are primarily interested in the textual differences between two frames.

In 2019, the authors of CodeTube published an extension to their original work [17].
In addition to the described OCR approach, this paper proposes a method to classify
the coherent fragments into seven categories using machine learning. The categories
are introduction to a tutorial topic, theoretical concepts, code implementation, work-
ing environment setup, execution of implemented code, dealing with errors and closing
of a tutorial. This classification has then been used to further identify relevant sections.

2.1.2. ACE

A similar application, which also focuses on the reconstruction of dynamically written
text, has been described by Shir Yadid and Eran Yahav in their paper ”Extracting code
from programming tutorial videos” [22]. The method has been implemented in a tool
called ACE. Similar to CodeTube, this application firstly identifies regions of interest
before extracting their contents using an OCR.

For this application, the region of interest within a frame is defined as the smallest
detectable rectangle, which covers the majority of the code in the image. The detected
rectangles must further be visible within multiple frames of the screencast.

2.1.3. psc2code

In 2020 Bao, et al. proposed their method for transcribing code form screencasts [3], [4].
Their approach deals specifically with the exclusion of noisy frames, which improves
the results of the OCR. They specify noisy code regions as any frames, which either
contain no code at all, or in which code is not clearly visible due to dialog windows
and similar pop ups. Their approach classifies each frame as either relevant or noisy,
using a Convolutional Neural Network.

For all frames with clearly visible code, the regions of code are extracted by applying
computer vision techniques. Within those regions of interest, the text is then extracted
using an OCR.

University of Leoben 10 Tabea Ulm

Annotation of screencasts Chapter 2. Related Work

2.1.4. Codemotion

In contrast to the previously discussed tools, Codemotion [12] focuses specifically on
the differences in code over time. Similarly to the previous discussed tools, Codemotion
uses feature detection to determine possible text editors of development environments.
Then, an OCR is applied to each region of each frame. First, the results are used to
determine, if the extracted text might be from a programming language. Afterwards,
the code is reconstructed using the extracted text fragments.

An addition to previously discussed tools, Codemotion will determine time codes, for
which the extracted text varies significantly from the previous frame. They split the
screencast into different edit intervals. For each interval, the code is reconstructed
separately. This paper also mentions the challenge of larger textual changes due to
fast scrolling. In their approach, such a change is considered to be a separate interval.

2.2. Locating Source Code
All methods discussed in Section 2.1 use code editors as their regions of interest. Those
regions might also include white-space, or, depending on the implementation, even tool-
bars and other sections irrelevant for this analysis. In recent years, studies have been
conducted, in order to further restrict the location of the source code in image and
video data.

2.2.1. Identifying Source Code

As OCR results are extremely sensitive to noise, Ott, et al. propose a method to better
restrict the area for which OCR is applied [16]. Their approach uses a convolutional
neural network (CNN) to classify frames of a programming tutorial. In contrast to all
previous discussed tools, they do not restrict their analysis to screencasts and there-
fore computer generated images. Their model distinguishes between frames containing
typeset code, partially visible typeset code, handwritten code, and frames without vis-
ible code. In addition to accurately identifying frames containing code, their approach
also predicts the location of the source code. In a second step, they group frames, ac-
cording to similarities in the detected regions of interest by applying deep autoencoders.

University of Leoben 11 Tabea Ulm

Annotation of screencasts Chapter 2. Related Work

2.2.2. Identifying Code Fragments

A similar approach has been published by Alahmadi, et al. in 2018. Like Ott, et
al., they propose a deep convolution neural network to identify regions, which contain
source code in videos. In contrast to the previously discussed work, they focus on
typeset code. Within their paper ”Accurately Predicting the Location of Code Frag-
ments in Programming Video Tutorials Using Deep Learning” [1], they evaluate their
approach using 4,000 frames form Java programming screencasts. Their results show
that the approach can accurately predict the location of source code.

In a follow-up paper from 2020 [2], they extended their analysis. They increased their
data set to include three different programming languages. Furthermore, they eval-
uated the accuracy of OCR-extracted text and compared their results to the results
obtained by CodeTube (2.1.1). Through their approach, the code of programming
screencasts could be extracted with a significantly higher accuracy. Also, they directly
compare their results with the approach from Ott et al. and concluded that their
method outperforms the previous work.

2.3. Event Detection
So far, all discussed methods had either the goal to transcribe code from a program-
ming screencast, or to increase the accuracy of the code extraction. But even though
similar methods can be applied in order to answer our research question, we are less
interested in the code itself, but in the typing process, which leads to the code. Our
research shows, that questions related to events in programming screencasts, are less
researched than questions related to transcribing the code.

2.3.1. Classifying Actions

In 2019 Zhao, et al. published the first paper, which describes a method to detect
the actions performed within programming screencasts [23]. In contrast to the pre-
viously discussed approaches, their method processes not the individual frames, but
the difference between subsequent frames, which gives an indication of the performed
action. Those differences are used to identify a region of interest, which is then further
processed.

For each pair of subsequent frames, a convolutional neural network is applied in order

University of Leoben 12 Tabea Ulm

Annotation of screencasts Chapter 2. Related Work

to classify the actions, which happen between those frames. Within this work, Zhao,
et al. distinguish between four groups of actions, each group is further divided into two
to four subgroups. The main groups defined as follows: control cursor, edit content,
interact with app, and other. Within their evaluation group, they achieved to classify
the correct action with an average recall rate of 79% and 80% accuracy.

2.4. Significance of This Work
Most of the discussed papers, define the relevance of a frame with the visibility of code.
We, on the other hand, are concerned with the amount of altered text as a measure of
relevance.

The first step for all discussed papers is to define a region of interest, which in most
cases consists of the region, which contains code. This aligns with our first part of
the research question. Within all methods, which were presented in Section 2.1, this
has been achieved by detecting characteristic features. The main objective of Section
2.2 was, that for obtaining reliable OCR results, you need to further restrict the area.
They achieved that goal, by applying deep learning methods. In contrast, the approach
described in Section 2.3 did not use the frames themselves as an indication for regions
of interest. As they were interested in detecting changes, they extracted the regions
with the largest change between two subsequent frames.

For this work, we are not focusing on the written code itself, but on the amount of
textual changes. Transcribing the code will therefore not be necessary. As we are
therefore not applying an OCR, we will reconstruct the region of interest by detecting
characteristic features.

The second part of our research question concerns the quantification of written code.
Here, the existing literature has fewer examples, of how this could be achieved. Most
notably, the work by Zhao, et al. categorizes changes in frames, including categories for
adding and deleting characters using a convolutional neural network. Their method
could also be applied to our research question. However, a significant drawback to
their method is the required manual labor for establishing a ground truth. Within
their study, they analyzed 73,725 pairs of frames, for which a change was detectable.
According to their work, three people worked on the labeling process for one month [23].

As mentioned in section 1.3.1, we are working with 109 screencasts. On average, each

University of Leoben 13 Tabea Ulm

Annotation of screencasts Chapter 2. Related Work

screencast consists of 4,100 frames. Even when excluding pairs of subsequent frames,
in which no change is detectable, it will require immense manual effort, in order to
adapt a similar method to Zhao, et al. So, the selected approach for this work will not
apply a convolutional neural network. Instead, we are extracting distinct features of
code editors within IDEs, in order to correctly quantify typing activities.

University of Leoben 14 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

3. Algorithmic Approach

3.1. Initial Definitions
For further description of the proposed method, we need a more formal definition of a
video. The notations for image processing within this chapter are based on the nota-
tion used in the book „Digital image processing” [9].

We will describe a video V as a consecutive sequence of images V = {I1, . . . , In}. Each
image Ik k ∈ {1, . . . , n} can be defined as a two-dimensional function Ik(i, j) → pi,j,
where pi,j denotes the gray level of the image at the pixel (i, j). The values of pi,j can
range from 0 (black) to 255 (white).

In image processing, a spatial coordinate system is used, whereas i denotes the index of
a column and j denotes the index of a row. The pixel value p1,1 does therefore always
refer to the gray level at the left upper corner. We will use the notation x to specify
the total number of columns and y for the total number of rows respectively. The
function Ik(i, j) is therefore defined over the intervals i ∈ {1 . . . x} and j ∈ {1 . . . y}
respectively.

Figure 3.1.: Visualization of the coordinate system.

For a specific image I ∈ V , the values (x, y) are known as the resolution of the image.

University of Leoben 15 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Notably, for one screencast, the resolution of all images Ik stay constant for all frames
within the video.

3.2. Frame Layout Detection
As specified in section 1.2, we want to detect textual changes over the duration of the
recording. We defined, that semantically relevant text changes are those, which happen
inside text editors within IDEs. Regardless of the used IDE or the UI preferences, all
editors have the following properties:

1. The editor region has a rectangular shape, with edges parallel to the borders of
the screen.

2. While typing, the IDE is located at the foreground of the screen. So, the edges
are not covered by similarly large rectangles.

Using those properties of text editors, we will extract all rectangles within a frame,
which fulfill those criteria. Notably, those properties are also true for most other com-
puter windows. The outcome of this method is therefore a set of possible regions of
interest (ROIs), which need to be analyzed further.

As a preprocessing step, we will evaluate the variance of the average pixel value per
row over all frames. If the variance for rows at the bottom area of the screen lies below
a certain threshold, we will exclude this area for subsequent processing.

The first step to obtaining the set of possible ROIs for an individual frame, is to extract
all rectangles, which fulfill the specified criteria. This method is described in sections
3.2.1, 3.2.2 and 3.2.3. The resulting set of possible ROIs might include rectangles,
which can be discarded due to their geometric position to other detected ROIs. By
analyzing all pairs of detected rectangles, we can reduce the set of possible ROIs. This
process is described in section 3.2.4. After identifying the frame layout for an indi-
vidual frame, we will group consecutive frames with similar layouts. This process is
described in section 3.2.5.

Table 3.1 gives an overview of the performed operations. Further details can be found
in the respective chapters. Furthermore, the table shows a visual interpretation of the
outcome of each step. The following image has been used as input for this example:

University of Leoben 16 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Figure 3.2.: Input image for ROI detection.

Section Visualized Output
Feature Extraction(3.2.1)

• Scharr operators: Those operators
are applied to the image in order to em-
phasize edges.

• Binarization: By binarizing an im-
age, relevant edges will be highlighted.

Line Detection (3.2.2)

• Probabilistic Hough Transform:
For an image of highlighted regions,
this method is applied to extract all
lines, which fulfill predefined criteria.

University of Leoben 17 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Construction of ROIs (3.2.3)

• Non-maximum suppression for
lines: For lines, which lie in close prox-
imity to each other, only the longest
line will be used for further processing.

• Hough Transform for rectangles:
Using the set of line, this method con-
structs possible rectangles. All rectan-
gles, which fulfill predefined criteria are
extracted for further processing.

Geometric Analysis (3.2.4)

• Analysis of overlap: By analyzing
the overlap between two rectangles, we
can reduce the set of possible ROIs.

• Analysis of structure: All remain-
ing ROIs are separated into topmost
rectangles (red) and their nested ROIs
within (green).

Table 3.1.: Overview of methods used for ROI detection.

3.2.1. Emphasize Relevant Features

In computer vision, edges are detectable due to the high contrast in comparison with
their surroundings. In pixel values, this corresponds to a relatively large change in
the gray level between subsequent pixels. This change can be measured by calculating
the derivative of the image at each pixel pi,j. A high derivative corresponds to a high
change in the intensity level and might therefore indicate an edge.

For further description of the derivative in image processing, we will first look at a one-
dimensional signal. For each point pi of that signal, the derivative can be estimated by
calculating the difference of the surrounding points p′i = pi+1 − pi−1. A high value of
|p′i| means that the signal has a high intensity change around pi. Notably, a high value
|p′i| correlates to a high derivative at pi.

University of Leoben 18 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

The following images are visualizations of one-dimensional signals and the calculated
differences at each point. The first example shows a clear border between the high and
low intensity regions. The second example displays a blurrier transition.

Figure 3.3.: Examples of one-dimensional edge detection.

When working with two-dimensional images, this calculation is performed separately
for the horizontal and vertical directions. In contrast to the one-dimensional signal pro-
cessing, we will consider a two-dimensional neighborhood for this calculation. The size
of these surroundings can be chosen according to the input image. A larger neighbor-
hood means that more values are taken into account when calculating the differences.
Thus, values with a high contrast will influence the derivative within a larger area. The
resulting image of the calculation will therefore look blurry around high contrasting
regions.

The input images for this work are computer generated images. We can therefore
assume that the edges in our input images are well defined and will easily be detectable.
Consequently for our calculation, we will use a 3 × 3 surrounding, with the pixel pi,j
at its center.

Figure 3.4.: Pixels considered for derivative calculation.

Within this region, the derivative is estimated by applying the discrete form of the
two-dimensional convolution between an image I and a convolution kernel h. We
will denote the convolution operation as I ∗ h. The convolution kernel defines, how
the surrounding pixel values of pi,j are taken into account in the calculation. As we

University of Leoben 19 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

want to use a 3 × 3 surrounding, the kernel will have the same dimension. For a
3 × 3 convolution kernel, the formula for the two-dimensional discrete convolution is
as follows.

I ∗ h := p′i,j =
1∑

l=−1

1∑
m=−1

hl,m · pi−l,j−m

i ∈ {1, . . . , x}, j ∈ {1, . . . , y}

As becomes clear from this definition, the values of the convolution kernel are the
coefficients with which the surrounding pixel values are taken into account. For the
one-dimensional signal processing, the convolution kernel could be described as a 3× 1
kernel with the following values.

h1D =
[
1 0 −1

]

For images, we calculate the directional derivatives. Therefore, we need two separate
kernels hx and hy estimate the derivative in the respective direction. Commonly used
kernels are the Prewitt filters or the Sobel operators. With the Prewitt filter, all pixel
values in the surrounding of pi,j are equally considered for the derivative calculation.
By applying the Sobel operator, pixels closer to pi,j have a higher influence. For our
use case, we will use a optimized form of the Sobel filters, the Scharr operators [20].

hx =

47 0 −47
162 0 −162
47 0 −47

 hy =

47 162 47
0 0 0
−47 −162 −47

For commonly used computer vision libraries like OpenCV, the Scharr operators are
the recommended kernels to calculate the derivatives within a a 3×3 neighborhood [15].

The figures below show the results of I ∗ hy and I ∗ hx for two different input images.
In order to display the outcome of this operation, we have taken the absolute values for
each pixel pi,j and scaled them between 0 and 255. The images are from two different
IDEs. Notably, the horizontal and vertical borders of the text editors are clearly visible.

University of Leoben 20 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Figure 3.5.: Input images; Estimated vertical derivatives; Estimated horizontal deriva-
tives.

