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Abstract

Personnel costs are an important performance indicator in warehouse operations as they

directly influence the cost and profit. Therefore, to maximize the profit, good personnel

planning is essential. In this Master’s Thesis, we investigated the use of reinforcement

learning using neural networks to support decision making for assigning work operators.

At first, an introduction to reinforcement learning and neural networks is given. Then,

based on a system analysis, a Markov Decision Process (MDP) is designed. Based on the

MDP a simulation is proposed to provide the data necessary for reinforcement learning.

Finally, the reinforcement learning approach to predict the expected profit for different

decisions is described in the final step. The evaluation on different validation scenarios

shows, that the proposed reinforcement learning approach achieves higher profits than a

naive algorithm and should therefore be considered as valuable support in future ware-

house operations.
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Kurzfassung

Die Personalkosten sind ein wichtiger Leistungsindikator im Lagerbetrieb, da sie sich

direkt auf Kosten und Gewinn auswirken. Um den Gewinn zu maximieren, ist daher

eine gute Personalplanung unerlässlich. In dieser Masterarbeit haben wir den Einsatz

von Reinforcement Learning unter Verwendung neuronaler Netze zur Unterstützung der

Entscheidungsfindung bei der Zuweisung von Arbeitskräften untersucht. Zunächst wird

eine Einführung in das Reinforcement Learning und neuronale Netze gegeben. An-

schließend wird auf der Grundlage einer Systemanalyse ein Markov Decision Process

(MDP) entworfen. Auf der Grundlage dieses MDP wird eine Simulation erstellt, um

die für das Reinforcement Learning erforderlichen Daten zu generieren. Im letzten Schritt

wird der Reinforcement-Learning-Ansatz beschrieben, um den erwarteten Gewinn für ver-

schiedene Entscheidungen vorherzusagen. Die Auswertung verschiedener Validierungsszenar-

ien zeigt, dass der entwickelte Reinforcement-Learning-Ansatz höhere Gewinne erzielt als

ein naiver Algorithmus und daher als wertvolle Unterstützung für zukünftige Lageroper-

ationen angesehen werden sollte.
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RL for Decision Support Chapter 1. Introduction

1 Introduction

1.1 Decision Support

In the field of logistics cost efficient processes are a must [1]. This is underlined by a survey

from Cooke et.al where 71% of all respondents ranked “cost control/cost reduction” as top

priority in the logistics industry [2]. One crucial cost factor in warehousing and logistics

are personnel costs. These costs have a decisive influence on revenue as they account for

a large share of total costs and continue to rise [3]. Personnel costs are directly linked

to staffing levels. Therefore, accurate workforce planning is essential. At the same time,

warehousing processes necessitate maximum flexibility as the daily demand fluctuates [4].

As we can see in the following chapter, usually the shift leader is commissioned with the

task of assigning personnel to the workstations.

Complex situations, where a decision maker is confronted with decisions which are depen-

dent on a big number of external variables, the need for external support arises. This is

often provided by so called computer aided decision support systems. The usage of these

support systems started in the mid-1960s and has evolved ever since. Complex situations,

such as the personnel management decisions in modern warehouses, call for sophisticated

intelligent decision support systems which can model non linear relations [5]. The goal of

this master thesis is, to develop a system to support personnel planners in daily planning

and decision making.

In order to provide a mathematical model, we first analysed an existing warehouse opera-

tion. We interviewed warehouse managers in order to identify the different roles existing

within a warehouse and their tasks. The results of these analyses are presented in the

following chapter. Based on these roles we consider the most promising, to receive deci-

sion support for planning and decision making. Based on the acquired information about

this role reinforcement learning is chosen as promising approach. This master thesis sets

out to investigate if a reinforcement learning policy aided by neural networks is suited to

support decision making processes within a warehouse setting.

1.2 Analysis of Warehouse Operations

This thesis is conducted in cooperation with the company redPILOT which markets a

software for warehouse operations optimization called redPILOT Operational Excellence

Montanuniversität Leoben 1 Martin Roth, BSc.
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Solution. We will discuss general warehouse operations and how they are handled in

redPILOT Operational Excellence Solution as we will use this models in our approach.

Different key roles in warehouse operations are identified alongside their scope of work.

1.2.1 System Analysis

A so called customers system is a structure within redPILOT Operational Excellence So-

lution. The basis of a customers system is represented by the business unit. A business

unit describes the site of the customer. It is covered by the so called process model within

the application. The term operation is used to describe different KPI-driven operations

of a given business unit. Within an operation, a so called system is the smallest possible

working group. Resource planning happens on a system level. Each activity of a system

is called process step. Each process step w has individual parameters which need to be

considered when allocating operators o. First, each process step has a maximum mw,max

as well as a minimum amount mw,min of operators that can be assigned to it. In this

thesis we will consider only linear aligned process steps. Two process steps are linear

aligned if the completed workload from one process step gets populated completely into

the subsequent process step. Each process step is equipped with a buffer β that holds the

goods to be processed.

The workload is presented to a system as orders x. For simplicity we consider each order

to be of the amount one for this thesis. These orders arrive in a certain distribution over

the course of shift and are directly filled into the buffer of the first process step of the

system.

To process orders at the process steps operators are available for the system. Each opera-

tor has different skills at each process steps. These skills are defined as working capacity

an operator can provide within a given time interval.

1.2.2 Warehouse Staff

In the following section, we will describe the key warehouse staff positions as well as their

tasks. These informations were acquired performing interviews with selected warehouse

executives.

Site Manager (SM): The SM has the overall responsibility for the warehouse and its

administrations. A SM takes care of finances and makes strategic decisions. However,

SMs are not involved in operational decision making processes.

Warehouse Manager (WM): The WM is responsible for all warehouse processes. A

WMs field of decision does not cover any administrative decisions. The WM is also

tasked with communicating with the purchasing department regarding delivery times.

Most importantly, the WM sets up guidelines for daily planning. For example:

• Claim an additional shift
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• Additional slot for weekends

• Communications with subsidiaries

• Fleet management

• General conditions for working time

• Operator pool

• Restrictions for workstations

Hall Manager (HM): The HM is responsible for basic personnel planning including

the planning of vacations. The HM also recruits and dismisses operators. A HM is also

involved in the scheduling of maintenance windows and coordinates the Shift Leaders.

Shift Leader (SL): The SL is responsible for the shift in consultation with the HM. The

SL is tasked with coordinating workers’ daily work hours including working overtime or

leaving early. The SL is also tasked with rescheduling of operators within process steps.

The SL makes situational decisions about maintenance events and is also tasked with

managing workstations that suffer a breakdown. In general, SLs don’t have any high level

operator planning responsibility. Instead, they only manage the operator pool given to

them.