For further processing, the images are then converted into binary images. For our
input images, the operation results in a high contrast between black and white re-
gions. We can therefore apply an absolute threshold thbin to all pixels. If a pixel pi,j is
below this threshold, it is considered to be black. Otherwise, we consider it to be white.

pi,j =
 0 pi,j < thbin

255 pi,j ≥ thbin
i ∈ {1 . . . x} and j ∈ {1 . . . y}

3.2.2. Extract Border Parallel Lines

A commonly used method for detecting lines in images, is known as the Hough Trans-
form [19]. This method determines, how many pixels within an image support a certain
line. To represent all lines within an image, we need to use the normal representation
of a line, where ρ is the orthogonal distance of the line to the origin and θ represents
the distance from the i axis:

cos(θ) ∗ i+ sin(θ) ∗ j = ρ

Given a binary image, each white pixel pi,j = 255 supports all lines, for which the
following statement is true:

cos(θ) ∗ i+ sin(θ) ∗ j − ρ = 0

To identify all lines, we transform the image space into the Hough space, where the
axis are ρ and θ. For each white pixel, the ρ and θ values for all possible lines, which

University of Leoben 21 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

go through this point, are then represented within this space.

The following figure shows an example image, for which we will perform a Hough
Transform.

Figure 3.6.: Example image for Hough Transform.

For each white pixel, the ρ and θ values of all possible lines are represented as curves
within this space. The interception points of those curves mean, the respective ρ and
θ values result in lines which are supported by all three white pixel.

Figure 3.7.: Representation of Hough space for the example image.

University of Leoben 22 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

In general, we are interested in points within the Hough space, where the number of
supporting pixel lie above a certain threshold.

The standard Hough Transform counts the white pixels for all possible values −π
2 ≤

θ < π
2 and 1 ≤ ρ ≤ ρmax. The value ρmax denotes the outermost pixel of an image for a

given θ-value. We can then analyze the result for maxima. For our use case, this process
can be optimized by reducing the space of possible values. As we are only interested
in border parallel lines, we can define the space of possible values for θ and ρ as follows:

θ ∈ {−π
2 , 0}

1 ≤ ρ ≤ ρmax

An optimization of the standard Hough Transform is known as the Progressive Prob-
abilistic Hough Transform [14]. The implementation of this method does not include
all pixels of an image but reduces the number to a random subset. Additionally, this
method returns the extremes of a detected line, which represent the start and end point.

Additional inputs for this method are a minimum line length and a maximal gap within
a line. For this use case, the minimum line length must include the minimum side length
of the text editor.

3.2.3. Construct Possible ROIs

For all extracted lines, we need to evaluate, which ones could be the borders of a text
editor within an IDE. When looking at the set of all possible lines, we will observe,
that some regions contain clusters of detected lines in close proximity to each other.
The figure below shows a close up of a corner region of a window. Due to the content
of the window as well as some graphical elements, we extract not only the borders but
also other lines.

University of Leoben 23 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Figure 3.8.: Right: corner region; Left: all detected lines.

To reduce the number of possible lines and to better extract the border of a region
of interest, we will apply a non-maximum suppression algorithm. For each set of
horizontal and vertical lines, we will firstly identify clusters by analyzing their geometric
distance. For each cluster, only the longest line will remain in the set of all possible
lines.

Figure 3.9.: Right: all detected lines; Left: reduced set of lines.

Given the reduced set of horizontal and vertical lines, we will determine a set of all
possible ROIs. We will consider all rectangles, which fulfill the following criteria to be
relevant:

1. The length of all sides must be above a given threshold.

2. Each side must be supported by the detected lines.

For the first criterion, we will use the same minimum length, which was also applied
to the Hough Transform in Section 3.2.2. For all possible rectangles with this mini-
mum side length we will then analyze, whether the rectangle is also supported by the
extracted border parallel lines.

University of Leoben 24 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

We define a minimum ratio of supported pixels to the total number of pixels for a
specific side. In case, that all four sides of a rectangle with minimum side length fulfill
that criterion, it is considered to be a possible region of interest.

3.2.4. Analyze Geometric Properties

Given the set of all detected ROIs, we need to identify those, which are located in the
foreground. We can observe from the visually represented output of method 3.2.3, that
the detected rectangles might be overlapping and therefore not fulfilling this criterion.
In order to reduce the set to the topmost ROIs, we will look at the geometric relation-
ships between all detected rectangles.

Firstly, we will look at overlapping rectangles. Given two overlapping rectangles, at
least one of them cannot be a topmost ROI and should therefore be excluded from the
resulting set. We will say, that two rectangles roii, roij are overlapping, if they share
some pixels. We can measure this overlap oi,j of roij in roii by calculating the ratio
between shared pixels to total pixels of roii.

To analyze pairs of overlapping rectangles, we need to distinguish between partially
and fully overlapping. Two rectangles roii, roij are said to be partially overlapping, if
1 > oi,j > 0 and 1 > oj,i > 0. In contrast, we will say that roij is fully overlapping
with roii, if 1 > oi,j > 0 and oj,i = 1. The following figure gives examples of partially
and fully overlapping rectangles as well as their corresponding overlaps oi,j and oj,i.

Figure 3.10.: Example of partial and full overlap.

For our proposed method, we will first look at all pairs of partially overlapping rectan-
gles. We know by definition, that at least one of them does not belong to the topmost

University of Leoben 25 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

layout of ROIs. So, we need to decide for each pair, which rectangle should be discarded.

In Section 3.2.3 we introduced a method to indicate how well a given rectangle is rep-
resented in the image of relevant lines. The method results in a value between 0 and
1, whereas a higher value represents a higher support of the rectangle in the image.
We determined the set of possible ROIs by applying a threshold to the resulting val-
ues. For a pair of partially overlapping rectangles, we therefore know, that for both
rectangles, the method results in a value above the threshold. But furthermore, this
measure gives us a relative value of how good the respective rectangle can be observed
in the picture of possible lines. We can therefore conclude that the rectangle with the
lower value should be excluded from the set of possible ROIs. In the rare case, that
both rectangles result in the same value, we will discard the smaller one. We will use
this decision mechanism for all pairs of partially overlapping rectangles.

This method is represented in figure 3.11. The input image shows two overlapping
rectangles. Because the overlap occurs only in a relatively small area, both rectan-
gles are considered to be possible ROIs. An analysis of the actual representation of
the rectangles in the input image shows, that only the lower rectangle can be in the
foreground.

Figure 3.11.: Input image; Green: all detected ROIs; Red: resulting ROIs

After reducing the set of possible ROIs to a set with no pair of partially overlapping
rectangles, we will now analyze pairs of fully overlapping ROIs. For partially overlap-
ping ROIs, we could use the visual representation of the rectangles in the image to
decide, which one is more likely to be part of the topmost layout. For fully overlapping
rectangles, this method can not be applied, as the borders of both rectangles can be
fully visible.

So, instead of the visibility of the borders, we will analyze the overlap oi,j of a smaller
ROI roij in roii. As roij lies fully inside roii, the overlap gives us a measure, of how
similar those rectangles are. In case this overlap is above a certain threshold, we will

University of Leoben 26 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

remove the larger ROI roii from the set of possible ROIs, as we do not expect that the
image difference holds any semantically relevant information.

Figure 3.12 shows the remaining set of possible ROIs for two different IDEs. Ideally,
we want to extract the text editor within the IDE. In both cases the outline of the
editor has been detected but is fully overlapping with larger rectangles. In the second
picture, the method also detects a smaller rectangle within the text editor.

Figure 3.12.: Remaining ROIs for different IDEs.

As becomes obvious, we are not able to decide, which rectangle will be our actual
region of interest by just analyzing their geometric position to each other. Instead, we
will construct and examine the hierarchy of all remaining ROIs.

We will say, that a ROI roii belongs to the topmost layer, if the overlap of roii to
all other ROIs roij in the set of all remaining ROIs is oi,j < 1. Therefore, all other
rectangles are either smaller fully overlapping rectangles or not overlapping with roii.

For further processing, all ROIs, which belong to the topmost layer, are grouped into
a separate set of topmost ROIs. For each ROI, we define a set of directly nested ROIs.
A ROI roij is said to be a directly nested ROI of roii, if roii it is the smallest ROI with
which roij is fully overlapping. As ROIs, which are surrounded by multiple ROIs, are
less likely to be relevant, we define a maximum depth and discard all possible ROIs
where the nested structure exceeds this depth.

The following figure shows the result of this method applied to screenshots of different
IDEs. The left images show all detected possible ROIs. On the right are images of the
visual representation of all remaining ROIs. The topmost ROIs are marked in red.

University of Leoben 27 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Figure 3.13.: All detected possible ROIs; Remaining possible ROIs with hierarchy.

3.2.5. Group Frames According to Frame Layout

So far, the process results in the window layout of a single frame. Within this section,
we will describe a method for grouping frames with a similar window layout. As we
established in Section 3.2.4, the nested regions of interest might be part of the user
interface and can therefore change their position inside the topmost ROIs. When we
are comparing the detected layout of subsequent frames, we will therefore only compare
the topmost ROIs.

When provided with a frame Ik and a corresponding layout of topmost ROIs, we can
determine, whether a subsequent frame Ik+m contains the same topmost ROIs, by
evaluating the emphasized lines of Ik+m (as defined in Section 3.2.1). Each border of
the detected topmost ROIs for Ik must be found as an emphasized line of Ik+m. For
detection, we can use the same minimum ratio of white pixel to side length of Section
3.2.3 to evaluate whether Ik+m contains a specific topmost ROI.

Notably, we will only need to calculate the layout once for Ik. For all subsequent
images, we only need to apply the first step in the process described in 3.1. Via this
method, we know that all detected ROIs of Ik are present within Ik+m. But we can
not determine whether all topmost ROIs of Ik+m are present in Ik. All new detectable
ROIs in Ik+m, which do not cover any borders of topmost ROIs in Ik will not be de-

University of Leoben 28 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

tected.

To avoid a loss of information, we will compute the layout of detected topmost ROIs
at fixed intervals and compare them to the original layout of Ik. When provided with
the layouts of detected topmost ROIs for two frames Ik, Ik+m, we will use the overlap
as a measure for similarity. For each topmost ROI of Ik, there must be a topmost ROI
of Ik+m, so that the overlap of those two ROIs is above a given threshold. Similarly,
each topmost ROI of Ik+m must fulfill the same criterion with a topmost ROI of Ik.

As soon as an image Ik+m does not contain the topmost ROIs of Ik or the topmost
ROIs fail to overlap sufficiently, we define a new section from k to k +m− 1.

3.3. Grid Analysis
We currently have a division of the screencast into sections with a similar layout. The
topmost ROIs of all frames within this section match, but we still need to consider the
nested ROIs, as they might be a better indicator for the location of the actual text
editor.

We can assume, that the further analysis of textual changes works more accurately,
if the region of the text editor has been identified more narrowly, as changes in the
irrelevant parts of the ROI might falsely be identified as typing activities. On the other
hand, we need to be aware, that ROIs could also be detected, due to highlighting and
markings within a text editor.

The following figure shows the topmost ROI, which contains a text editor, for two
different IDEs with the respective nested windows. The first picture shows a case, in
which the smallest possible ROI excludes part of the code. In contrast, the topmost
ROI of the second picture includes various other regions of the IDE in addition to the
text editor.

University of Leoben 29 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Figure 3.14.: Relevant ROI for different IDEs.

In order to decide, which of the possible ROIs gives us the best solution, we will
examine the content within. As we are interested in textual changes, we will use prop-
erties of the relevant text to decide, in which ROI those properties are represented best.

One distinct property of text editors within IDEs is, that all commonly used font types
are monospaced fonts. All characters for such fonts can occupy the same width for a
given height. Furthermore, the font size remains constant within the text. For code
editors, it must therefore be possible to define a regular grid, which separates all char-
acters.

Section 3.3.1 describes the process of obtaining the relevant properties. Using those
properties we will decide, which ROIs should be analyzed further. For this process,
we are interested in one ROI for each topmost ROI that is most likely to be the code
editor. Section 3.3.2 proposes a method to decide for a single frame, which ROIs fulfill
the specified criteria best. This information will be used in Section 3.3.3 to determine
the ROIs for the respective section of the screencast.

Throughout this section, we will only consider ROIs instead of entire frames. Will will
therefore use the term image synonymous with ROI. To better describe the proposed
method, we will use the indices iroi and jroi as pixel coordinates for a specific ROI,
with an origin in the left upper corner.

3.3.1. Row and Column Period

For a given ROI, we now want to decide, whether we can identify a periodic pattern for
the rows and columns. The performed steps for this approach are described in table

University of Leoben 30 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

3.2. In addition, the table also includes a visual representation of the output. The
following figure has been used as input for this example.

Figure 3.15.: Input image for row and column detection.

Step Visualized Output
Preprocessing

• Binarization: Using an adaptive
threshold, the background can be sep-
arated from the text.

• Long line exclusion: By applying a
probabilistic Hough transform, we can
exclude irrelevant (long) lines.

Period Detection

• Reduction: The two-dimensional im-
age will be reduced to the horizontal
and vertical one-dimensional signals .

• Autocorrelation: Using those sig-
nals, we will determine the most likely
values for the period in horizontal and
vertical directions.

Table 3.2.: Overview of methods used for period detection.

University of Leoben 31 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

The first step for this approach is to simplify the input in such a way, that characters
are emphasized. We therefore want to convert the grayscale image into a binary image,
in which characters and background are clearly distinguishable.

A challenge for binarizing the input images is the syntax highlighting within IDEs. As
can be observed in figure 3.15 the pixel values of character and background colors vary
significantly. In order to establish a robust method for emphasizing characters, we will
apply an adaptive threshold to the input images. For such thresholds, we consider a
defined neighborhood of a pixel. The gray levels of the pixels within this neighborhood
are used to calculate a threshold. The threshold for pi,j is then defined as the mean
of all pixel values in its surrounding minus a constant value. If pi,j is smaller than the
threshold, we will set its value to 0, otherwise to 255 [7]. The resulting image for our
input image can be seen below.

Figure 3.16.: Example image after applying an adaptive threshold.

Notably, in addition to characters, this method also emphasizes straight lines, which
either belong to UI elements like scroll bars, or to syntax highlighting. As straight,
consistent lines over a certain length are never part of characters, we filter them out.
The method described in Section 3.2.2 can also be used to identify lines within our
current binarized images. The only difference to the predefined method is, that we
now want to identify black lines on a white background. We will therefore not per-
form the Hough Transform on the original image, but on an inverted copy. For all
identified lines, the pixel values within the original binarized image will then be set to
255. an example of the graphical representation of this method can be seen in table 3.2.

University of Leoben 32 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

For the resulting images, we can now analyze, whether a periodic pattern in horizontal
and vertical direction can be detected. First of all, we will reduce the complexity of
the two dimensional image into two one-dimensional signals. We obtain the vertical
signal by calculating the average pixel value per row. Likewise, the horizontal signal is
obtained by calculating the average pixel value per row for each column.

The average pixel values for all rows and columns of the example image are displayed
below. Especially for the average pixel values per row, we can observe, that the date
has visible notches. Those represent rows, in which many black pixels exist. This
indicates that those rows might contain text.

Figure 3.17.: Average pixel values per row (left) and column (right).

We now want to analyze, whether we can identify an integer periodicity within those
signals. A method to determine repetitive patterns for data containing noise is auto-
correlation [5]. For a signal xi, i ∈ {1, . . . , N}, the autocorrelation for a specific period
a(p) is calculated as follows:

a(p) =
∑N−p
i=1 (xi − x) ∗ (xi+p − x)∑N

i=1(xi − x)2

For the horizontal and vertical signals, we will calculate the autocorrelations ahor(p)
and aver(p) for all values p ∈ {1, . . . N}. As we want to identify a character grid, the
only period values, in which we are interested, are possible widths of characters and
heights of lines. So as the periodicity of the character grid we will only accept values

University of Leoben 33 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

ahor(phor) witch lie within phor ∈ {widthmin, . . . , widthmax}. Likewise, the acceptable
periods for the horizontal grid are pver ∈ {heightmin, . . . , heightmax}.

As a high autocorrelation value indicates a possible period, we are particularly inter-
ested in local maxima within acceptable period values. As we are dealing with periodic
values, it is important to keep in mind, that multiples of a maximum should also be a
local maximum. In reverse, integer divisors of a local maximum might better represent
the character grid. To consider those effects, we will define the strategy for identifying
the period value pbest as follows:

1. Identify the highest local maximum pbest of a(p) within p ∈ {min, . . . , 3 ∗max}.
If there is no local maximum within the specified range, no periodic value is found.

2. Identify all divisors of pbest, which are greater or equal than min.

3. Set pbest to the smallest divisor, which is also a local maximum.

4. If pbest > max, no periodic value is found.

5. If either 2 ∗ pbest or 3 ∗ pbest is a local maximum, pbest is an acceptable value.
Otherwise, no periodic value is found.

If no period can be found, which fulfills the specified criteria, we will return the value
−1 as an indication, that no periodic value was detectable.

For the implementation of this method, we include a tolerance for the decision if a
divisor is a local maximum (step 3). Furthermore, we found that the period values
could be detected more reliably, if we exclude the outermost rows and columns for an
autocorrelation calculations. Also, as the number of rows and columns stay constant,
we will calculate a non-normalized version of the autocorrelation.

We experimentally established, that acceptable character widths lie within phor ∈
{7, . . . 30} and acceptable line heights within pver ∈ {13, . . . 40}. The figure below
shows the calculated autocorrelations aver and ahor of our example image for relevant

University of Leoben 34 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

p values. All local maxima are highlighted.

Figure 3.18.: Autocorrelation results per row (left) and column (right).

For the vertical period, the highest local maximum lies at 50. The only possible
divisors for 50 is 25, which is also a local maximum. Therefore, the resulting value for
the vertical period is 25. The highest local maximum for the horizontal period lies at
11. As this value has no acceptable divisors, we need to evaluate the autocorrelation
for 22 and 33. At 22 we can also observe a peak, which means that 11 is an acceptable
period. We can see the graphical interpretation of those values in the following figure.

Figure 3.19.: Detected grid for example image.

University of Leoben 35 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

3.3.2. Period per Frame

So far, we established a method, which results in a best fitting period value for a spe-
cific ROI, as long as such a value exists. As mentioned, the layout of all possible ROIs,
might include regions with a nested structure. We will use the detected period values,
in order to decide, which structure should be analyzed further.

We assume, that for a given nested ROI, the surrounding ROI will be a better bound
for a text editor, when the detected horizontal and vertical periods are identical. In
contrast, all nested ROIs are preferred to the surrounding ROI, in case one of the
detected periods for the nested ROIs does not match the detected surrounding period
values. Therefore, we will process the smallest ROIs, for which the period values do
not match the surrounding values for all topmost ROIs.

The following figure compares the detected ROIs of an example image to the resulting
ROIs of this process.

Figure 3.20.: Comparison of all detected ROIs (left) and the resulting ROIs of this
method (right).

3.3.3. Period per Section

As some individual frames may contain noise, we analyze the period values within the
ROI structure over the entire section. For each frame we obtain a ROI structure with
corresponding period values. Using this information of each frame within the section,
we determine the best ROI structure with corresponding period values for the entire
section.

For one individual ROI we determine the number of frames, in which this ROI was part
of the resulting ROI structure. If the respective ROI was part of at least one resulting
ROI structure, we can determine the period values, which were most often detected

University of Leoben 36 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

for this ROI. The number of frames in which those period values were detected, will
be used for a voting algorithm.

We recursively compare the vote count of the grid, which was most often detected for a
specific ROI, to the average of all vote counts of the nested ROIs. This method results
in a ROI structure and corresponding period values, which were most often detected
within a specific section.

The following example demonstrates this voting algorithm for a section with ten frames.
The figure below displays the structure of all detected ROIs for this example.

Figure 3.21.: Example ROI structure for determining period values per section.

For each of the ten frames, the best ROI structure with corresponding period values is
calculated. Each ROI within the detected structure and their period values count as a
vote within the voting algorithm. The following figure shows the results for this exam-
ple. The vote counts per period values are displayed on the right of the respective ROI.

University of Leoben 37 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Figure 3.22.: Demonstration of voting algorithm.

Through this voting algorithm, the following structure is obtained.

University of Leoben 38 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Figure 3.23.: Resulting ROI structure for the example.

3.3.4. Text Editor Classification

The resulting set of ROIs consists of all ROIs, which are most likely to be text editors
for a specific section and their respective period values. Within this step we want to
further analyze the proposed grids, in order to classify the detected ROIs into text
editors and other ROIs.

Throughout this process, we have considered a period of -1 (i.e., no period found)
as being an acceptable value. Especially within Section 3.3.3 the information of the
amount of frames, for which no grid could be detected is preserved. As we are now
classifying the ROIs, we take this information into consideration. All ROIs, for which
the obtained horizontal or the vertical period equals -1, are classified as a non-text
editor and excluded form further analysis.

For all remaining ROIs, we evaluate, how well the identified grid fits the respective
ROI. So far, we have only defined the period values. To set up a grid we also need a
parameter for the offset in each direction. The offset values over, ohor define the shift
of the first grid line from the top and left border, respectively. The offset is therefore
an integer value between 0 and p. A row jroi is said to be a segmentation row of the

University of Leoben 39 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

grid if jroi + over is divisible by pver. Similarly, segmentation columns will be denoted
as columns iroi for which iroi + ohor is divisible by phor.

The period value stays constant throughout all frames. In contrast, the offset might
change due to scrolling and changes within the text layout. We therefore need to iden-
tify the offset values for each frame individually.

Starting point for the offset detection are the average pixel values. An example of
those values can be seen in figure 3.17. The segmentation lines should be in between
the characters. We select the offset as the value for which the difference between the
sum of pixel values of segmentation lines and the sum of pixel values of intermediate
lines is highest.

This difference is also a measure of the quality of our grid. We calculate this differ-
ence for each frame. If the average difference lies above a given threshold for both the
horizontal and vertical direction, we classify this ROI as a text editor. Otherwise, it is
classified as a non editor and therefore excluded from further analysis.

3.4. Analysis of Textual Changes
We analyze the changes within all ROIs, which were classified as text editors. In com-
parison to all previous steps, we will not analyze individual images, but look at two
subsequent frames and their differences. As we are only considering ROIs instead of
frames, we will use the term image synonymous with the current ROI.

For each pair of subsequent frames, we generate change images as described in Section
3.4.1. Those images are then evaluated with respect to character changes within Sec-
tion 3.4.2. In case the change values indicate that there might be a non textual change,
we analyze the images further as described in Section 3.4.3.

The described methods of Section 3.4.2 and Section 3.4.3 evaluate the subtractive and
additive changes separately. Those methods will therefore result in a change value for
the added amount of characters and a change value for subtracted amount of characters
respectively. To calculate the typing rate as described in Definition 1.2.1, we have to
subtract the subtractive change value form the additive change value.

University of Leoben 40 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

3.4.1. Preprocessing

Within the preprocessing step, we emphasize the differences between ROIs of subse-
quent frames, by calculating the image differences. We obtain those images by pixel
wise subtraction.

As inputs, we use the binarized ROIs from Section 3.3.1, where long lines have not yet
been excluded. We construct the difference image by subtracting the pixel values of
the two subsequent images. As were are processing binarized images, the pixel wise
subtraction can only result in one out of three values. The pixel value within the dif-
ference image will be 0 if there was no change. The result will be 255 if there was a
subtractive change and -255 if there was an additive change.

As the pixel value of -255 cannot be graphically represented, we construct two images.
One image represents all additive changes as white pixels. Likewise, the subtractive
change image represents all subtractive changes as white pixels. An example of such
change images is displayed in the figure below.

University of Leoben 41 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Figure 3.24.: Example of additive and subtractive change images.

Depending on the selected ROI, the change images might also detect changes of non
textual elements, for example the BlueJ syntax highlighting or UI elements like the
scroll bars. Similar to the grid detection, we can also exclude resulting changes, which
cannot represent characters. We therefore apply the Hough Transform, described in
Section 3.2.2 to the change images. We can determine the minimum line length, as the
diagonal of a character grid

√
p2
ver + p2

hor.

3.4.2. Determining Change Values

Our aim is to convert the pixel-wise changes into changes of characters. Notably, when
typing different characters, the amount of added pixel depends on the appearance of
the character. To convert changes of pixel into changes of characters, we evaluate the
change images with respect to the obtained grids.

Within Section 3.3, we determined the parameters of the character grid. For a specific

University of Leoben 42 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

ROI, the period values phor, pver stay constant throughout the section. In contrast, we
determined offset values ohor, over for each individual ROI within the section.

All white pixels within the additive change image correspond to characters, which are
only present within the second image in the pair of subsequent images. Therefore, we
apply the grid parameters of the second image of the pair of frames to the additive
change image. Likewise, the grid parameters of the first image are used for the sub-
tractive change image.

The obtained changes are now analyzed with respect to the character grids. For each
grid cell, we can analyze, whether a relevant change has occurred or not. We only
consider complete grid cells and therefore disregard incomplete grid cells at the border
of the ROI. For any given grid cell of a change image, we determine, whether a relevant
change occurs. The amount of cells with a relevant change of the additive change image
equals the amount of added characters. Similarly, we determine the number of sub-
tracted characters as the amount of grid cells with relevant changes for the subtractive
change image.

Figure 3.25.: Example of gird cells for which a change occurred.

We observe, that characters lie within the center of a grid cell. Therefore, we can define
a padding within each grid cell. A specific cell does only contain a relevant change if

University of Leoben 43 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

there is at least one white pixel within the inner area of it. Through this criterion,
we can exclude noise, which might occur due to syntax highlighting or selection of text.

As a second criterion, we can observe, that characters always contain more than one
pixel, which are connected to each other. We therefore only consider white pixel values
with an immediately adjacent white pixel in horizontal or vertical direction.

To summarize, all grid cells within a change image are considered relevant, if the
following criteria are met:

• At least one change lies within the padded grid cell.

• For at least one change within the padded grid cell, there is an immediately
adjacent change.

Notably, this described approach does not consider non textual changes, which happen
within text editors. In case the additive change value or the subtractive change value
exceeds a certain threshold, we will further analyze the change images as described in
Section 3.4.3.

3.4.3. Processing of Larger Textual Changes

Within this section, we propose approaches for considering common non textual changes
within text editors. For this work we will restrict the analysis to scrolling activities
and the appearance of dialog boxes. Notably, both events will result in a high additive
or a high subtractive change value.

For change images with larger detected changes, the following steps are performed:

1. In case a vertical shift can be detected, return the change values which include a
vertical shift.

2. In case a horizontal shift can be detected, return the change values which include
a horizontal shift.

3. In case a dialog box can be detected, return the change values which include the
dialog box.

In case neither a change nor a dialog box can be detected, we will either return the
initial change values obtained in Section 3.4.2 or 0 as the additive and subtractive
change. For this decision, we consider, the similarity of the additive and subtractive

University of Leoben 44 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

change values. For this analysis we calculate the ratio of the smaller change value to
the larger change value. If this ratio lies above a certain threshold, both change values
are similarly large. As this might indicate disregarded events within the screen, we will
return 0 as the additive and the subtractive change. In contrast, if the ratio is below
the threshold, the initial change values are returned.

Shift Detection

To identify a potential shift, we apply template matching to the subsequent images.
This method compares a template image to all potential regions of an input image.
This approach results in a comparison value for each location in the input image. [10]

To evaluate whether the larger textual change has been caused by a shift in vertical or
horizontal direction, we need to detect the region within the images which is potentially
affected by the shift. For this evaluation, we identify the largest rectangular cluster of
white pixels within the combined subtractive and additive change image.

Figure 3.26.: Example of change images with horizontal shift and area of largest coher-
ent change.

University of Leoben 45 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

For shift detection, we only consider the region within the area of largest coherent
change. The templates are extracted from the first of the pair of images and compared
with the second image. Within the largest region of coherent change, we use all lines
as templates for vertical shift detection and columns for the horizontal shift detection.
For each line or column respectively, we identify the maximum comparison value. If
this value lies below a certain threshold, we mark this region as not detected.

The result per template can be described as the potential shift for this line or column
respectively. We accept a shift, if at least half of all lines or columns result in the same
shift value.

In case a shift exists, we evaluate the affected area as three distinct subparts: regions
which are visible in both frames, regions which are only visible in the first image, and
regions which only appear in the second image. For each subpart, the change values are
calculated individually. The result of this method is the sum of the individual additive
and subtractive change values.

Figure 3.27.: Representation of subparts for subsequent images with a shift.

Regions which appear in both frames, are extracted. The change values within those
regions are then calculated as described in Sections 3.4.1 and 3.4.2. Per default, the
vanished and appeared texts are only considered, in case the region of the largest co-
herent change does not span over the entire ROI.

University of Leoben 46 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

Dialog Box Detection

We define all rectangular shapes, which might appear within the region of the code
editor as a dialog box. This includes menus, auto complete boxes, and pop up windows.
A main characteristic of all those boxes is, that after a number of frames, those boxes
will vanish again. The area which was covered by those boxes will often stay unchanged.

As for the shift detection, we first of all determine the region of the largest coherent
change within the change images. This region is then extracted from the first image Ik
for which the change value is determined. We know that the next image Ik+1 contains
some change within this region. We now want to evaluate whether the change of this
region will be reversed within the next n frames.

Figure 3.28.: Example of change images with autocomplete box.

Sequentially, we apply template matching to the images Ik+l l ∈ {2, . . . , n}. The
template for this method is the extracted region from image Ik. If the result of the
template matching lies above a certain threshold, we assume, that the initial text has
reappeared in image Ik+l. In case no such value l is found, no dialog box is detected.

When a dialog box has been detected within images Ik+1 and Ik+l−1, we generate the

University of Leoben 47 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

change images of the given ROI between Ik and Il. If no change can be detected within
the region of the largest coherent change between Ik and Ik+l, we set all change values
within that region for all pairs of subsequent images to zero. We can then recalculate
the change values for Ik and Ik+1 and proceed.

In case a change could be detected within the region of largest coherent change in
between Ik and Ik+l, we only set a sub-region to zero. The following figure displays
the possible sub-regions. The white rectangle represents the area of largest coherent
change and the gray rectangle within represents the area, for which a change is still
detectable between Ik and Ik+l. The area, which is set to zero is the one rectangle of
rectup, rectdown, rectright, and rectleft with the largest area.