1.3 Goal of this Thesis

The goal of this thesis is to train a reinforcement learning policy to support warehouse

personnel assigning operators to process steps in order to minimize costs. We derive a

Markov Decision Process (MDP) from the analysed system. The MDP features three es-

sential components. First, it defines the different states the system can adopt. Secondly

the MDP provides actions which cause a transition from one state to another. Lastly, a

reward function is provided to give feedback to the reinforcement learning policy about

the action taken. Looking at the existing data provided by real life system it emerged,

that the available data is not sufficient for reinforcement learning. During real life oper-

ations only a certain way of controlling the system is represented in the data. This can

lead to situations during training where an action is taken but the resulting transition is

not present in the provided data. To overcome these limits during training, a simulation

is introduced. The usage of a simulation to provide data for reinforcement learning is

considered a common approach. The reinforcement learning policy will directly commu-

nicate with this simulation and receive feedback based on actions taken.

We continue by describing our proposed approach for reinforcement learning in detail.

We also provide bounds to evaluate the results generated by our approach. For this we

introduce an low level algorithm as well as a linear program to provide context to the
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quality of the achieved results. The evaluation will take on different scenarios where we

will test the overall performance of the reinforcement learning policy in different settings.

We will as well test pre trained models with alternating sets of available operator sets. In

the end we will provide a summary of the presented results as wells as potential further

research topics derived from this thesis.
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2 Machine Learning

2.1 Reinforcement Learning

2.1.1 Overview

This chapter will start by giving a general overview of reinforcement learning. It will

then continue by giving detailed description of the Markov Decision Process as well as

Q-Learning including the advanced cases of stochastic environments. This section about

reinforcement learning is based on [6] and [7]. In reinforcement learning an agent learns to

map situations to actions. Feedback is given via a reward, which needs to be maximized.

In order to maximize the reward the learner must try different actions and discover which

one yields the highest reward. If the agent takes an action, it may not affect only the

immediate reward but also future rewards, as an action can influence all subsequent re-

wards. This results in the two most important features of reinforcement learning, the trial

and error search and the delayed reward.

Reinforcement learning is different to supervised learning. In supervised learning, the

learner is trained with a set of labelled examples which are provided by an external

supervisor. Each example describes a situation together with the correct action the sys-

tem should take in that situation (the label). When a system which was trained using

supervised learning encounters a situation unknown to the system it extrapolates and

generalizes its responses in order to act correctly in situations unknown to the system. In

unsupervised learning the learner searches for structure within the set of unlabelled data.

Reinforcement learning does not rely on labelled examples but instead maximizes the

reward signal rather than finding hidden structure within the data. Therefore reinforce-

ment learning is a third kind of machine learning paradigm besides supervised learning

and unsupervised learning.

In reinforcement learning, the distribution of training examples is influenced by the action

sequence that the agent selects. This leads to the question which strategy leads to the

most effective learning. In RL, the learner can choose between exploring unknown states

and exploiting states that have already been learned and are known to yield high rewards.

This exploration and exploitation approach is not without its challenges. On one hand

the reinforcement learning agent prefers actions, from which it knows from the past, that
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they produce a high reward. On the other hand, to find these actions, it has to try actions

never used before. This means that the agent has to exploit actions based on the current

estimate of the value function, to obtain a high reward but also explore new actions for

future selection. The agent needs to combine exploitation and exploration in order to

learn the value function. On a stochastic task each action must be tried many times to

gain a reliable estimate on its expected reward.

To better understand reinforcement learning, it is important to understand the following

elements: The policy, a reward signal and the value function.

A policy defines the agent’s behaviour at a given time. It defines the action to take in a

certain state. A policy’s form can range from a simple lookup table to a more complex

computation process. The policy is the core of the reinforcement learning agent as it is

solely responsible for the agent’s behaviour.

The reward signal represents the goal of the reinforcement learning problem. At each

time step t, after the agent has taken an action, the environment returns a single number

called reward. The only goal of the learning agent is to maximize the cumulated reward

over time. Thus, the reward signal indicates positive and negative events to the agent,

and thereby can influence the policy. If the agent takes an action which leads to a low

reward the policy might change to a different action with a higher reward in the future

in order to achieve its goal of accumulating the highest reward possible.

The value function combines the immediate reward with the accumulated reward to be

expected over time. Therefore, the value of a state defines how desirable a state is in the

long term. It also takes the states and rewards which are likely to follow into account.

It might occur that a state offers a relatively low immediate reward but it yields a high

value as it is followed by states which yield high rewards. Naturally the opposite can be

true. When making and evaluating actions it is therefore the values, not the rewards that

need to be taken into account. We seek states which hold a high value rather than a high

reward in order to achieve a high cumulated reward over time. However, determining

values is much more difficult compared to rewards. The reward is given directly by the

environment after taking an action. The value must be estimated and re-estimated from

the observations of the agent over its entire lifetime. Therefore correctly estimating values

is a cornerstone method in reinforcement learning.

The final element for reinforcement learning is the model of the environment. The model

imitates the behaviour of the environment. The model might predict the next state based

on the current state and the taken action. In the following section we define a model, the

Markov Decision Process (MDP), often used in reinforcement learning and our derived

model.
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2.1.2 Markov Decision Processes

The Markov Decision Process (MDP) is considered a classical model for sequential deci-

sion making and is seen as a suitable model of the environment often used in reinforcement

learning. Actions within an MDP do not just influence the immediate reward received,

but also future rewards due to subsequent situations. MDPs also involve delayed rewards.

Therefore the trade-off between immediate rewards and delayed ones needs to bed calcu-

lated.

In the MDP a learner and decision maker is called an agent. Every model consists of an

agent interacting with an environment. An environment is everything outside the agent

and is described by possible states S. The agent is capable of observing the sate of its

environment, and knows a set of actions A which can be performed to alter the current

state. The task of the agent is to learn a policy for choosing actions to reach a specific

goal. As already described the goal can be be defined via a reward function. This function

assigns a numerical value for each distinct action the agent might take from each distinct

state. The reward function might be either known to the agent or only to the teacher who

provides the reward for each action taken. However, the reward is an immediate pay-off

after each action taken. Ideally, a control policy π : S → A would be able to choose

actions maximizing the cumulative reward over time, independent of the initial state. In

general it is desired to learn to control a sequential process. Cases where the sets A and S

can be considered to be finite which is called a finite MDP. For simplicity we will continue

describing a finite MDP.

In an MDP, the agent interacts with its environment in a sequence of discrete time steps

t = 0, 1, 2, . . . . At each time step t the agent observes an state st ∈ S of the environ-

ment. With this knowledge the agent chooses an action at ∈ A, and receives the reward

rt = r(st, at), rt ∈ R from the environment. Then the agent observes the subsequent state

st+1 = δ(st, at) at t. This results in a sequence:

s0, a0, r0, s1, a1, r1, s2, . . . (2.1)

between the agent and the environment. The functions r(st, at) and δ(st, at) are part of

the environment and not necessarily known to the agent. These functions only depend

on the current state. Therefore the state must contain all past information about action-

environment interaction that influence the future. If this is the case for a given state,

then it is said to have the Markov property.