Figure 3.29.: Possible rectangles for further processing.

Within the resulting region, we set all change values for all pairs of subsequent images
between between Ik and Ik+l to zero. Afterwards, we can recalculate the change values
for Ik and Ik+1 and proceed.

University of Leoben 48 Tabea Ulm

Annotation of screencasts Chapter 3. Algorithmic Approach

3.5. Discarded Approaches
The method as described in the sections above is the result of constant trial and error.
Within this section, we want to discuss selected approaches, which were considered for
this project, but ultimately discarded for various reasons.

As most of the comparable projects use OCRs in order to extract text (see Section 2),
we initially tried similar approaches for detecting the change rates. It was quickly dis-
covered that the extracted text by commonly used OCRs, did not result in the quality
needed to identify textual changes between frames. For OCRs, which could produce
accurate results, it was not viable to process the amount of frames, primarily due to
the required financial costs.

For the detection of grid values (see Section 3.3.1), we implemented the method using
autocorrelation as well as a Discrete Fourier Transform (DFT). We discarded the DFT,
as the detected peaks were not as easily convertible into integer period values.

For the classification of ROIs into text editors and non text editors (see Section 3.3.4),
we considered the alignment of text as an additional criterion. It was possible to eval-
uate, whether a ROI might contain left aligned text. However, since left aligned text
is used in many computer windows, this criterion was not suitable for classifying code
editors, as most ROIs were classified as such.

Within Section 3.4.3 we discussed a method for dealing with larger textual changes.
The proposed method is restricted to the analysis of shifts, as well as the appearance of
text boxes. This excludes many other events, which might happen within text editors.
We initially implemented an approach that would store text segments throughout a
screencast. Through this method, we could have distinguished newly written text from
reappeared text. This approach was discarded due to the required storage and runtime
complexity for such a global repository.

University of Leoben 49 Tabea Ulm

Annotation of screencasts Chapter 4. Implementation

4. Implementation

4.1. Usage Specifications
This project has been designed as a Java console application. We used Java 15.0.1 for
implementation. The only dependency is the OpenCV library [6], version 4.5.3.

This application requires three arguments, which are described in more detail below. To
run this application successfully, the three arguments must be entered in the specified
order.

1. Path to Input Image Directory: path to the directory, in which the input
images are located. A detailed description of the requirements for the input can
be found in Section 4.1.1.

2. Path to Output Directory: path to the directory, in which the resulting CSV
file will be stored. A detailed description of the output of this application can be
found in Section 4.1.2.

3. Name: a string, which will be used as the filename for the output file. Further-
more, this string will be used within log messages.

4.1.1. Requirements for Input

All frames of the screencast need to be stored within the same directory. The directory
must only contain frames form one screencast. The path to the directory is stated as
the first input argument. The images within this directory must fulfill the following
requirements:

• The file format of the images must be supported by OpenCV. A detailed list of
all supported formats can be found in the OpenCV API [11]. All images, which

University of Leoben 50 Tabea Ulm

Annotation of screencasts Chapter 4. Implementation

were used for implementation and evaluation were of type JPEG (.jpg).

• The file names of the frames must be in sequential order. All retrieved images will
be sorted alphabetically according to the file name and processed in that order.
The frames of all used screencasts within this work, were named with a display ID
followed by a sequential number (”D00_img000000001”, ”D00_img000000002”, ...).

• The resolution for all images within a screencast must stay constant. If the reso-
lution changes for subsequent images, they will be considered as different displays.

A further requirement for all screencasts, which were used for this project, is, that the
text editor of the IDE is fully visible in at least one display. We had to discard eight
screencasts, as they did not meet this requirement.

4.1.2. Resulting Data

The output of this application is one CSV file per detected display. Those tables con-
tain the detected typing rates for each pair of subsequent frames. The output files will
be written into the specified output directory. The file name of each resulting CSV file
will be the specified name plus an extension for the display number ”_Dxx”, where
”xx” denotes the number of the respective display. If a CSV file with the same name
already exists within the specified directory, it will be overwritten.

The resulting CSV table contains the two columns ”frame” and ”change”. The number
of rows will be one less than the number of frames per detected display. The first value
in each row gives the index of the pair of subsequent frames that are compared. The
indices are consecutive numbers starting from 0. The corresponding typing rate for
this pair of subsequent frames is stated in column ”change”. The typing rate between
image Ik and Ik+1 can therefore be found in the second column of the table entry, in
which the first column equals the values k − 1.

In addition, the application will print log messages, containing information on the cur-
rent state of the workflow.

University of Leoben 51 Tabea Ulm

Annotation of screencasts Chapter 4. Implementation

4.2. Project Structure
The application contains the class Main.java in the root directory as the main en-
try point of the program. Furthermore, the root directory contains of the following
packages:

• videoanalysis
This package consists of all classes, in which the algorithmic approach is imple-
mented. Furthermore, this package contains the class Config.java in which all
constant values and parameters, which are used within this project, are contained.

• videoanalysis.content
This package contains all classes, which represent geometric features of an image.

• videoanalysis.input
This package contains one class, which provides the frames necessary for image
processing.

• videoanalysis.output
The class within this package stores the detected typing rates per frame and
writes the resulting CSV file.

For further details, the UML class diagrams and class documentation can be found in
the appendix (II, III).

The central component of this project is the class videoanalysis.ScreencastAnalyzer.java.
Given a path to the directory in which the frames of a screencast are stored, this
class coordinates the workflow of the proposed method. The following figure gives an
overview over the classes in which the individual steps of the proposed method are
implemented.

University of Leoben 52 Tabea Ulm

Annotation of screencasts Chapter 4. Implementation

Figure 4.1.: Interactions between logic classes.

4.2.1. Implementation of Frame Layout Detection

The ROI layout detection, which has been described in Section 3.2, is implemented
within the classes DisplayTBDetector.java and SequenceDetector.java.

DisplayTBDetector.java stands for Display-Taskbar-Detector. It contains all meth-
ods which are used to evaluate the resolutions of the images within the input directory.
Furthermore, it contains methods for detecting regions at the bottom of each individual
screen, in which no or few changes occur over the duration of the recording.

The methods within the class SequenceDetector.java group frames into sequences
with a similar layout of topmost ROIs. All common feature detection techniques for
single images are implemented within the class FeatureDetector.java.

4.2.2. Implementation of Grid Analysis

The further analyses of sequences with similar ROI layout are coordinated by the cen-
tral class SequenceAnalyzer.java. Within this class, an instance of GridDetector.java
is created, in which the approach described in Section 3.3 is implemented.

The aim of this class is to find the parameters of a character grid. Furthermore, a
method for evaluating the fit of the grid is implemented. For the applied feature de-
tection techniques, an instance of the class FeatureDetector.java is created.

University of Leoben 53 Tabea Ulm

Annotation of screencasts Chapter 4. Implementation

4.2.3. Implementation of Analysis of Textual Changes

The approach for analyzing textual changes as described in Section 3.4 is implemented
in the class TextChangeDetector.java. All methods within this class are invoked by
the class SequenceAnalyzer.java.

University of Leoben 54 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

5. Evaluation

5.1. Setup

5.1.1. Ground Truth

In section 1.2.2, we defined a-typing as a method to convert the typing rate into a
binary output over a given time interval. A user is said to be a-typing, if the amount
of altered characters within a given frame interval is greater than a.

The frame intervals for the manual annotation are chosen, so that they span over one
minute long time intervals. For each time interval, it was manually decided, whether
the user was typing or not. Within this chapter, we will mainly evaluate the screencasts
as 4-typing.

All methods used for this evaluation can be found for example in [21].

For each of the 56 evaluation screencasts, we compared the manually identified activity
to the results of our method. Depending on the actual identified value and the resulting
value of our method, we will categorize each minute into one of four categories: true
positives (TP), false negatives (FN), false positives (FP) and true negatives (TN). The
total amount of identified intervals with typing activities of one screencast is denoted
as P, and the amount of non-typing activities as N. This classification is known as the
confusion matrix and will be the basis for this evaluation.

University of Leoben 55 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

annotated
values

method outcome

P TP FN

N FP TN

Table 5.1.: Confusion matrix.

5.1.2. Technical Setup

The technical details of the server, which we used for evaluation, are as follows:

• 128GB RAM

• 4 processors of type AMD EPYC Processor, with 16 cores each

• CPU tact rate of 2495.312 MHz

5.2. Results

5.2.1. Evaluation of Accuracy

As a first measure for the performance of the proposed method, we will analyze the
screencasts according to accuracy. This performance indicator is defined as the ratio
between correctly classified sections to the total amount of all sections.

accuracy = TP+TN
P+N

The results of the accuracy values per screencast are displayed below.

University of Leoben 56 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

Figure 5.1.: Box plot of accuracy.

The overall median accuracy lies at 83.4%. To further evaluate the differing perfor-
mances within each subgroup, the individual exercises as well as IDE-preferences, we
perform a Mann Whitney U test for all pairs within a subgroup. This test has been
chosen, because the resulting data is ordinal, both groups are independent of each
other, and the results are not normally distributed. For two samples X, Y with sample
sizes of n,m respectively, the U statistic is computed as follows:

U =
n∑
i=1

m∑
j=1

S(Xi, Yj)

with

S(X, Y) =

1 X > Y

0.5 Y = X

0 X < Y

As the sum of our sample sizes is always greater than 20, we can transform U into a
standardized normal distribution using the following formula:

Z =
U − n∗m

2√
n∗m∗(n+m+1)

12

University of Leoben 57 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

The resulting p-values for all pairings of exercises as well as the IDEs are displayed in
the table below.

Group 1 0 Group 2 p-value
Exercise 2 Exercise 3 0.5269
Exercise 2 Exercise 4 0.8953
Exercise 3 Exercise 4 0.4648
BlueJ Eclipse 0.0004

Table 5.2.: Resulting p-values for group pairings.

For all pairs of exercise results, the null hypotheses that the values are samples from
distributions with equal means is with a certainty of 99% not rejected. On the other
hand, when applying this test to the results for the grouping by IDEs, the hypotheses
is rejected with the same level of certainty.

We can conclude that the proposed method performs similarly for different exercises.
In contrast, the obtained results for BlueJ screencasts are better than for Eclipse. We
therefore conclude that the selected Eclipse screencasts in the development group were
less representative of all Eclipse sccreencasts.

5.2.2. Evaluation of Precision and Recall

As further analysis of the behavior of this method, we will analyze each screencast with
respect to precision and recall. Precision is the ratio of true positives to all positively
identified values. It is therefore an indication of how many of the sections classified as
typing, are actually relevant.

precision = TP
TP+FP

Recall is defied as the ratio of true positives to all positive values within the ground
truth. This value therefore specifies the ratio of retrieved typing sections to the total
amount of manually identified typing sections.

recall = TP
TP+FN

The following figure shows the results of precision and recall for all screencasts within
the evaluation group. As the performance varies significantly between used IDEs, the

University of Leoben 58 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

data within this figure is distinguished by the used IDE.

Figure 5.2.: Scatter plot of precision and recall.

A commonly used measure to combine precision and recall is the Fβ score. This per-
formance indicator is dependent on the value β, which controls the balance between
precision and recall. As becomes apparent from the formula, β = 1 means, that pre-
cision and recall are weighted equally. By applying a smaller β-value, precision is
weighted higher. When β > 1, recall will be weighted more.

Fβ = (1+β2)∗precision∗recall
β2∗precision+recall

As we specified Section 1.2.2, for our use case, a high recall value is more essential
than precision. Therefore, we will be analyzing the F2 score for our results. Using the
precision and recall values for each screencast, we calculated the respective F2 score.
The box plot below shows the resulting values for all screencasts as well as grouped
according to exercises and IDEs.

University of Leoben 59 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

Figure 5.3.: Box plot of F2 score.

For all screencasts, the median F2 score lies between 43.9% and 98.5%, excluding the
identified outliers, which each have an F2 score of less than 27%. The median for all
screencasts within the evaluation group lies at 81.5%. The median F2 scores grouped by
exercises lie at 81.1% for Exercise 2, 77.0% for Exercise 3, and 86.8% for Exercise 4. The
F2 scores grouped by IDE lie further apart with 84.4% for BlueJ and 62.2% for Eclipse.

5.2.3. Analysis of a-typing

So far, all analyses were performed for 4-typing as binarization classifier. Within this
section, we analyze, how the binary performance indicators are affected by different a
values. In general, a low a value will result in less typing intervals, which are incorrectly
classified as true negatives. As a result, there might be more sections falsely classified
as positives. An a value of -1 means, that every interval will be classified as containing
typing. In contrast, a high a value is expected to result in more false negative values
but in less sections, which are false positives.

A receiver operating characteristic (ROC) curve is a tool to evaluate the performance
of an application for different parameters. It displays two binary classifiers for various
classification parameters. To construct the ROC curve, we need to calculate the recall

University of Leoben 60 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

and false positive rate (FPR) for each a value within a specified interval.

The false positive rate is the ratio between false positives to all negative values within
the ground truth. This value therefore indicates, how many non-typing sections have
been falsely classified as containing typing.

FPR = FP
FP+FN

We will calculate recall and FPR for each screencast within the evaluation group for a
values in between -1 and 90. For any given a value, we will therefore obtain 56 values
for recall and FPR respectively. For this evaluation, we will use the median recall and
FPR for each a value. The following figure shows the resulting ROC curve. The solid
line displays the median values for all 56 screencasts. In addition, the plot shows the
median recall and FPR per IDE. As a comparison, the figure also displays the base
curve of the ROC curve as a dashed line. This curve marks the expected recall and
FPR, if each section would be randomly classified with equal chances as containing
typing or non-typing.

University of Leoben 61 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

Figure 5.4.: ROC curve.

To interpret this figure, we will use the area under the curve (AUC). This measure
calculates the integral of the ROC curve in between 0 and 1. The AUC value for all
screencasts within the evaluation group is 0.880. The AUC value for BlueJ screencasts
lies at 0.900. For Eclipse, the value is lower with 0.715.

Similar to the ROC curve, we can evaluate the precision and recall values for different
a values using the Precision-Recall curve. For this analysis, the recall values are dis-
played on the horizontal axis and the precision values on the vertical axis, respectively.
For a specific a value, we calculated precision and recall for all 56 screencasts within the
evaluation group. The curve was then constructed using only the median values. The
solid line shows the results of all screencasts within the evaluation group. Additionally,
the figure displays the median values per IDE.

University of Leoben 62 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

Figure 5.5.: Precision-Recall curve.

The resulting curves can also be evaluated using the AUC measure. For all screencasts
within the evaluation group, the AUC is 0.859. For BlueJ screencasts, the value lies
slightly higher at 0.914. The AUC measure for Eclipse screencasts is 0.654.

5.2.4. Evaluation of Larger Textual Changes

So far, we have only analyzed the binary output but have not yet quantified the be-
havior of the typing rate itself. As the typing rate measures the amount of altered
characters, we will evaluate the typing rate between frames, which contain a larger
textual change.