Moreover the functions r(st, at) and δ(st, at) might be stochastic. In this case the functions

can be viewed by first creating a probability distribution over s and a, and then drawing

an outcome according to these distribution. A system is called a nondeterministic MDP if

these probability distributions solely depend on s and a. The state-transition probabilities
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are defined as follows:

p(s′|s, a)
.
= Pr(st = s′|st−1, = s, at−1 = a). (2.2)

The expected reward can also be calculated for state-action pairs:

r(s, a)
.
= E[rt|st−1 = s, at−1 = a]. (2.3)

Finally we can compute the expected reward for state-action-next-state triples:

r(s, a, s′)
.
= E[rt|st−1 = s, at−1 = a, st = s′]. (2.4)

An advantage of MDPs is that they are abstract and flexible. Therefore they are appli-

cable to many different problems in many different ways. For instance, the time steps

must not necessarily refer to fixed intervals of real time. The actions can also range from

low-level controls up to high-level decisions. They can be completely determined by low-

level sensations, or they can be more high-level and abstract. A state could be made up

by memory of past sensations or be entirely subjective. Equivalently, some actions can

be totally mental or computational. Generally speaking, actions can be any decisions we

want to learn how to perform. States can represent anything that can be known which

might be useful to learn actions.

It is important to note that in general, the boundary between agent and environment is

not the same as the physical boundary of for example a robot’s body and the rest of the

room. Most of the time the boundary in an MDP is drawn closer to the agent. Following

the robot example, the sensors, motors, and the mechanical linkage would be considered

part of the environment only the control unit would be considered the agent.

In this analogy, the rewards are most likely computed inside the robot. However, they

are considered as external to the agent. In general, everything that cannot be changed

by the agent arbitrarily is considered to be part of the environment. Further, we do not

consider that everything of the environment is unknown to the agent.

Learning tasks vary in their level of difficulty. It is possible to face hard learning tasks

although everything is known to the agent about how the environment works. The states

and actions vary notably from task to task. Their representation can strongly affect the

performance of the model. Currently these representations are considered more art than

science.
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2.1.3 Preparations for Learning

In 2.1.1 a reward was defined as a signal given to the agent by the environment after

taking an action. The goal of the agent is to maximize the cumulative reward over a

lifetime. In this section we will first define the term goal, continue by specifying rewards,

the rewards sequence and discounting to segue to Q-Learning.

Defining goals in terms of rewards is not as limiting as it might seem at a first glance. For

example the reward of a robot trying to find the exit of a maze could be set to -1 for each

step which is not a step out of the maze and +1 for the step out of the maze. This can also

be applied to competitive games like chess or checkers. There the reward is -1 in case of a

loss, +1 in case of a win and 0 for all non terminal states or a draw. In all these examples

the agent will always try to learn to maximize the reward. For the agent to reach a specific

goal it needs to receive rewards in a way so that maximizing these rewards is congruent

with that goal. A common pit fall in this approach is to include prior knowledge in the

form of sub-goals to the agent. This can influence the agent in a way that it learns to

achieve these sub-goals without achieving the overall goal. Recalling the chess example

one might think it is a good idea to reward taking the opponents pieces. This might lead

to a policy were only the sub-goal is achieved but the game is lost. Therefore the rewards

signal should always be designed in a way that the agent knows what should be achieved

in the end, but not how.

So far, the goal of the agent has always been defined as the maximization if the cumulative

reward. The sequence of rewards received after t is defined as rt, rt+1, rt+2, . . . . The

expected sum of rewards gt is the aspect of this sequence we want to maximize is and is

considered a specific function of the reward sequence. Considering the case of a final time

step T the return is simply the sum of the rewards:

gt
.
= rt + rt+1 + rt+2 + · · ·+ rT . (2.5)

This is a valid approach in applications with terminal states which divides the interaction

of the agent with the environment into subsections. These subsections are called episodes.

Given the chess or checkers example, one episode would correspond to one game. Every

episode ends with a terminal state which is followed by an independent starting state.

These starting states are either constant (e.g.: chess, where all pieces always start from

the same position) or taken from a distribution of starting sate (e.g.: robot in a position

within a maze). Furthermore the terminal time T varies from episode to episode.

In many cases the agent-environment interaction is not broken into episodes. In these

cases the formulation of gt is problematic as T = ∞, and gt could therefore also be

infinite. Therefore we will use a slightly more complex definition of a return.

The concept of discounting future rewards fulfils our needs. Therefore we change the

agents goal to maximize the sum of discounted rewards received over time. The agent
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then chooses at to maximize the discounted return:

gt
.
= rt + γrt+1 + γ2rt+2 + · · · =

∞
∑

k=0

γkrt+k. (2.6)

The variable γ, with 0 6 γ ≤ 1 is called discount rate. It determines the present value

of rewards in the future. Thus a reward received after k time steps is only worth γk

times what it would be worth if it was received immediately. Further the sum at (2.6)

has a finite value as long as the rewards are bounded. In case γ = 0, the agent is

only concerned about maximizing immediate rewards. The agent chooses at so as to

maximize rt. If each action taken only influences the immediate reward, not future ones as

well, this agent can maximize (2.6) independently of maximizing each immediate reward.

However maximizing the immediate reward might reduce access to future rewards and as

a consequence reduce the return. The closer γ is to 1, the more value is put on future

rewards and the agent becomes more farsighted.

2.1.4 Q-Learning

We continue by formalising the concepts of value functions and policies which were already

introduced in 2.1.1. Nearly all reinforcement learning algorithms include estimating value

functions. We roughly defined the value function to give information about how good it

is to be in a certain state. “How good” in this case is defined to be the expected return

given through the future rewards. These rewards depend, of course, on the actions taken

by the agent in the future. Consider an agent following policy π at time t. Then, π(a|s)

defines the probability at = a if st = s. The reinforcement learning method then defines

how the agent has to change its policy based on the acquired knowledge from interacting

with the environment.

We denote the value function of a state s under the policy π as V π(s). V π(s) returns the

expected reward for an agent following π with s as its initial state. We define V π(s) for

MDPs formally as:

V π(s) =
∞

∑

k=0

γkrt+k (2.7)

The next step will be to find the optimal policy π∗ to solve the reinforcement learning

task. The different policies of finite MDPs can be compared by their associated value

functions. For a policy π to be better than or at least equal to a policy π′ its expected

return must be greater than or equal to the one for π′ for all states. This implies the

existence of one or more policies with a higher expected return for all states than all other

policies. This policy, called optimal policy, is denoted by π∗ and is defined as:

π∗ .
= arg max

π
V π(s), (2.8)
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for all s. Starting from state s and following π∗ afterwards results in the optimal state-

value function V ∗(s) (for simplicity reasons we use V ∗ instead of V π∗

). This value function

defines the highest discounted cumulative reward the agent can possibly achieve when

starting from state s.

Now that the optimal policy π∗ is defined, a method to learn this policy becomes necessary.

The only training information available to the learner is the immediate rewards given by

the environment. This makes the direct learning of the function π : S → S difficult,

because this would call for training examples in the form of 〈s, a〉. Based on the sequence

of returned rewards gt it is more natural to learn a numerical evaluation function which

is defined via actions and states. The function is then used to implement the optimal

policy. The simplest function would be V ∗(s), because a state s1 is preferred over a state

s2 if V ∗(s1) > V ∗(s2). This leads to an optimal policy π∗(s), were the agent selects action

a, that maximizes the discounted future rewards, when in state s:

π∗(s) = arg max
a

r(s, a) + γV ∗(δ(s, a)) (2.9)

However, the agent’s policy does not rely on states but rather relies on actions. V ∗ can

still be used to select between actions but that assumes perfect knowledge of the reward

function r(s, a) and the state transition function δ(s, a). This is not the case in many

real-life problems. A more practical approach is to use the Q-function. Using V ∗ as well

as r(s, a) and δ(s, a) we can define the Q-function as:

Q(s, a)
.
= r(s, a) + γV ∗(δ(s, a)). (2.10)

Q(s, a) matches exactly the maximization part of 2.9. Thus 2.9 needs to be rewritten:

π∗(s) = arg max
a

Q(s, a). (2.11)

This enables the agent to chose optimal actions while not knowing r(s, a) and δ(s, a).