For this evaluation, we will look at the first copy and paste activity over multiple lines
within selected screencasts. We restrict this analysis to recordings of exercises 3 and
4, as users always perform at least one such activity within those recordings. This
restricts our analysis to 37 screencasts. For those screencasts, we extracted the frame
indices, in between which the first copy and paste activity over multiple lines is per-
formed.

University of Leoben 63 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

Notably, a copy and paste activity is often performed to replace preexisting text. De-
pending on the amount of new characters to preexisting characters, this typing rate
can either be positive or negative. We will therefore look at the absolute typing rate
value.

For comparison, we extract the absolute values of all non-zero typing rates within true
positive intervals. Given a sorted sequence of all those extracted values, we calculate
the rank of the larger textual change. As the total number of extracted values per
screencast varies, we will compare the ratio of the calculated rank to the total amount
of extracted values. Our analysis shows, that the majority of relative ranks are at 0.
In contrast, we also identified three outliers with values over 0.99.

relative ranks of 0 relative ranks > 0.99
34 3

Table 5.3.: Relative rank of larger textual changes.

Those extreme results can be explained by our implementation. As described, the pro-
posed method sets the change value to zero if the additive and the subtractive change
each lie over a certain threshold. When a user copies text over a preexisting text, we
are therefore not able to detect the correct change value.

5.2.5. Exemplary Study for Night Mode

Within this section, we perform an exemplary study in order to evaluate the behavior
of our method for unknown UI settings. For this evaluation, we analyze the three
screencasts, which use the Eclipse-IDE in night mode, and for which the exercises are
not yet known.

The table below shows the results of the performance indicators for all binary classifiers.

Exercise Accuracy Precision Recall F2

Exercise 2 91.3% 82.8% 85.7% 85.1%
Exercise 3 93.3% 100% 72.7% 76.9%
Exercise 4 68.3% 47.4% 100% 81.8%

Table 5.4.: Results of exemplary study.

University of Leoben 64 Tabea Ulm

Annotation of screencasts Chapter 5. Evaluation

All results lie within the expected values for the respective exercises. When compared
with the results of other Eclipse screencasts, the accuracy of exercises 2 and 3 exceed
the expected values. Consequently, we can assume, that the proposed method has a
similar behavior for IDEs in night mode.

University of Leoben 65 Tabea Ulm

Annotation of screencasts Chapter 6. Conclusion

6. Conclusion

6.1. Summary
Within this work, we aimed to distinguish semantically relevant sections of screencasts
from irrelevant sections. In particular, this work proposes a method to identify typing
sections within programming screencasts. Through the evaluation of unknown record-
ings, we conclude that the proposed method is able to distinguish between relevant
and irrelevant sections. The chosen approach is able to correctly classify sections, the
quantification of change is imprecise, though.

Furthermore, we establish that the performance of our method does not depend on
the specific programming task, which is solved within the screencast. In contrast, the
performance of the method varies for different IDEs. We also performed an exemplary
study of three screencasts with radically different UI settings (night mode). This study
showed that the results do not differ from default settings.

Previous work focused on global extraction methods. In contrast, our research ques-
tion required the extraction of changes in between frames. In order to obtain reliable
results, we focused this approach on detecting features of ROIs as well as features of
the content within. It turned out that this method was well suited for the task of
finding relevant sections in screencasts.

6.2. Further Research
Based on our evaluation of larger textual changes, further research is needed in order
to correctly quantify the amount of textual changes. The main challenge for this part
of the research question was the distinction between actual textual changes and other
activities. For example, the proposed method can not distinguish between copy-paste
activities over preexisting text and tab changes within an IDE.

As described in Chapter 2, similar research questions were tackled using deep learning

University of Leoben 66 Tabea Ulm

Annotation of screencasts Chapter 6. Conclusion

approaches and yielded comparable results. We would expect that similar approaches
would also work well in our context. In order to implement a deep learning approach,
it would be required to put significantly more effort into manually labeling screencasts.
An interesting research question would be the comparison between our results and
those obtained through other approaches.

As our data for development and evaluation originate from similar programming ex-
ercises, we expect the workflow within those recordings to be similar. To better un-
derstand the behavior of the proposed approach for unknown setups, further research
could evaluate the method for a broader variety of programming screencasts.

University of Leoben 67 Tabea Ulm

Annotation of screencasts Bibliography

Bibliography

[1] Mohammad Alahmadi et al. “Accurately Predicting the Location of Code Frag-
ments in Programming Video Tutorials Using Deep Learning”. In: PROMISE
’18. Ed. by Burak Turhan, Ayse Tosun, and Shane McIntosh. ICPS: ACM in-
ternational conference proceeding series. New York, New York: The Association
for Computing Machinery, 2018, pp. 2–11. isbn: 9781450365932. doi: 10.1145/
3273934.3273935

[2] Mohammad Alahmadi et al. “Code Localization in Programming Screencasts”.
In: Empirical Software Engineering 25.2 (2020), pp. 1536–1572. issn: 1382-3256.
doi: 10.1007/s10664-019-09759-w

[3] Lingfeng Bao et al. “Enhancing developer interactions with programming screen-
casts through accurate code extraction”. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Ed. by Prem Devanbu, Myra Cohen, and
Thomas Zimmermann. New York, NY, USA: ACM, 11082020, pp. 1581–1585.
isbn: 9781450370431. doi: 10.1145/3368089.3417925

[4] Lingfeng Bao et al. “psc2code”. In: ACM Transactions on Software Engineering
and Methodology 29.3 (2020), pp. 1–38. issn: 1049-331X. doi: 10.1145/3392093

[5] George E. P. Box et al. Time series analysis: Forecasting and control / George
E.P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, Greta M. Ljung. Fifth edition.
Wiley series in probabilit and statistics. Hoboken, New Jersey: Wiley, 2016. isbn:
978-1-118-67502-1

[6] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000)

[7] Kenneth Dawson-Howe. A practical introduction to computer vision with
OpenCV. Chichester: Wiley, 2014. isbn: 9781118848456

University of Leoben XII Tabea Ulm

https://doi.org/10.1145/3273934.3273935
https://doi.org/10.1145/3273934.3273935
https://doi.org/10.1007/s10664-019-09759-w
https://doi.org/10.1145/3368089.3417925
https://doi.org/10.1145/3392093

Annotation of screencasts Bibliography

[8] Eclipse Foundation. Eclipse IDE Working Group | The Eclipse Foundation.
16/05/2022.
https://eclipseide.org/

[9] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. [New ed.]
Upper Saddle River, N.J: Prentice Hall, 2002. isbn: 0-201-18075-8

[10] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. Digital Image pro-
cessing using MATLAB. Upper Saddle River, NJ: Pearson/Prentice Hall, 2004.
isbn: 0-13-008519-7

[11] Imgcodecs (OpenCV 3.4.17 Java documentation). 21/05/2022.
https : / / docs . opencv . org / 3 . 4 / javadoc / org / opencv / imgcodecs /
Imgcodecs.html#imread(java.lang.String,int)

[12] Kandarp Khandwala and Philip J. Guo. “Codemotion: Expanding the Design
Space of Learner Interactions with Computer Programming Tutorial Videos”.
In: Proceedings of the Fifth Annual ACM Conference on Learning at Scale. Ed.
by Scott Klemmer. ACM Other conferences. New York, NY: ACM, 2018, pp. 1–
10. isbn: 9781450358866. doi: 10.1145/3231644.3231652

[13] Michael Kölling and John Rosenberg. BlueJ. 28/03/2022.
https://www.bluej.org/

[14] J. Matas, C. Galambos, and J. Kittler. “Robust Detection of Lines Using the
Progressive Probabilistic Hough Transform”. In: Computer Vision and Image
Understanding 78.1 (2000), pp. 119–137. issn: 10773142. doi: 10.1006/cviu.
1999.0831

[15] OpenCV: Image Filtering. 05/12/2021.
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#
gaa13106761eedf14798f37aa2d60404c9

University of Leoben XIII Tabea Ulm

https://eclipseide.org/
https://docs.opencv.org/3.4/javadoc/org/opencv/imgcodecs/Imgcodecs.html#imread(java.lang.String,int)
https://docs.opencv.org/3.4/javadoc/org/opencv/imgcodecs/Imgcodecs.html#imread(java.lang.String,int)
https://doi.org/10.1145/3231644.3231652
https://www.bluej.org/
https://doi.org/10.1006/cviu.1999.0831
https://doi.org/10.1006/cviu.1999.0831
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gaa13106761eedf14798f37aa2d60404c9
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gaa13106761eedf14798f37aa2d60404c9

Annotation of screencasts Bibliography

[16] J. Ott et al. “Learning Lexical Features of Programming Languages from Imagery
Using Convolutional Neural Networks”. In: 2018 IEEE/ACM 26th International
Conference on Program Comprehension (ICPC). 2018, pp. 336–3363

[17] Luca Ponzanelli et al. “Automatic Identification and Classification of Software
Development Video Tutorial Fragments”. In: IEEE Transactions on Software
Engineering 45.5 (2019), pp. 464–488. issn: 0098-5589. doi: 10 . 1109 / TSE .
2017.2779479

[18] Luca Ponzanelli et al. “Too long; didn’t watch!” In: ICSE’16. Ed. by Laura Dillon,
Willem Visser, and Laurie Williams. [New York]: ACM, Association for Comput-
ing Machinery, 2016, pp. 261–272. isbn: 9781450339001. doi: 10.1145/2884781.
2884824

[19] Thomas Risse. “Hough transform for line recognition: Complexity of evidence
accumulation and cluster detection”. In: Computer Vision, Graphics, and Im-
age Processing 46.3 (1989), pp. 327–345. issn: 0734189X. doi: 10.1016/0734-
189X(89)90036-4

[20] Hanno Scharr. “Optimale Operatoren in der Digitalen Bildverarbeitung”. PhD
thesis. Heidelberg University Library, 2000. doi: 10.11588/heidok.00000962.
http://archiv.ub.uni-heidelberg.de/volltextserver/962/

[21] Alaa Tharwat. “Classification assessment methods”. In: Applied Computing and
Informatics 17.1 (2021), pp. 168–192. issn: 2210-8327. doi: 10.1016/j.aci.
2018.08.003

[22] Shir Yadid and Eran Yahav. “Extracting code from programming tutorial videos”.
In: Proceedings of the 2016 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. Ed. by Eelco Visser.
New York, NY: ACM, 2016, pp. 98–111. isbn: 9781450340762. doi: 10.1145/
2986012.2986021

[23] Dehai Zhao et al. “ActionNet: Vision-Based Workflow Action Recognition From
Programming Screencasts”. In: 2019 IEEE. Piscataway, N.J.: IEEE, 2019,
pp. 350–361. isbn: 978-1-7281-0869-8. doi: 10.1109/ICSE.2019.00049

University of Leoben XIV Tabea Ulm

https://doi.org/10.1109/TSE.2017.2779479
https://doi.org/10.1109/TSE.2017.2779479
https://doi.org/10.1145/2884781.2884824
https://doi.org/10.1145/2884781.2884824
https://doi.org/10.1016/0734-189X(89)90036-4
https://doi.org/10.1016/0734-189X(89)90036-4
https://doi.org/10.11588/heidok.00000962
http://archiv.ub.uni-heidelberg.de/volltextserver/962/
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1145/2986012.2986021
https://doi.org/10.1145/2986012.2986021
https://doi.org/10.1109/ICSE.2019.00049

Annotation of screencasts Appendix

Appendix

I. Input Data Analysis

University of Leoben XV Tabea Ulm

Overview of available data

Student ID Exercise1 Exercise2 Exercise3 Exercise4 Exercise5 Exercise6 ∑

1 BlueJ BlueJ BlueJ BlueJ 4
2 BlueJ BlueJ BlueJ 3
3 BlueJ BlueJ BlueJ 3
4 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
5 BlueJ BlueJ BlueJ BlueJ BlueJ 5
6 BlueJ BlueJ BlueJ BlueJ BlueJ 5
7 BlueJ BlueJ BlueJ BlueJ BlueJ 5
8 Eclipse Eclipse Eclipse Eclipse Eclipse Eclipse 6
9 Eclipse Eclipse Eclipse Eclipse Eclipse 5
10 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
11 Eclipse Eclipse Eclipse Eclipse Eclipse Eclipse 6
12 BlueJ BlueJ BlueJ BlueJ BlueJ 5
13 BlueJ BlueJ BlueJ BlueJ BlueJ 5
14 BlueJ BlueJ BlueJ BlueJ BlueJ 5
15 BlueJ BlueJ BlueJ BlueJ 4
16 BlueJ BlueJ BlueJ BlueJ 4
17 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
18 BlueJ BlueJ BlueJ BlueJ 4
19 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
20 x 1
21 BlueJ BlueJ BlueJ BlueJ 4
22 Eclipse Eclipse Eclipse Eclipse Eclipse 5
23 BlueJ BlueJ 2
24 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
25 BlueJ BlueJ BlueJ BlueJ 4
26 BlueJ BlueJ BlueJ 3
27 Eclipse Eclipse Eclipse Eclipse Eclipse Eclipse 6
28 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
29 BlueJ BlueJ 2
30 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
31 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
32 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
33 Eclipse Eclipse Eclipse Eclipse Eclipse Eclipse 6
34 Eclipse Eclipse Eclipse Eclipse Eclipse Eclipse 6
35 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
36 Eclipse Eclipse Eclipse Eclipse Eclipse Eclipse 6
37 BlueJ BlueJ BlueJ BlueJ BlueJ BlueJ 6
38 BlueJ BlueJ BlueJ BlueJ BlueJ Eclipse 6
39 Eclipse Eclipse Eclipse Eclipse Eclipse Eclipse 6
40 x x x x x x 6
41 Eclipse Eclipse Eclipse Eclipse Eclipse Eclipse 6
42 BlueJ BlueJ Eclipse Eclipse Eclipse Eclipse 6
43 BlueJ x BlueJ BlueJ BlueJ 5
44 BlueJ BlueJ BlueJ BlueJ BlueJ 5
45 BlueJ BlueJ BlueJ BlueJ BlueJ 5

31 44 41 43 38 28

x - unusable due to technical difficultiesevaluation
testing & development

night mode
not used

Annotation of screencasts Appendix

University of Leoben XVI Tabea Ulm

Annotation of screencasts Appendix

II. UML class diagramm

Figure I.: Package videoanalysis: classes and their dependencies

III. Code Documentation

University of Leoben XVII Tabea Ulm

Package com.unileoben

Class Main
java.lang.Object

com.unileoben.Main

public class Main

extends java.lang.Object

This class contains the main entry point for this application.

Constructor Summary

Constructor Description

Main()

Method Summary

All Methods Static Methods Concrete Methods

Modifier and Type Method Description

static void main(java.lang.String[] args) This method is the main entry point for this application.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

Main

public Main()

Method Details

main

public static void main(java.lang.String[] args)

This method is the main entry point for this application.

Parameters:

args - Three input arguments are required for this application. The arguments must be stated in the order presented below: - An input directory in which
the input frames are stored - A directory path, in which the output is stored - A descriptive title under which the output is stored

Constructors

Annotation of screencasts Appendix

University of Leoben XVIII Tabea Ulm

Package com.unileoben.videoanalysis

Class Config
java.lang.Object

com.unileoben.videoanalysis.Config

public class Config

extends java.lang.Object

This class contains all constant values and parameters, which are used within this project.

Field Summary

Modifier and Type Field Description

static int[] dimensions Genreal: resolution of display

static int FD_GEOMETRIC_DISTANCE Line Clustering: neighborhood in pixel for detection of line cluster

static double FD_LAYOUT_MATCH_SIDE_TH Layout Matching: ratio of white pixel to side length for layout matching

static int FD_MAX_LINE_GAP Hough Transform Line: maximum pixel gap for Hough Transform

static double FD_MAX_ROI_SIZE Rectangle Detection: maximum ratio of rectangle area to total screen for possible ROIs

static double FD_MIN_ROI_SIZE Rectangle Detection: minimum ratio of rectangle area to total screen for possible ROIs

static double FD_MINIMUM_OVERLAP Line Clustering: Minimum overlap of two lines for detection of line cluster

static double FD_RATIO_OF_LINE_LENGTH Hough Transform line: ratio of rows for minimum line length for Hough Transform

static int FD_TH_LINE_DETECTION Hough Transform Line: TH for detecting lines in the Hough Space

static double FD_TH_SIDES Rectangle Detection: ratio of white pixel to pixel per side to support a rectangle

static int GD_MAX_CHAR_WIDTH Grid Detector: maximum char width

static int GD_MAX_LINE_HEIGHT Grid Detection: maximum line height

static int GD_MIN_CHAR_WIDTH Grid Detector: minimum char height

static int GD_MIN_LINE_HEIGHT Grid Detector: minimum line height

static double GD_RATIO_PADDING_HOR Grid Detector: ratio of horizontal grid field padding

static double GD_RATIO_PADDING_VER Grid Detector: ratio of vertical grid field padding

static double[] GD_ROI_PADDING Grid Detector: padding for a ROI - {top, left, bottom, right}

static int OV_CHANGE_NEIGHBOURHOOD Output: the change valeu is set to zero, in case no other change could be detected
within this frame neighbourhood

static double SD_MIN_ROI_OVERLAP Layout Matching: minimum overlap for two ROIs to be considered similar

static int SD_SAMPLING_FREQ Layout Matching: sampeling frequency for routine checks for new layout

static java.lang.String[] SUPPORTED_IMG_FORMATS General: all supported image formats

static

java.util.List<int[]>

taskbarPerDisplay General: List of all taskbar locations per display

static int TC_CHAR_LARGER_CHANGE Text Change: minimum amount of alterd grid fields to be considered a larger textual
change

static int TC_TEXTBOX_REAPPEARANCE Text Change: minimum number of frames after which a text box must be disappeared

Constructor Summary

Fields

Annotation of screencasts Appendix

University of Leoben XIX Tabea Ulm

Constructor Description

Config()

Method Summary

All Methods Static Methods Concrete Methods

Modifier and Type Method Description

static void setDimensions(int[] dimensions) This method sets all lengths relative to the display resolution.

static void setTaskbarLocation(int indexFrame) Sets the taskbar location for a specific frame.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Details

FD_RATIO_OF_LINE_LENGTH

public static final double FD_RATIO_OF_LINE_LENGTH

Hough Transform line: ratio of rows for minimum line length for Hough Transform

See Also:

Constant Field Values

FD_MAX_LINE_GAP

public static final int FD_MAX_LINE_GAP

Hough Transform Line: maximum pixel gap for Hough Transform

See Also:

Constant Field Values

FD_TH_LINE_DETECTION

public static final int FD_TH_LINE_DETECTION

Hough Transform Line: TH for detecting lines in the Hough Space

See Also:

Constant Field Values

FD_GEOMETRIC_DISTANCE

public static final int FD_GEOMETRIC_DISTANCE

Line Clustering: neighborhood in pixel for detection of line cluster

See Also:

Constant Field Values

Constructors

Annotation of screencasts Appendix

University of Leoben XX Tabea Ulm

FD_MINIMUM_OVERLAP

public static final double FD_MINIMUM_OVERLAP

Line Clustering: Minimum overlap of two lines for detection of line cluster

See Also:

Constant Field Values

FD_TH_SIDES

public static final double FD_TH_SIDES

Rectangle Detection: ratio of white pixel to pixel per side to support a rectangle

See Also:

Constant Field Values

FD_MIN_ROI_SIZE

public static double FD_MIN_ROI_SIZE

Rectangle Detection: minimum ratio of rectangle area to total screen for possible ROIs

FD_MAX_ROI_SIZE

public static double FD_MAX_ROI_SIZE

Rectangle Detection: maximum ratio of rectangle area to total screen for possible ROIs

FD_LAYOUT_MATCH_SIDE_TH

public static final double FD_LAYOUT_MATCH_SIDE_TH

Layout Matching: ratio of white pixel to side length for layout matching

See Also:

Constant Field Values

SD_MIN_ROI_OVERLAP

public static final double SD_MIN_ROI_OVERLAP

Layout Matching: minimum overlap for two ROIs to be considered similar

See Also:

Constant Field Values

SD_SAMPLING_FREQ

public static final int SD_SAMPLING_FREQ

Layout Matching: sampeling frequency for routine checks for new layout

See Also:

Constant Field Values

GD_MAX_LINE_HEIGHT

public static final int GD_MAX_LINE_HEIGHT

Grid Detection: maximum line height

See Also:

Constant Field Values

Annotation of screencasts Appendix

University of Leoben XXI Tabea Ulm

GD_MIN_LINE_HEIGHT

public static final int GD_MIN_LINE_HEIGHT

Grid Detector: minimum line height

See Also:

Constant Field Values

GD_MAX_CHAR_WIDTH

public static final int GD_MAX_CHAR_WIDTH

Grid Detector: maximum char width

See Also:

Constant Field Values

GD_MIN_CHAR_WIDTH

public static final int GD_MIN_CHAR_WIDTH

Grid Detector: minimum char height

See Also:

Constant Field Values

GD_RATIO_PADDING_HOR

public static final double GD_RATIO_PADDING_HOR

Grid Detector: ratio of horizontal grid field padding

See Also:

Constant Field Values

GD_RATIO_PADDING_VER

public static final double GD_RATIO_PADDING_VER

Grid Detector: ratio of vertical grid field padding

See Also:

Constant Field Values

GD_ROI_PADDING

public static final double[] GD_ROI_PADDING

Grid Detector: padding for a ROI - {top, left, bottom, right}

TC_CHAR_LARGER_CHANGE

public static final int TC_CHAR_LARGER_CHANGE

Text Change: minimum amount of alterd grid fields to be considered a larger textual change

See Also:

Constant Field Values

TC_TEXTBOX_REAPPEARANCE

public static final int TC_TEXTBOX_REAPPEARANCE

Text Change: minimum number of frames after which a text box must be disappeared

Annotation of screencasts Appendix

University of Leoben XXII Tabea Ulm

See Also:

Constant Field Values

OV_CHANGE_NEIGHBOURHOOD

public static final int OV_CHANGE_NEIGHBOURHOOD

Output: the change valeu is set to zero, in case no other change could be detected within this frame neighbourhood

See Also:

Constant Field Values

dimensions

public static int[] dimensions

Genreal: resolution of display

taskbarPerDisplay

public static java.util.List<int[]> taskbarPerDisplay

General: List of all taskbar locations per display

SUPPORTED_IMG_FORMATS

public static final java.lang.String[] SUPPORTED_IMG_FORMATS

General: all supported image formats

Constructor Details

Config

public Config()

Method Details

setDimensions

public static void setDimensions(int[] dimensions)

This method sets all lengths relative to the display resolution.

Parameters:

dimensions - resolution of current display

setTaskbarLocation

public static void setTaskbarLocation(int indexFrame)

Sets the taskbar location for a specific frame.

Parameters:

indexFrame - frame index

Annotation of screencasts Appendix

University of Leoben XXIII Tabea Ulm

Package com.unileoben.videoanalysis

Class DisplayTBDetector
java.lang.Object

com.unileoben.videoanalysis.DisplayTBDetector

public class DisplayTBDetector

extends java.lang.Object

This class contains all methods which are used to evaluate the resolutions of the images within the input directory. Furthermore, it contains methods for
detecting regions at the bottom of each individual screen, in which no or few changes occur over the duration of the recording.

Constructor Summary

Constructor Description

DisplayTBDetector(ImageReader imageReader) Constructs a DisplayTBDetector.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

java.util.List<int[]> getDisplaySequences() Getter for a list of all display sequences.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

DisplayTBDetector

public DisplayTBDetector(ImageReader imageReader)

Constructs a DisplayTBDetector. When an instance of this class is created, all images within a specified input directory are inspected. They will be
grouped according to their resolution and analyzed with respect to low variance regions at the bottom of the screen.

Parameters:

imageReader - ImageReader for this project

Method Details

getDisplaySequences

public java.util.List<int[]> getDisplaySequences()

Getter for a list of all display sequences.

Returns:

list of start and end index of all detected display sequences

Constructors

Annotation of screencasts Appendix

University of Leoben XXIV Tabea Ulm

Package com.unileoben.videoanalysis

Class FeatureDetector
java.lang.Object

com.unileoben.videoanalysis.FeatureDetector

public class FeatureDetector

extends java.lang.Object

This class contains all methods of feature detection methods used within this project.

Constructor Summary

Constructor Description

FeatureDetector() Constructs a FeatureDetector.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

org.opencv.core.Mat[] borderParallelLineDetection(org.opencv.core.Mat[] inputImages,

int minLineLength, int th, double theta, int maxGap)

Performs a probabilistic
Hough Transform to get
all border parallel lines.

java.util.List<BorderParallelRect> getAllPossibleROIs(org.opencv.core.Mat frameGrayscale) Results in a list of
possible regions of
interest for a single
frame.

boolean matchesLayout(org.opencv.core.Mat frameGrayscale,

java.util.List<BorderParallelRect> topmostROIS)

Decides, if a given layout
of topmost ROIs fits the
current frame.

double ratioOfPointsPerLine(boolean horizontal, int bound1, int bound2,

int fixedPos, org.opencv.core.Mat img, int minLength,

int pixelValueTh)

Calculates the ratio of
white pixels line length
of border parallel line.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

FeatureDetector

public FeatureDetector()

Constructs a FeatureDetector.

Method Details

getAllPossibleROIs

public java.util.List<BorderParallelRect> getAllPossibleROIs(org.opencv.core.Mat frameGrayscale)

Results in a list of possible regions of interest for a single frame.

Parameters:

Constructors

Annotation of screencasts Appendix

University of Leoben XXV Tabea Ulm

frameGrayscale - frame

Returns:

list of all possible ROIs

ratioOfPointsPerLine

public double ratioOfPointsPerLine(boolean horizontal,

int bound1,

int bound2,

int fixedPos,

org.opencv.core.Mat img,

int minLength,

int pixelValueTh)

Calculates the ratio of white pixels line length of border parallel line.

Parameters:

horizontal - true if the line is horizontal

bound1 - start value for line

bound2 - end value for line

fixedPos - constant value

img - input image

minLength - minimum length for line

pixelValueTh - threshold for counted pixel

Returns:

ratio of pixel values above th to the total length

matchesLayout

public boolean matchesLayout(org.opencv.core.Mat frameGrayscale,

java.util.List<BorderParallelRect> topmostROIS)

Decides, if a given layout of topmost ROIs fits the current frame.

Parameters:

frameGrayscale - frame

topmostROIS - list of the topmost ROIs

Returns:

true, if layout can be detected in the frame

borderParallelLineDetection

public org.opencv.core.Mat[] borderParallelLineDetection(org.opencv.core.Mat[] inputImages,

int minLineLength,

int th,

double theta,

int maxGap)

Performs a probabilistic Hough Transform to get all border parallel lines.

Parameters:

inputImages - image where the method should be applied

minLineLength - minimal line length of detected lines

th - accumulator threshold parameter. Only those lines are returned that get enough votes

theta - angle resolution of the accumulator in radians.

maxGap - maximal allowed gap for a detected line

Returns:

output vector of lines

Annotation of screencasts Appendix

University of Leoben XXVI Tabea Ulm

Package com.unileoben.videoanalysis

Class GridDetector
java.lang.Object

com.unileoben.videoanalysis.GridDetector

public class GridDetector

extends java.lang.Object

This class contains all methods for constructing and evaluating a character grid for a specific ROI.

Constructor Summary

Constructor Description

GridDetector() Creats a GridDetetor.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

org.opencv.core.Mat binarizeRoi(org.opencv.core.Mat roi) Binarizes a ROI using an adaptive
threshold.

int[] detectOffset(org.opencv.core.Mat roi, int[] periods) Detect the offset values for a specific ROI
and period values.

int[] detectOffset(org.opencv.core.Mat roi, int[] periods,

int[] compareOffset)

Detect the offset values for a specific ROI
and period values.

int[] detectPeriod(org.opencv.core.Mat roi) Detect a period for horizontal and vertical
direction for a single ROI.

boolean isTextEditor(java.util.List<org.opencv.core.Mat> rois,

int[] period, java.util.List<int[]> offsets)

Decides for a given sequence of ROIs and
the respective grid values whether is a text
editor.

org.opencv.core.Mat removeLongLines(org.opencv.core.Mat binarizedRoi, int maxLength,

boolean blackLines)

Removes long lines by applying a
Probabilistic Hough Transform.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

GridDetector

public GridDetector()

Creats a GridDetetor.

Method Details

binarizeRoi

public org.opencv.core.Mat binarizeRoi(org.opencv.core.Mat roi)

Binarizes a ROI using an adaptive threshold.

Constructors

Annotation of screencasts Appendix

University of Leoben XXVII Tabea Ulm

Parameters:

roi - ROI

Returns:

binarized ROI

removeLongLines

public org.opencv.core.Mat removeLongLines(org.opencv.core.Mat binarizedRoi,

int maxLength,

boolean blackLines)

Removes long lines by applying a Probabilistic Hough Transform.

Parameters:

binarizedRoi - binarized ROI

maxLength - maximum length of lines

blackLines - specifies the color of the foreground (true, black - false, white)

Returns:

binarized ROI with long lines removed

detectPeriod

public int[] detectPeriod(org.opencv.core.Mat roi)

Detect a period for horizontal and vertical direction for a single ROI. In case no values could be found, the respective value will be -1.

Parameters:

roi - ROI

Returns:

period values {vertical, horizontal}

detectOffset

public int[] detectOffset(org.opencv.core.Mat roi,

int[] periods,

int[] compareOffset)

Detect the offset values for a specific ROI and period values. The results are compared with a compare offset. The compare offset will be accepted, in
case it results in a similar value.

Parameters:

roi - ROI

periods - period values

compareOffset - compare offset

Returns:

grid offset {vertical, horizontal}

detectOffset

public int[] detectOffset(org.opencv.core.Mat roi,

int[] periods)

Detect the offset values for a specific ROI and period values.