The agent can choose an action a based only on the current status and without any any

knowledge of the following states. All future rewards are summarised in the respective Q

value. now that the Q value is defined, a strategy to learn Q is necessary. The learner

needs to find a reliable estimate for any Q by continuously approximating it. Q and V ∗

are connected by:

V ∗(s) = max
a′

Q(s, a′) (2.12)

and by 2.10 follows:

Q(s, a) = r(s, a) + γ max
a′

Q(δ(s, a), a′). (2.13)
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Q̂ is defined as the learners current hypothesis of the Q function. This basic algorithm

features a table where the current Q̂(s, a) is stored for each state action value pair. After

each experienced 〈s, a, r, s′〉 sequence the agent updates the respective Q̂(s, a) value in the

table according to:

Q̂(s, a)← r + γ max
a′

Q̂(s′, a′) (2.14)

Algorithm 2.1 Q-learning Algorithm

1: init_q_table(n)
2: s←observe_state
3: while i < n do
4: a←select_action
5: r ←take_action
6: s′ ←observe_state
7: Q̂(s, a)← r + γ maxa′ Q̂(s′, a′)
8: s← s′

9: end while

Algorithm 2.1 shows how equation (2.14) works without the knowledge of r(s, a) and

δ(s, a) assumed in equation (2.13). The agent obtains all parameters needed by interacting

with the environment. For a deterministic MDP utilizing algorithm 2.1 we can prove

convergence of Q̂ to Q.

2.1.5 Nondeterministic Case

In case of a stochastic MPD the functions r(s, a) and δ(s, a) provide a sample according

to an underlying probability distribution. These probability distributions only depend on

s and a. When adapting algorithm 2.1 to handle stochastic MDPs, the first that needs to

be changed is the learners objective. V π is redefined as expected value of the discounted

cumulative reward:

V π(s) = E





∞
∑

k=0

γkrt+k



 (2.15)

We continue adapting the Q function to use the expected value as well:

Q(s, a)
.
= E[r(s, a) + γV ∗(δ(s, a))]

= E[r(s, a) + γE[V ∗(δ(s, a))]]

= E[r(s, a)] + γ
∑

s′

Pr(s′|s, a)V ∗(s′)

(2.16)

The probability Pr(s′|s, a) defines probability that taking action a in state s results in

state s′. Finally we can rewrite equation (2.13):

Q(s, a) = E[r(s, a)] + γ
∑

s′

Pr(s′|s, a) max
a′

Q(s′a′) (2.17)
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Now we need to update the training rule to fit equation (2.17). We can not reuse equation

(2.14) because it would not converge. To overcome this we take the weighted decaying

average of the current Q̂. We denote Q̂n as the agent’s estimate at the nth iteration:

Q̂n(s, a)← (1− αn)Q̂n−1(s, a) + αn[r + γ
′

max
a

Q̂n−1(s
′, a′)] (2.18)

with:

αn =
1

√

1 + vn(s, a)
(2.19)

where vn(s, a) is the number of times, the currently updated 〈s, a〉 was visited at the nth

iteration. This training rule updates Q̂ more gradually than equation (2.14).

2.1.6 Function Approximation

The tabular method to store the Q values, which has been discussed until now has its

limits. With an increasing size of the state space, certain problems arise. For large state

spaces (e.g.: possible images of a digital camera) the tabular approach will not converge to

a result with a reasonable amount of data and time. The main problem is not the memory

needed for these large tables, but rather the time needed to fill them. We expect almost

every new state to be one the algorithm has never seen before. For these problems we will

not find an optimal policy or value function. Therefore we aim for a approximate solution

instead. The algorithm needs to generalize previous visited states to make decision for

similar ones encountered in the future. For this purpose we use function approximation

to approximate the value function.

Let π be a known policy and V π the value function to be approximated. We define the

approximation V̂ (s, w) ≈ V π as the current approximate value of s using the weight

vector w ∈ R
d. V̂ can be defined as a linear function with w as feature weights or a

function computed by a neural network with w as connecting weights in-between the

layers. Changing a weight causes changes in the estimate for several states as there are

generally fewer weights than states.

2.2 Neural Networks

To further proceed with deep learning we will now examine artificial neural networks as

extensively written about by Mitchell T. [6] and Aggarwal C.[8]. Inspired by biological

organisms, neural networks provide a method to learn the approximation of different

target functions. Neural networks can be grouped into different types, e.g.: single-layer

and multi-layer neural networks. Single-layer networks consist of an input directly mapped

to an output, utilizing a generalized linear function. In a multi-layer network one or more
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Figure 2.1: A simple perceptron

hidden layers separate the input from the output. These two types of neural networks, as

well as their usage in reinforcement learning will be discussed in the following chapters.

2.2.1 Single-layer Networks

The most basic neural network is called perceptron. A perceptron consists of an input

layer and a single output node. The single output node forms the only computation layer

in the network. Hence, the perceptron is classified as a single-layer network. We consider

the input as real valued n-dimensional vector x = [x1, . . . , xn] and the possible output

y = {−1, +1}. As seen in figure 2.1, the perceptron consists of n input nodes forming the

input layer.

These nodes transmit the n feature variables to the output node, considering the respective

weights w = [w1, . . . , wn], represented as edge weights in the figure. Finally the output

node delivers the prediction ŷ. Only the output node performs a calculation. This is done

by using the linear function w ·x =
∑n

i=1 = wixi. Finally we use the sign to calculate the

prediction ŷ:

ŷ = sgn(w · x) =
n

∑

i=1

= wixi. (2.20)

In this case the sign function serves as a so called activation function. Now we can use

the perceptron for binary classification. Consider a set of training data, each in the form

(x, y), where x contains the input variables and y is the observed value. In training, the

weights w of the perceptron are adjusted with respect to the error E(x). Each time the

error is not zero the weights are adjusted either into the positive or negative direction

depending on the error gradient.

2.2.1.1 Bias Unit

If we think about an example where the feature values are mean centred but the mean

of the class prediction is not zero, we need to add a bias to the perceptron. This bias
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Figure 2.2: A perceptron with an additional bias unit
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Figure 2.3: Linear separable (a) and not separable (b) data

shifts the activation function either to the left or right side. In other words, the bias is

a threshold which the weight input combination needs to surpass in order for the linear

function to output a +1. From an architectural perspective we add a bias neuron to the

input layer of the perceptron. This bias neuron x0 always emits x0 = 1 to the output

node. The actual bias is provided by the weight w0 on the edge from the bias neuron to

the output node, represented in figure 2.2.