Parameters:

roi - ROI

periods - period values

Returns:

grid offset {vertical, horizontal}

Annotation of screencasts Appendix

University of Leoben XXVIII Tabea Ulm

isTextEditor

public boolean isTextEditor(java.util.List<org.opencv.core.Mat> rois,

int[] period,

java.util.List<int[]> offsets)

Decides for a given sequence of ROIs and the respective grid values whether is a text editor.

Parameters:

rois - list of binarized ROIs form that sequence

period - period values for that ROI

offsets - list of offset values for that sequence

Returns:

decision whether the ROI is a text editor

Annotation of screencasts Appendix

University of Leoben XXIX Tabea Ulm

Package com.unileoben.videoanalysis

Class ScreencastAnalyzer
java.lang.Object

com.unileoben.videoanalysis.ScreencastAnalyzer

public class ScreencastAnalyzer

extends java.lang.Object

This class is the central component of this project. Given a path to the directory in which the frames of a screencast are stored, this class coordinates the
workflow of this application.

Constructor Summary

Constructor Description

ScreencastAnalyzer(java.lang.String dirInput, java.lang.String dirResults,

java.lang.String screencastTitle)

Creates a new
ScreencastAnalyzer.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and
Type

Method Description

void analyze() Analyzes the specified scrteencast.

void analyze

(java.lang.String evalFile)

Analyzes the specified screencast and evaluates it with respect to precision and recall using
the specified evaluation data.

void tests()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

ScreencastAnalyzer

public ScreencastAnalyzer(java.lang.String dirInput,

java.lang.String dirResults,

java.lang.String screencastTitle)

Creates a new ScreencastAnalyzer. All instances of required classes are created within the constructor.

Parameters:

dirInput - path to directory in which input frames are stored

dirResults - path to directors in which output will be saved

screencastTitle - title of the screencast

Method Details

analyze

public void analyze(java.lang.String evalFile)

Analyzes the specified screencast and evaluates it with respect to precision and recall using the specified evaluation data. The results are saved within
the specified directory.

Constructors

Annotation of screencasts Appendix

University of Leoben XXX Tabea Ulm

Parameters:

evalFile - file path to evaluation file

analyze

public void analyze()

Analyzes the specified scrteencast. The results are saved within the specified directory.

tests

public void tests()

Annotation of screencasts Appendix

University of Leoben XXXI Tabea Ulm

Package com.unileoben.videoanalysis

Class SequenceAnalyzer
java.lang.Object

com.unileoben.videoanalysis.SequenceAnalyzer

public class SequenceAnalyzer

extends java.lang.Object

This class contains all methods for analyzing the contents within a sequence.

Constructor Summary

Constructor Description

SequenceAnalyzer(ImageReader imageReader, java.lang.String dirResults) Constructs a SequenceAnalyzer.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier
and Type

Method Description

void analyzeChanges(int[] sequence, OutputValues values) Calculates the typing rates for all relevant ROIs within a
specified sequence and hands them over to an instance of
OutputValues.

void setGridLayouts(int[] sequence,

java.util.List<BorderParallelRect> structure)

Defines the ROIs and the corresponding grid values for a list of
possible ROIs.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

SequenceAnalyzer

public SequenceAnalyzer(ImageReader imageReader,

java.lang.String dirResults)

Constructs a SequenceAnalyzer.

Parameters:

imageReader - ImageReader for obtaining the frames within a screencast

dirResults - directory in which the results are stored

Method Details

setGridLayouts

public void setGridLayouts(int[] sequence,

java.util.List<BorderParallelRect> structure)

Defines the ROIs and the corresponding grid values for a list of possible ROIs.

Parameters:

sequence - frame indices of the respective sequence

Constructors

Annotation of screencasts Appendix

University of Leoben XXXII Tabea Ulm

structure - list of all possibel ROIs

analyzeChanges

public void analyzeChanges(int[] sequence,

OutputValues values)

Calculates the typing rates for all relevant ROIs within a specified sequence and hands them over to an instance of OutputValues.

Parameters:

sequence - frame indices of the respective sequence

values - instance of OutputValues, which consolidates all typing rates within this screencast

Annotation of screencasts Appendix

University of Leoben XXXIII Tabea Ulm

Package com.unileoben.videoanalysis

Class SequenceDetector
java.lang.Object

com.unileoben.videoanalysis.SequenceDetector

public class SequenceDetector

extends java.lang.Object

This class contains all methods for detecting sequences within a screencast with a similar layout of ROIs.

Constructor Summary

Constructor Description

SequenceDetector(ImageReader imageReader,

java.lang.String dirResults)

Creats an instance of SequenceDetector for a specified
screencast.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

void generateAllSequences(int startIndex,

int endIndex)

Generates all sequences between two frame
indices.

java.util.List<int[]> getAllDetectedSequences() Getter for all detected Sequences.

java.util.List<BorderParallelRect> getROIStructure(int index) Returns the ROI structure of a given index.

java.util.List<BorderParallelRect> getROIStructure(int[] sequence) Returns the ROI structure of a given sequence.

int[] getSequenceIndices(int startIndex,

int maxEndIndex)

Generates the next sequence for a specified start
frame index.

void resetAllSequences() Resets all detected sequences.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

SequenceDetector

public SequenceDetector(ImageReader imageReader,

java.lang.String dirResults)

Creats an instance of SequenceDetector for a specified screencast.

Parameters:

imageReader - ImageReader for obtaining the frames within a screencast

dirResults - directory in which the results are stored

Method Details

resetAllSequences

public void resetAllSequences()

Constructors

Annotation of screencasts Appendix

University of Leoben XXXIV Tabea Ulm

Resets all detected sequences.

getAllDetectedSequences

public java.util.List<int[]> getAllDetectedSequences()

Getter for all detected Sequences.

Returns:

list of all sequences as frame indices

generateAllSequences

public void generateAllSequences(int startIndex,

int endIndex)

Generates all sequences between two frame indices.

Parameters:

startIndex - start frame index

endIndex - end frame index

getSequenceIndices

public int[] getSequenceIndices(int startIndex,

int maxEndIndex)

Generates the next sequence for a specified start frame index.

Parameters:

startIndex - start frame index

maxEndIndex - max end frame index

Returns:

sequence {start index, end index}

getROIStructure

public java.util.List<BorderParallelRect> getROIStructure(int[] sequence)

Returns the ROI structure of a given sequence.

Parameters:

sequence - frame indices of the respective sequence

Returns:

list of possible ROIs

getROIStructure

public java.util.List<BorderParallelRect> getROIStructure(int index)

Returns the ROI structure of a given index.

Parameters:

index - frame index

Returns:

list of possible ROIs

Annotation of screencasts Appendix

University of Leoben XXXV Tabea Ulm

Package com.unileoben.videoanalysis

Class TextChangeDetector
java.lang.Object

com.unileoben.videoanalysis.TextChangeDetector

public class TextChangeDetector

extends java.lang.Object

This class contains all methods for detecting the typing rate for a specified ROI.

Constructor Summary

Constructor Description

TextChangeDetector(GridDetector gridDetector) Constructs a TextChangeDetector.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier
and Type

Method Description

void evaluateTextualChangeOfROI(java.util.List<org.opencv.core.Mat> binaryFrames,

java.util.List<org.opencv.core.Mat[]> changeImgs, int[] period,

java.util.List<int[]> offset, int[] sequence, OutputValues values)

Evaluates the textual
changes of a specified
ROI within the entire
sequence.

int[] getRegionOfChange(java.util.List<org.opencv.core.Mat[]> changeImgs)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

TextChangeDetector

public TextChangeDetector(GridDetector gridDetector)

Constructs a TextChangeDetector.

Parameters:

gridDetector - GridDetector for supporting methods

Method Details

evaluateTextualChangeOfROI

public void evaluateTextualChangeOfROI(java.util.List<org.opencv.core.Mat> binaryFrames,

java.util.List<org.opencv.core.Mat[]> changeImgs,

int[] period,

java.util.List<int[]> offset,

int[] sequence,

OutputValues values)

Evaluates the textual changes of a specified ROI within the entire sequence.

Parameters:

binaryFrames - list of ROI as binarized images

Constructors

Annotation of screencasts Appendix

University of Leoben XXXVI Tabea Ulm

changeImgs - list of ROI as change images

period - period values for this ROI

offset - list of offset values for this ROI

sequence - frame indices of the respective sequence

values - OutputValues for the respective screencast

getRegionOfChange

public int[] getRegionOfChange(java.util.List<org.opencv.core.Mat[]> changeImgs)

Annotation of screencasts Appendix

University of Leoben XXXVII Tabea Ulm

Package com.unileoben.videoanalysis.content

Class BorderParallelRect
java.lang.Object

com.unileoben.videoanalysis.content.BorderParallelRect

All Implemented Interfaces:

java.lang.Comparable

public class BorderParallelRect

extends java.lang.Object

implements java.lang.Comparable

This class represents a rectangle with border-parallel lines.

Constructor Summary

Constructor Description

BorderParallelRect(int upperHorValue, int lowerHorValue, int leftVerValue,

int rightVerValue)

Constructs a BorderParallelRect using the constant
values per line.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

void addNestedWindow(BorderParallelRect r) Adds a new BorderParallelRect to the set of
all directly nested BorderParallelRects.

int compareTo(java.lang.Object o) Compares two BorderParallelRect for
ordering.

boolean equals(java.lang.Object o) Compares two BorderParallelRect for
equality.

int getArea() Getter of area.

org.opencv.core.Point getLeftBottomCorner() Getter of left bottom corner point.

VerticalLine getLeftLine() Getter of left line.

org.opencv.core.Point getLeftUpperCorner() Getter of left upper corner point.

java.util.List<BorderParallelRect> getNestedRects() Getter of a list of all directly nested
BorderParallelRect.

org.opencv.core.Point getRightBottomCorner() Getter of roght bottom corner point.

org.opencv.core.Point getRightUpperCorner() Getter of right upper corner point.

HorizontalLine getUpperLine() Getter of upper horizontal line.

int hashCode() Returns a hash code value for this object.

double overlapWith

(BorderParallelRect compareBorderParallelRect)

Determines the percentage of a second
BorderParallelRectangle which overlaps with
this BorderParallelRectangle.

void resetNestedRects() Sets the directly nested BorderParallelRects
to an empty list.

java.lang.String toString() Converts this BorderParallelRect object to a
String.

Constructors

Annotation of screencasts Appendix

University of Leoben XXXVIII Tabea Ulm

Methods inherited from class java.lang.Object

clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Details

BorderParallelRect

public BorderParallelRect(int upperHorValue,

int lowerHorValue,

int leftVerValue,

int rightVerValue)

Constructs a BorderParallelRect using the constant values per line.

Parameters:

upperHorValue - value of upper horizontal border

lowerHorValue - value of lower horizontal border

leftVerValue - value of left vertical border

rightVerValue - value of right vertical border

Method Details

getLeftUpperCorner

public org.opencv.core.Point getLeftUpperCorner()

Getter of left upper corner point.

Returns:

left upper corner Point

getRightUpperCorner

public org.opencv.core.Point getRightUpperCorner()

Getter of right upper corner point.

Returns:

right upper corner Point

getLeftBottomCorner

public org.opencv.core.Point getLeftBottomCorner()

Getter of left bottom corner point.

Returns:

left bottom corner Point

getRightBottomCorner

public org.opencv.core.Point getRightBottomCorner()

Getter of roght bottom corner point.

Returns:

right bottom corner Point

getUpperLine

Annotation of screencasts Appendix

University of Leoben XXXIX Tabea Ulm

public HorizontalLine getUpperLine()

Getter of upper horizontal line.

Returns:

upper line

getLeftLine

public VerticalLine getLeftLine()

Getter of left line.

Returns:

left line

getArea

public int getArea()

Getter of area.

Returns:

area

getNestedRects

public java.util.List<BorderParallelRect> getNestedRects()

Getter of a list of all directly nested BorderParallelRect.

Returns:

list of all directly nested BorderParallelRect.

resetNestedRects

public void resetNestedRects()

Sets the directly nested BorderParallelRects to an empty list.

addNestedWindow

public void addNestedWindow(BorderParallelRect r)

Adds a new BorderParallelRect to the set of all directly nested BorderParallelRects.

Parameters:

r - new directly nested BorderParallelRect

overlapWith

public double overlapWith(BorderParallelRect compareBorderParallelRect)

Determines the percentage of a second BorderParallelRectangle which overlaps with this BorderParallelRectangle.

Parameters:

compareBorderParallelRect - compare ROI

Returns:

overlap

compareTo

public int compareTo(java.lang.Object o)

Compares two BorderParallelRect for ordering.

Annotation of screencasts Appendix

University of Leoben XL Tabea Ulm

Specified by:

compareTo in interface java.lang.Comparable

Parameters:

o - BorderParallelRect for comparison

Returns:

the value 0 if the argument BorderParallelRect has the same area as this BorderParallelRect; a value less than 0 if the area of this BorderParallelRect is
smaller than the area of the BorderParallelRect argument; and a value greater than 0 if the area of this BorderParallelRect is larger than the area of the
BorderParallelRect argument.

equals

public boolean equals(java.lang.Object o)

Compares two BorderParallelRect for equality. The result is true if and only if the argument is not null and is a BorderParallelRect has the same
geometric position, as this object.

Overrides:

equals in class java.lang.Object

Parameters:

o - the object to compare with

Returns:

true if the objects are the same; false otherwise

hashCode

public int hashCode()

Returns a hash code value for this object.

Overrides:

hashCode in class java.lang.Object

Returns:

a hash code value for this object

toString

public java.lang.String toString()

Converts this BorderParallelRect object to a String.

Overrides:

toString in class java.lang.Object

Returns:

a string representation of this BorderParallelRect

Annotation of screencasts Appendix

University of Leoben XLI Tabea Ulm

Package com.unileoben.videoanalysis.content

Class HorizontalLine
java.lang.Object

com.unileoben.videoanalysis.content.Line
com.unileoben.videoanalysis.content.HorizontalLine

All Implemented Interfaces:

java.lang.Comparable

public class HorizontalLine

extends Line

This class represents a horizontal line.

Constructor Summary

Constructor Description

HorizontalLine(int pxPos1, int pxPos2, int pxVerticalPos) Constructs a horizontal line.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

int distanceBetween(Line line) Calculates the distance between two HorizontalLines.

int getPxLeft() Getter for left restrictive pixel value.

int getPxRight() Getter for right restrictive pixel value.

int getPxVerticalPos() Getter for vertical pixel position.

int overlapPX(HorizontalLine line) Determines the number of pixel which overlap between this and a second line.

double overlapWith(Line line) Determines the percentage of a second line which overlaps with this.

void setPxVerticalPos(int pxVerticalPos) Setter for vertical pixel position.

Methods inherited from class com.unileoben.videoanalysis.content.Line

compareTo, equals, getLength, getPoint1, getPoint2, hashCode, setPoint1, setPoint2

Methods inherited from class java.lang.Object

clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait

Constructor Details

Constructors

Annotation of screencasts Appendix

University of Leoben XLII Tabea Ulm

HorizontalLine

public HorizontalLine(int pxPos1,

int pxPos2,

int pxVerticalPos)

Constructs a horizontal line.

Parameters:

pxPos1 - one restrictive pixel value (e.g. the left pixel value)

pxPos2 - one restrictive pixel value (e.g. the right pixel value)

pxVerticalPos - the vertical position for this line

Method Details

getPxVerticalPos

public int getPxVerticalPos()

Getter for vertical pixel position.

Returns:

vertical pixel position

setPxVerticalPos

public void setPxVerticalPos(int pxVerticalPos)

Setter for vertical pixel position.

Parameters:

pxVerticalPos - enw vertical pixel position

getPxLeft

public int getPxLeft()

Getter for left restrictive pixel value.

Returns:

left restrictive pixel value

getPxRight

public int getPxRight()

Getter for right restrictive pixel value.

Returns:

right restrictive pixel value

Annotation of screencasts Appendix

University of Leoben XLIII Tabea Ulm

overlapWith

public double overlapWith(Line line)

Determines the percentage of a second line which overlaps with this.

Overrides:

overlapWith in class Line

Parameters:

line - compare line

Returns:

the percentage of the second line which overlaps with this

overlapPX

public int overlapPX(HorizontalLine line)

Determines the number of pixel which overlap between this and a second line.

Parameters:

line - compare line

Returns:

the percentage of the second line which overlaps with this

distanceBetween

public int distanceBetween(Line line)

Calculates the distance between two HorizontalLines.

Overrides:

distanceBetween in class Line

Parameters:

line - compare line

Returns:

pixel between the compare line and this

Annotation of screencasts Appendix

University of Leoben XLIV Tabea Ulm

Package com.unileoben.videoanalysis.content

Class Line
java.lang.Object

com.unileoben.videoanalysis.content.Line

All Implemented Interfaces:

java.lang.Comparable

Direct Known Subclasses:

HorizontalLine, VerticalLine

public class Line

extends java.lang.Object

implements java.lang.Comparable

This class represents a two-dimensional line.

Constructor Summary

Constructor Description

Line(org.opencv.core.Point point1, org.opencv.core.Point point2) Constructs a line.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

int compareTo

(java.lang.Object o)

Compares two Line for ordering.

int distanceBetween

(Line otherLine)

Returns the distance between this Line and another.

boolean equals(java.lang.Object o) Compares two Line for equality.

int getLength() Getter of line length

org.opencv.core.Point getPoint1() Getter of start point of the line.

org.opencv.core.Point getPoint2() Getter of end point of the line.

int hashCode() Returns a hash code value for this object.

double overlapWith(Line line) Determines the percentage of a second BorderParallelRectangle which overlaps with
this BorderParallelRectangle.

void setPoint1(int x, int y) Setter of start point of the line.

void setPoint2(int x, int y) Setter of end point of the line.

Methods inherited from class java.lang.Object

clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait

Constructor Details

Line

public Line(org.opencv.core.Point point1,

org.opencv.core.Point point2)

Constructors

Annotation of screencasts Appendix

University of Leoben XLV Tabea Ulm

Constructs a line.

Parameters:

point1 - start point of the line

point2 - end point of the line

Method Details

getPoint1

public org.opencv.core.Point getPoint1()

Getter of start point of the line.

Returns:

start point

setPoint1

public void setPoint1(int x,

int y)

Setter of start point of the line.

Parameters:

x - new x coordinate

y - new y coordinate

getPoint2

public org.opencv.core.Point getPoint2()

Getter of end point of the line.

Returns:

end point

setPoint2

public void setPoint2(int x,

int y)

Setter of end point of the line.

Parameters:

x - new x coordinate

y - new y coordinate

getLength

public int getLength()

Getter of line length

Returns:

line length

distanceBetween

public int distanceBetween(Line otherLine)

Returns the distance between this Line and another.

Parameters:

Annotation of screencasts Appendix

University of Leoben XLVI Tabea Ulm

otherLine - compare line

Returns:

the value 0, if the argument Line or this Line are both of type Line.

overlapWith

public double overlapWith(Line line)

Determines the percentage of a second BorderParallelRectangle which overlaps with this BorderParallelRectangle.

Parameters:

line - compare line

Returns:

the value 0, if the argument Line or this Line are both of type Line.

compareTo

public int compareTo(java.lang.Object o)

Compares two Line for ordering.

Specified by:

compareTo in interface java.lang.Comparable

Parameters:

o - Line for comparison

Returns:

the value 0 if the argument Line has the same length as this Line; a value less than 0 if the length of this Line is smaller than the length of the Line
argument; and a value greater than 0 if the length of this Line is larger than the length of the Line argument.

equals

public boolean equals(java.lang.Object o)

Compares two Line for equality. The result is true if and only if the argument is not null and is a Line has the same geometric position, as this object.

Overrides:

equals in class java.lang.Object

Parameters:

o - the object to compare with

Returns:

true if the objects are the same; false otherwise

hashCode

public int hashCode()

Returns a hash code value for this object.

Overrides:

hashCode in class java.lang.Object

Returns:

a hash code value for this object

Annotation of screencasts Appendix

University of Leoben XLVII Tabea Ulm

Package com.unileoben.videoanalysis.content

Class VerticalLine
java.lang.Object

com.unileoben.videoanalysis.content.Line
com.unileoben.videoanalysis.content.VerticalLine

All Implemented Interfaces:

java.lang.Comparable

public class VerticalLine

extends Line

This class represents a vertical line.

Constructor Summary

Constructor Description

VerticalLine(int pxPos1, int pxPos2, int pxHorizontalPos) Constructs a vertical line.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

int distanceBetween(Line line) Calculates the distance between two lines.

int getPxHorizontalPos() Getter for horizontal pixel position.

int getPxLower() Getter for lower restrictive pixel value.

int getPxUpper() Getter for upper restrictive pixel value.

int overlapPX(VerticalLine line) Determines the number of pixel which overlap between this and a second line.

double overlapWith(Line line) Determines the percentage of a second line which overlaps with this.

void setPxHorizontalPos(int pxHorizontalPos) Setter for horizontal pixel position

Methods inherited from class com.unileoben.videoanalysis.content.Line

compareTo, equals, getLength, getPoint1, getPoint2, hashCode, setPoint1, setPoint2

Methods inherited from class java.lang.Object

clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait

Constructor Details

Constructors

Annotation of screencasts Appendix

University of Leoben XLVIII Tabea Ulm

VerticalLine

public VerticalLine(int pxPos1,

int pxPos2,

int pxHorizontalPos)

Constructs a vertical line.

Parameters:

pxPos1 - one restrictive pixel value (e.g. the upper pixel value)

pxPos2 - one restrictive pixel value (e.g. the lower pixel value)

pxHorizontalPos - the horizontal position for this line

Method Details

getPxHorizontalPos

public int getPxHorizontalPos()

Getter for horizontal pixel position.

Returns:

horizontal pixel position

setPxHorizontalPos

public void setPxHorizontalPos(int pxHorizontalPos)

Setter for horizontal pixel position

Parameters:

pxHorizontalPos - new horizontal pixel position

getPxUpper

public int getPxUpper()

Getter for upper restrictive pixel value.

Returns:

upper restrictive pixel value

getPxLower

public int getPxLower()

Getter for lower restrictive pixel value.

Returns:

lower restrictive pixel value

Annotation of screencasts Appendix

University of Leoben XLIX Tabea Ulm

overlapWith

public double overlapWith(Line line)

Determines the percentage of a second line which overlaps with this.

Overrides:

overlapWith in class Line

Parameters:

line - compare line

Returns:

the percentage of the second line which overlaps with this

overlapPX

public int overlapPX(VerticalLine line)

Determines the number of pixel which overlap between this and a second line.

Parameters:

line - compare line

Returns:

the percentage of the second line which overlaps with this

distanceBetween

public int distanceBetween(Line line)

Calculates the distance between two lines.

Overrides:

distanceBetween in class Line

Parameters:

line - compare line

Returns:

pixel between the compare line and this

Annotation of screencasts Appendix

University of Leoben L Tabea Ulm

Package com.unileoben.videoanalysis.input

Class ImageReader
java.lang.Object

com.unileoben.videoanalysis.input.ImageReader

public class ImageReader

extends java.lang.Object

This class provides the image data throughout this application.

Constructor Summary

Constructor Description

ImageReader(java.lang.String frameDirectory) Constructs an ImageReader.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier and Type Method Description

org.opencv.core.Mat getGrayscaleFrame(int indexFrame) Provides a specified grayscale image.

java.lang.String[] getImageNames() Getter for an Array of image names.

java.lang.String getNameOf(int indexFrame) Provides the file name of a specified frame number.

int numberFrames() Provides the number of images within the specified directory.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Details

ImageReader

public ImageReader(java.lang.String frameDirectory)

Constructs an ImageReader.

Parameters:

frameDirectory - directory to where the frames are stored

Method Details

getImageNames

public java.lang.String[] getImageNames()

Getter for an Array of image names.

Returns:

Array of all image names

getNameOf

public java.lang.String getNameOf(int indexFrame)

Constructors

Annotation of screencasts Appendix

University of Leoben LI Tabea Ulm

Provides the file name of a specified frame number.

Parameters:

indexFrame - frame index

Returns:

corresponding file name

getGrayscaleFrame

public org.opencv.core.Mat getGrayscaleFrame(int indexFrame)

Provides a specified grayscale image.

Parameters:

indexFrame - frame number of image

Returns:

Mat as grayscale

numberFrames

public int numberFrames()

Provides the number of images within the specified directory.

Returns:

number of images

Annotation of screencasts Appendix

University of Leoben LII Tabea Ulm

Package com.unileoben.videoanalysis.output

Class OutputValues
java.lang.Object

com.unileoben.videoanalysis.output.OutputValues

public class OutputValues

extends java.lang.Object

This class contains of all methods for handling typing rates.

Constructor Summary

Constructor Description

OutputValues(int frameNo, java.lang.String resultDir) Constructs OutputValues, where all typing rates are set to 0.

Method Summary

All Methods Instance Methods Concrete Methods

Modifier
and Type

Method Description

void addShiftAtBoundsValues

(int boundChangeValue, int frameNo)

Adds a textual change, which was detected at the border of a ROI and had been
caused by a shift, for the specified frame index in case the absolute new value is
higher the the current value.

void addTextualChangeValues(int[] changeValues,

int startFrameNo)

Adds a consecutive textual changes for specified frame indices in case the absolute
new value is higher the the current value.

void addTextualChangeValues(int changeValue,

int frameNo)

Adds a textual change for specified frame index in case the absolute new value is
higher the the current value.

void calculatePrecisionAndRecall

(java.lang.String evalFile)

Calculates precision and recall values for the current change values and a specified
evaluation file and prints them as a console log.

void generateOutput(java.lang.String name) Generates a CSV file for the current textual changes.

void generateOutputInclShiftAtBounds

(java.lang.String name)

Generates a CSV file for the current textual changes including textual changes for
shifts at the border of a ROI.

int[] getChangesWithBounds() Getter of the current textual changes including textual changes for shifts at the
border of a ROI.

int[] getTextualChanges() Getter of the current textual changes.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructors

Annotation of screencasts Appendix

University of Leoben LIII Tabea Ulm

Constructor Details

OutputValues

public OutputValues(int frameNo,

java.lang.String resultDir)

Constructs OutputValues, where all typing rates are set to 0.

Parameters:

frameNo - number of frames within the screencast

resultDir - path to the directory for which the resulting CSV file should be stored

Method Details

getTextualChanges

public int[] getTextualChanges()

Getter of the current textual changes.

Returns:

textual changes

getChangesWithBounds

public int[] getChangesWithBounds()

Getter of the current textual changes including textual changes for shifts at the border of a ROI.

Returns:

textual changes

generateOutput

public void generateOutput(java.lang.String name)

Generates a CSV file for the current textual changes.

Parameters:

name - file name for the output file

generateOutputInclShiftAtBounds

public void generateOutputInclShiftAtBounds(java.lang.String name)

Generates a CSV file for the current textual changes including textual changes for shifts at the border of a ROI.

Parameters:

name - file name for the output file

addTextualChangeValues

public void addTextualChangeValues(int changeValue,

int frameNo)

Adds a textual change for specified frame index in case the absolute new value is higher the the current value.

Parameters:

changeValue - new change vale

frameNo - frame index

Annotation of screencasts Appendix

University of Leoben LIV Tabea Ulm

addShiftAtBoundsValues

public void addShiftAtBoundsValues(int boundChangeValue,

int frameNo)

Adds a textual change, which was detected at the border of a ROI and had been caused by a shift, for the specified frame index in case the absolute new
value is higher the the current value.

Parameters:

boundChangeValue - new change vale

frameNo - frame index

addTextualChangeValues

public void addTextualChangeValues(int[] changeValues,

int startFrameNo)

Adds a consecutive textual changes for specified frame indices in case the absolute new value is higher the the current value.

Parameters:

changeValues - Array of change vales

startFrameNo - start frame index

calculatePrecisionAndRecall

public void calculatePrecisionAndRecall(java.lang.String evalFile)

Calculates precision and recall values for the current change values and a specified evaluation file and prints them as a console log.

Parameters:

evalFile - file path to an evaluation file

Annotation of screencasts Appendix

University of Leoben LV Tabea Ulm

	Affidavit
	Abstract
	Kurzzusammenfassung
	List of Figures
	List of Tables
	Introduction
	Problem Motivation
	Research Theme
	Relevant Image Sections
	Relevant Actions

	Evaluation Method
	Evaluation of Available Screencasts
	Separation Into Implementation and Evaluation Data
	Method of Performance Evaluation

	Related Work
	Transcribing Code
	CodeTube
	ACE
	psc2code
	Codemotion

	Locating Source Code
	Identifying Source Code
	Identifying Code Fragments

	Event Detection
	Classifying Actions

	Significance of This Work

	Algorithmic Approach
	Initial Definitions
	Frame Layout Detection
	Emphasize Relevant Features
	Extract Border Parallel Lines
	Construct Possible ROIs
	Analyze Geometric Properties
	Group Frames According to Frame Layout

	Grid Analysis
	Row and Column Period
	Period per Frame
	Period per Section
	Text Editor Classification

	Analysis of Textual Changes
	Preprocessing
	Determining Change Values
	Processing of Larger Textual Changes

	Discarded Approaches

	Implementation
	Usage Specifications
	Requirements for Input
	Resulting Data

	Project Structure
	Implementation of Frame Layout Detection
	Implementation of Grid Analysis
	Implementation of Analysis of Textual Changes

	Evaluation
	Setup
	Ground Truth
	Technical Setup

	Results
	Evaluation of Accuracy
	Evaluation of Precision and Recall
	Analysis of a-typing
	Evaluation of Larger Textual Changes
	Exemplary Study for Night Mode

	Conclusion
	Summary
	Further Research

	Appendix
	Input Data Analysis
	UML class diagramm
	Code Documentation