Hence, we rewrite equation (2.20) to:

ŷ = sgn(w · x) =
n

∑

i=0

= wixi. (2.21)

From a representational point of view, the perceptron is a linear model. It represents

a hyperplane defined by w · x = 0. This linear hyperplane divides the set of training

examples into two sets, as seen in figure 2.3. For instances on the one side the perceptron

outputs +1. On the other side the output is -1. However, for some training sets, as seen

in figure 2.3 (b), the data can not be separated by a hyperplane. A set which can be

divided correctly by a hyperplane is called linearly separable.
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2.2.1.2 Perceptron Training Rule

Now that we have introduced the architecture of the perceptron we continue with the

learning of the weights in order to minimize the error E(x). Although many different

learning approaches for the perceptron exist, we will focus on two: the perceptron rule

and the delta rule as they are the most common.

For the perceptron rule we start with an randomly initialized weight vector w. We will

discuss the details of setting initial weights later on. After the initialization we iterate

through all training examples and apply the perceptron to each one. If a misclassification

happens, the weights of the perceptron are changed. This procedure is continued until

all available training examples are classified correctly. If weight change is necessary the

perceptron rule is applied. The belonging weight wi of the input xi is altered the following

way:

wi ← wi + ∆wi (2.22)

with

∆wi = η(y − ŷ)xi. (2.23)

The change of weight, defined by the difference of the perceptron estimation ŷ and the

target output y of the training example, is influenced by the learning rate η. The learning

rate indicates how strong the change of the weight is. Usually the initial learning rate

decays as training progresses further. If the data is linearly separable, the perceptron rule

converges in a finite number of iterations.

2.2.1.3 Delta Rule

If data is not linearly separable it may fail to converge. Therefore we introduce the

delta rule. This training rule still converges to an best fit approximation if the data is not

linearly separable. The space of possible hypotheses is searched through for weights which

provide the best fit to training data using gradient descent. For this case we consider a

single linear unit (i.e. a perceptron without threshold) providing the estimate ŷ as follows:

ŷ(x) = w · x (2.24)

Further we define the training error of the prediction considering a training set D:

E(w) =
1

2

∑

d∈D

(yd − ŷd)2 (2.25)
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with yd as target output of a training example d and ŷd as the prediction of the linear

unit for training example d. Within the resulting parabolic error surface of a linear unit

one single global minimum exits. Starting from an initial weight vector, gradient descent

alters this weights in each step. Each modification is performed towards the steepest

descent along the error surface until the minimum is reached. The steepest descent is

calculated by computing the partial derivative (i.e. the gradient) of E:

∇E(w) =

[

∂E

∂w0

,
∂E

∂w1

, . . . ,
∂E

∂wn

]

(2.26)

In this definition the ∇E(w) indicates the direction of the steepest step away from the

global minimum. Therefore the negative direction of∇E(w) provides the desired decrease.

With this knowledge we can express the training rule as:

w = w + ∆w (2.27)

with

∆w = −η∇E(w). (2.28)

The learning rate η defines the step size in a similar way as in equation (2.23). However

the representation in equation (2.28) is not suitable for representing a single step in an

algorithm. To achieve this we first express equation (2.28) in component form:

∆wi = −η
∂E

∂wi

(2.29)

as well as the weight update:

wi = wi + ∆wi. (2.30)

Now we simply perform the derivative:

∂E

∂wi

=
∂

∂wi

1

2

∑

d∈D

(yd − ŷd)2

=
1

2

∑

d∈D

∂

∂wi

(yd − ŷd)2

=
1

2

∑

d∈D

2(yd − ŷd)
∂

∂wi

(yd − ŷd)

=
∑

d∈D

(yd − ŷd)
∂

∂wi

(w · xd − ŷd)

∂E

∂wi

= (yd − ŷd)(−xid)

(2.31)
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In this derivation xid defines a single component of the vector xd of an training example

d. Now we can express the weight update in gradient descent as:

∆wi = η
∑

d∈D

(yd − ŷd)xid. (2.32)

Finally we can express the gradient descent rule as seen in algorithm 2.2. We start by

initializing the weights to small random values. In the main loop we receive the prediction

of the linear unit for each training example d and calculate ∆wi (c.f. equation (2.32)).

Finally each wi is updated according to equation (2.30). This algorithm finds the global

Algorithm 2.2 Gradient Descent

1: procedure gradient_descent(D, η) // D contains the training examples
in the form 〈x, y〉

2: w← [|x0|] // Initialize an array dependent on the input size
3: w.map{ |elem| elem← rand(0,1) } // Assign each element a random value

within [0,1]
4: while !stopping_criteria do
5: ∆w ← zeros(|x0|) // Initialize an array dependent on the input size

with zeros
6: for all 〈x, y〉 ∈ D do
7: ŷ ← linear_unit(x)
8: for all wi ∈ w do
9: ∆wi ← ∆wi + η(y − ŷ)xi

10: end for
11: end for
12: for all wi ∈ w do
13: wi ← wi + ∆wi

14: end for
15: end while
16: end procedure

minimum sooner or later if a decent small learning rate η is selected. Strategies like

reducing the learning rate as the training progresses will be discussed later on. However

some prerequisites for the usage of gradient descent exist. The hypothesis space must

contain continuously parametrized hypotheses and the error must be differentiable with

respect to the hypothesis parameters. These limitations result in practical issues like the

existence of more than one local minima. In this case it is not assured that gradient descent

converges towards the global minimum. Furthermore, the convergence can be laggard.

To overcome this issue a special variant called stochastic gradient descent exists. Instead

of applying the weight update after iterating through all training examples, the weights

are updated after each calculation of wi. Regarding algorithm 2.2 we simply remove the

for loop in lines 12 to 14 and replace the equation in line 9 with wi ← wi + η(y − ŷ)xi.
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Figure 2.4: Different activation functions

For we can define the error function of each distinct training example d as:

Ed(w) =
1

2
(yd − ŷd)2. (2.33)

Then stochastic gradient descent updates the weights for each training example according

to Ed(w), whilst iterating through all training examples d ∈ D. This method represents

an approximation to the initial approach with the error function E(w) and its respective

gradient. Another advantage of stochastic gradient descent is the smaller number of com-

putations performed per weight update. However, gradient descent may be used with a

higher learning rate as it utilizes the true gradient. As mentioned earlier, due to the usage

of different Ed(w) instead of one E(w) stochastic gradient descent is less vulnerable to

converge to a local minimum.

2.2.1.4 Activation Functions

When introducing the perceptron, we assumed the classification of binary data. For this

purpose the sign function was chosen as activation function as it fits this task. However,

situations might arise where other kinds of data need to be classified. We show different

kinds of activation functions in figure 2.4. We use these activation functions Φ(·) to
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Figure 2.5: A neuron broken down into pre-activation and post-activation value

abstract the perceptron to an arbitrary neuron. We start with the general definition of

the activation function:

ŷ = Φ(w · x) (2.34)

The computation of a neuron can be broken into two different parts. First the so called

pre-activation value is calculated by performing the dot product w · x. Afterwards, acti-

vation function Φ(·) is applied to the pre-activation value. This results is the output of

the neuron, the so called post-activation value. This breakdown is shown in figure 2.5.

Continuing with the different activation functions, the simplest one is the identity func-

tion:

Φ(v) = v (2.35)

This activation function does not provide any non-linearity and is used for real valued

target values. The sign function:

Φ(v) = sgn(v) (2.36)

was already introduced it in the beginning and it is suited for predicting binary target

values. However, the sign function is not differentiable. The sigmoid activation function:

Φ(v) =
1

1 + e−v
(2.37)

provides a probabilistic approach. It outputs a value in the interval [0,1]. The output

is interpreted as the probability that the target value is 1. Another function, the tanh

function, is similar in shape to the sigmoid function:

Φ(v) = tanh(v) =
e2v − 1

e2v + 1
(2.38)

This function is re-scaled to an interval [-1, 1] and is consequently used if additionally
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negative outputs are needed. Moreover it has beneficial features like a larger gradient,

which results in faster training, and it is mean centred.

In the past the sigmoid and tanh activation functions were seen as sate of the art choices

for applying non-linearity to a neuron. However, recently, functions which offer piecewise

linear activation became more popular. The functions ReLU:

Φ(v) = max {v, 0} (2.39)

and hard tanh:

Φ(v) = max {min {v, 1} ,−1} (2.40)

provide a derivative of 1 in a certain interval. If units using these functions operate within

this interval, the so called vanishing gradient problem occurs more rarely. The vanishing

gradient problem will be described later on in detail. Further, ReLU provides a gradient

which is faster to compute in respect to other activation functions.

2.2.1.5 Number Of Output Nodes

Next, we will cover deciding on the number of output nodes. This choice is tied to the

problem scenario. For example when classifying k different classes we can use k outputs

with a so called softmax activation function. Assuming the output nodes receive the input

v = [v1, v2, . . . , vk] softmax is defined for the ith element:

Φ(w)i =
evi

∑k
j=1 evj

. (2.41)

Softmax calculates for all k classes how likely the input can be assigned to that class.

Looking ahead to multi-layer networks, a common combination is a linear activation

function in the last hidden layer, followed by a softmax activated output layer. Softmax

has no associated weights as it only converts numbers into probabilities.

2.2.1.6 Loss Functions

On a final note we present some commonly used loss functions. The loss function should

be chosen based on the desired outcome or goal. The simplest possibility is a squared loss

of the form:

L = (y − ŷ)2 (2.42)

Another common loss type is hinge loss. It can be used for binary as well as real-valued

prediction. It is defined as:

L = max {0, 1− y · ŷ} (2.43)
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For example, this loss is used with least-square regression to predict numeric outputs. We

already introduced softmax as a probabilistic way to predict different classes or categories

of targets. Nevertheless, one could also use the identity function to assign probabilities

in case of a binary classification. In this case the output is a real valued number q. The

probability assigned to +1 and -1 is consequently q and 1−q. In this case the loss function

of choice is called logistic regression:

L = log(1 + e−y·ŷ) (2.44)

However, other loss function and activation functions would provide a combination suit-

able for this learning task. In general there are several approaches to achieve the same

results. Finally, we talk about using softmax for multi-way classification using a multi-

class perceptron. We consider k classes c(i) ∈ {1, . . . , k}. Training data is given in the

form of pairs 〈xi, c(i)〉, where xi refers to the d dimensional input and c(i) to the associ-

ated class of the ith training data pair. The perceptron predicts the class according to

the maximal probability according to the output of the softmax activation function:

P (r|xi) =
ewr·xi

∑k
j=1 ewj ·xi

(2.45)

where P (r|xi) denotes the probability that xi is of class r. Now the ith training set

gets assigned the loss function Li featuring cross-entropy. The cross-entropy refers to the

negative logarithm of the probability for a label c(i) given the input xi. Finally we recall

vc(i) = wc(i) · xi as the pre-activation value handed to the softmax node. Now we finally

derive the corr-entropy loss:

Li = − log [P (c(i)|xi)]

= −wc(i) · xi + log





k
∑

j=1

ewj ·xi





= vc(i)) +





k
∑

j=1

evc(i)





(2.46)

In the end the choice of loss function always depends on the specific task we want to learn.

2.2.2 Multi-layer neural networks

We continue with multi-layer networks. Recalling the architecture of the perceptron

at the beginning of section 2.2.1, this unit only consisted of an input and an output

layer, whereby only the output layer performs any computation. In this architecture the

calculations are completely visible to the user. Multi-layer networks, in contrast, contain

additional layer between the input and output layer. These layers are referred to as hidden
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Figure 2.6: A multi layer network without (a) and with (b) additional bias neurons

layers. The calculations within these layers are not visible to the user. In some cases the

input layer is not counted when describing multi-layer networks, as it does not take part

in the computation. Starting from the input layer the inputs are fed into the respective

subsequent layer in forward direction until the output layer is reached. Based on this

sequence, these type of networks are also referred to as feed forward-networks. From an

architecture point of view we need to define the number of hidden layers, the number of

nodes within the layers and the activation functions of the nodes. In a standard feed-

forward network all nodes of layer l are connected to the nodes of layer l + 1. Finally

the loss function to optimize must be defined. When predicting discrete values, a typical

choice would be cross-entropy loss with softmax as activation function in the output layer.

For predicting real values a good choice is squared loss combined with linear activation

in the output layer.

2.2.2.1 Architectural Possibilities

Bias neurons can also be used in multi-layer networks. In figure 2.6 two 3-layer networks

are depicted. The right one features bias neurons at each layer. Each layer has a di-

mensionality, set by the number of units it contains. The possible architectures for a

multi-layer network are manifold. The individual architecture is defined by the goal we

want to achieve with the network. For example, a binary like classification would call for

one node in the output layer. However, for classifying numbers from 0 to 9 we would use

ten output neurons, one for each possible digit. It is not necessary that two consecutive

layers are fully connected. In some cases removing connections results in better predic-

tions. Image recognition, for example, profits from these sparsely connected layers.
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2.2.2.2 The Backpropagation Algorithm

Now as we established the architecture of multi-layer networks, we will now discuss how

to train them. Training a multi-layer network comes with some challenges as the loss

of each layer depends on the previous layers. Therefore the so called backpropagation

algorithm is introduced. It computes the sum of local gradients along the paths through

the network. We start with deriving the algorithm in detail and then provide the procedure

in pseudocode form.

First we want the split the algorithm in two different parts, the first is the forward

propagation of the input through the network and the second, the backpropagation of

the error. In the forward part the input is given to the network which then computes its

values according to the current weights in each layer until the predictions is emitted form

the output layer. Then this output compared with the target given from the training

example is fed into the loss function. In the backwards phase the derivative of the loss

is computed based on the weights in the layers. The goal in this phase is to learn the

gradient of the loss function of the respective weights. Finally the weights are updated

backwards, starting from the output node based on the gradient.

We start with defining the loss function for our derivation. For simplicity we use a sigmoid

activation function combined with squared loss of training example h:

Lh(w) =
1

2

k
∑

l=1

(yl − ŷl)
2 (2.47)

The variable k denotes the number of possible classes y can be classified as. Therefore

equation (2.47) is the squared error summed over all output nodes. Now we can express

the gradient as ∂Lh

∂wj,i
. The variable xji denotes the ith input of the jth unit in a layer

and wji as the associated weights to this input. Further vj =
∑d

i=0 xjiwji expresses the

weighted sum of the input of unit j in a d dimensional layer. Now we rewrite the partial

derivative as:
∂Lh

∂wji

=
∂Lh

∂vj

∂vj

∂wji

=
∂Lh

∂vj

xji

(2.48)

We continue to derive the training rule from ∂Lh

∂vj
for the case j is an output node and the

case j is a node within a hidden layer. We start with the first case, that is j, an output

node. Considering, that vj influences the network through the output yj of the node j.

Consequently we can rewrite 2.48 to:

∂Lh

∂vj

=
∂Lh

∂ŷj

∂ŷj

∂vj

(2.49)
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First, we start with the left part:

∂Lh

∂ŷj

=
∂

∂ŷj

1

2

k
∑

l=1

(yl − ŷl)
2 (2.50)

We can set k = j as all derivatives except this one will be zero. This results in:

∂Lh

∂yj

=
∂

∂ŷj

1

2
(yj − ŷj)

2

=
1

2
2(yj − ŷj)

∂(yj − ŷj)

∂ŷj

= −(yj − ŷj)

(2.51)

Now we tackle the second part of equation (2.49). For this purpose we need the derivative

of the sigmoid function already presented in section 2.2.1.4:

dΦ(v)

dv
= Φ(v) · (1− Φ(v)) (2.52)

Therefore we express the right side as:

∂ŷj

∂vj

=
∂Φ(vj)

∂vj

= yj(1− yj)

(2.53)

If we now combine equation (2.51) and (2.51) we get:

∂Lh

∂vj

= −(yj − ŷj)ŷj(1− ŷj) (2.54)

Finally we can express the stochastic gradient descent rule for output nodes as:

∆wji = −η
∂Lh

∂wji

= η(yj − ŷj)ŷj(1− ŷj)xji (2.55)

Now we are left with the case, that the unit j lays within a hidden layer. In this case j

influences all subsequent units in the network which include the output of j in their input

combination. We denote this set of subsequent units as S(j). Now we find that vj can

only influence the network via the units within S(j). Further we define δi = −∂Lh

∂vi

. This
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leads to:
∂Lh

∂vj

=
∑

l∈S(j)

∂Lh

∂vl

∂vl

∂vj

=
∑

l∈S(j)

−δl

∂vl

∂vj

=
∑

l∈S(j)

−δl

∂vl

∂ŷj

∂ŷj

∂vj

=
∑

l∈S(j)

−δlwlj

∂ŷj

∂vj

=
∑

l∈S(j)

−δlwlj ŷj(1− ŷj)

(2.56)

Finally we can express −∂Lh

vj

as δj which results in:

δj = ŷj(1− ŷj)
∑

l∈S(j)

δlwlj (2.57)

Finally we can express the rule for stochastic gradient descent as:

∆wji = ηδjxji (2.58)

Algorithm 2.3 Gradient Descent

1: procedure backpropagation(D, η, nin, nout, nhidden1, . . . , nhidden,n)
2: nn ← initialize_network(nin, nout, nhidden1, . . . , nhidden,n)
3: while !stopping_criteria do
4: for all 〈x, y〉 ∈ D do
5: ŷ← nn.predict(x) // Forward propagation step
6: for all l ∈ nout do // Backpropagate the output units
7: δl ← ŷl(1− ŷl)(yl − ŷl)
8: end for
9: for all n ∈ [nhidden−1, . . . , nhidden,n] do // Propagate the hidden units

10: for all r ∈ n do
11: δr ← ŷr(1− ŷr)

∑

s∈S(j) wlrδs

12: end for
13: end for
14: ∆wji = ηδjxji

15: wji ← wji + ∆wji

16: end for
17: end while
18: end procedure

Now we continue to describe the algorithm in pseudocode and give some more insight to

the procedures. Algorithm 2.3 start by initializing a neural network with a predefined

architecture. Afterwards the network is trained until a certain stopping condition is met.
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Possible criteria are a fixed number of iterations, a specific error threshold the algorithm

needs to surpass or a rising error on a separate validation set. Within the main loop, for

each available training example, the network generates the predicted outcome according

to the input. For each output node l the error term δl is calculated according to equation

(2.54). The error term for the hidden units is not as straight forward because the neurons

cannot be linked to a specific prediction ŷ. To compute δr for a hidden neuron k we use

the error term δs of each neuron which is directly influenced by k. Meaning δk is computed

using all δs from the next deeper layer. After each processed training example the weighs

wji are adapted according to the computed errors.

2.2.2.3 Optimization Techniques

We will now present several common optimization techniques for neural networks follow-

ing [9]. These techniques fortify the presented backpropagation to get faster conversion

rates as well as better results.

Mini-Batch:

Currently we described batch learning, where the algorithm iterates over all available

training data and updates the weights accordingly. Secondly we described stochastic

gradient descent. In this method the algorithm performed a weight update after each

processed training example. Both methods have their respective disadvantages. Batch

learning is slow and vulnerable to local minima as well as saddle points. Stochastic gra-

dient descent is more expensive to calculate and due to the high frequent updates the

gradient becomes noisy. This on the one hand can avoid local minima but also makes it

hard to settle on the global minimum. Mini-batch utilizes a mix of both methods. The

training data is divided in different mini-batches of size n. In training the weights are

updated after each mini-batch is processed. This method combines the advantages of the

upper mentioned methods. It converges stably to the global minimum, it conserves the

computational resources and provides fast learning. The only downside is an additional

hyperparameter to be considered.

Input Scaling:

Consider a network with two different input nodes. The first node receives inputs in a

range [100,1000] and the second one within a range [0.001, 0.01]. In this setting the clas-

sifier has a hard time adjusting the weights accordingly as an error on the second input

parameter will go down under the huge error values provided by the first input. However,

the classifier should not distinguish between the different inputs and should value them

evenly. To overcome this issue we can normalize an standardize the data. Normalization

scales all inputs to fit into a range [0,1] and is done via min-max normalization. Consid-

ering a training set D we define xmax as the highest input value of the training set and
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xmin as the lowest. We then can use the min max normalization as follows:

xnorm =
xinput − xmin

xmax − xmin

(2.59)

where xinput is the original input value and xnorm its respective normalized one.

When using standardization we rescale the input to have the properties of a normal

distribution. We calculate the mean µx and the standard deviation σx of the given training

input to utilize the so called Z-score normalization:

xstd =
xinput − µx

σx

(2.60)

which results in the standardized value xstd for each training input. The training set

afterwards features the input values within a range [-1,1] with µ = 0 and σ = 1.

Number of Hidden Units

The number of input and output units is already predefined by the problem. The number

of input units however must be chosen. Generally the number of hidden units defines

the expressive power of the network and is therefore dependent of the learning problem.

Using too many hidden units might result in a higher likeliness of overfitting whereas with

to too few units the net can not adapt to the training data. A method to determine the

number of hidden units to use is to start with a large number and prune them afterwards.

Initializing Weights

Needless to say that if we would initialize the weights at 0 we would not be able to train at

all as of equation (2.55). We need to set the initial weights in a way that the training can

be fast as well as uniform. Meaning that all weights hit their desired value at the same

moment. We use a predefine probability distribution to initialize the weights randomly.

We chose a distribution of the form −w̃ < w < +w̃. If w̃ is set too high, the weights

might saturate much too early. Otherwise if they are chosen too low, the net activation

will be too small and tend to a linear model. For a hidden unit which gets input from

d input units the net activation will be w̃
√

d. Provided we use standardized inputs with

σ = 1. As our inputs range within -1 and 1 we also want our net activation to be within

this range. This results in w̃ =
1√
d

for the weights of the input units. Therefore we

initialize them randomly within − 1√
d

< wji < +
1√
d

. In a same way we can define the

interval for the weights between hidden units and output units which results in the inter-

val − 1√
nh

< wji < +
1√
nh

with nh as number of hidden units.

Learning Rate

The learning rate determines the speed we move towards the minimum. However this
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holds only if the learning rate is chosen sufficiently small enough to ensure convergence.

Since in practice the training is most likely not proceeded until the network converges to

the minimal training error the learning rate is relevant for the shape of the final network.

If during learning the training is slow or the loss is not reduced at all we might increase

the learning rate. On the other hand if the loss diverges the learning rate is too high. A

common practice is to reduce the learning rate as learning progresses.

Momentum

Momentum is used to overcome plateaus on the error surface. To use momentum the

weight update rule is altered to:

∆wji(n) = ηδjxji + α∆wji(n− 1) (2.61)

which represents a weight update during the nth iteration. The constant 0 6 α 6 1 is

called momentum. The second term in this equation, called momentum term, ensures

a constant movement of the gradient. Using this, the algorithm might overcome local

minima. Additionally convergence is faster because the algorithm has an increased step

size in regions with a similar gradient.

Early Stopping

During training it can happen that the network is trained to fit the training data rather

than the general data and its respective distribution. Therefore training should be stopped

before gradient descent is finished. A common method used is withhold a separate vali-

dation set and stop training once the error reaches a minimum on this set.

2.3 Deep Reinforcement Learning

Now we will resume with reinforcement learning, where we left off in section 2.1.6 at

function approximation using a linear function with feature weights w. The disadvantage

of this linear approach is that the linear function might not be sufficient to model the

action-value function we will use in this thesis. To overcome this, we can use a non-linear

function approximator like an MLP can be used [10].

In the recent years, breakthroughs were made using Deep Neural Networks (DNN) as

function approximation for deep reinforcement learning (DRL). DNNs are neural net-

works containing more than one hidden layer [11]. For the sake of completion we want to

note that many of these DRL approaches use different classes of DNNs such as Convo-

lutional Neural Networks or Recurrent Neural Networks. However, they are beyond the

scope of this thesis.

To utilize DRL we describe the deep-Q-learning algorithm. The basic idea of this al-
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gorithm is to save observed state transition in a so called memory replay and use this

data to train a DNN which predicts Q values based on possible actions. We describe our

implementation of this algorithm in detail in chapter 3.

This algorithm provides several advantages over the classical Q learning approach. First,

it provides a better usage of the data as we might use one data point in the replay memory

in several future weight updates for the DNN. The memory replay also allows the retrieval

of a random mini-batch containing uncorrelated state transitions [12].

2.3.1 Target Network

The above mentioned approach uses the same DNN to predict the Q̂ values of the current

and the next state. This happens when the network is trained on a transaction of a

retrieved mini-batch. This transaction contains a state st. We predict the Q̂t+1 estimate

of a proceeding state to determine the maximum possible Q̂t+1. We use this estimate and

the reward rt from the transition to find the maximum possible Qtarget value for the initial

state (see equation (2.14)). Once we performed this for all transitions within the mini-

batch, we utilize the DNN again to get the current prediction Qpredicted to then calculate

the error as difference to Qtarget and subsequently the loss.

This approach might lead to an instability during the training. To overcome this, we use

two DNNs: a main network, which we use to calculate Qpredicted and a target network for

Qt+1. The weights of the main network are updated every time a terminal state is reached

during exploration, while the target network is only updated after several iterations.
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3 Implementation

3.1 Deep Q-Learning Approach

3.1.1 Construction of the MDP

Based on section 2.1.2 we will now introduce our MDP model for the learning task.

Note that in the provided pseudocode x represents a vector or array and X a matrix.

Global configuration parameters are written in capital letters (e.g.: SOME_CONFIG).

An instance object is written as Object.

The result of the system analysis indicates that the role shift leader seems most suitable to

be used as an agent in our model. The shift leader is in charge of allocating the operators

to the related process steps. We identified the following agent actions:

• Send operators home early

• Make operators work longer

• Reallocate an operator

At the beginning of the shift, the shift leader is given a total operator pool O. Using the

actions stated above, the shift leader is able to manage his system with the given operator

pool at the current time interval Ot ⊂ O based on the current performance for each of the

|W | process steps and the incoming orders. Due to the possibility of sending operators

home the available operators o ∈ Ot can differ for different time intervals t.

Now we present our MDP modelled in order to represent the real life situation given in

section 1.2. For our model we distinguish between two state spaces S and S∗. S represents

the complex state space containing all given information. We use S for the simulation of

activity data (see 3.2) and calculation of the reward. S∗ is the compressed state space used

for training (see 2.1). S and S∗ are connected via the compression function h(S) = S∗.

This is done to reduce the amount of parameters the learning algorithm is confronted

with. However, as mentioned above, we want to use the more detailed information in

some cases.

Actions: A =
{

a1, . . . , a|A|

}

. These represent the actions identified in the beginning of

this section. Additionally an action representing doing none of the decisions mentioned

above is also included. This action can be used in case the current state is considered
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optimal by the policy. Further, the action astay is removed because its effect cannot be

mapped into the state space described later. This action will be depicted implicitly. The

default behaviour of a shift is altered to an artificial setting, where operators stay until

the end of the total workday, including overtime. Meaning per default all operators will

work a maximum of overtime if not actively sent home earlier. This leads to the following

action space:

• aleave(n) : Make n operators leave early

• anothing : Do nothing

• aswap(o, w) : Reallocate operator o to process step w

The amount of actions |A| varies depending on the current state. It is important to note,

that for an action aleave(n) only the amount of operators which will be sent home can be

chosen. This helps to reduce the amount of possible actions and is therefore beneficial for

the runtime of the training. This process is described in detail in section 3.2.2.2

States: S =
{

s1, . . . , s|S|

}

. Every state is defined by the current allocation αw,t of oper-

ators to process steps, the filling of the order buffers βw,t and the maximum throughput

γw,t at each process step. This results in s =
[

α1,t, . . . , α|W |,t, β1,t, . . . β|W |,t, γ1,t, . . . γ|W |,t

]

.

In regards to the allocation and the maximum throughput, recalling 1.2, it is important

to highlight that every operator has an individual skill set which defines the possible work

capacity for each process step. Therefore the allocation αw,t ⊂ Ot defines the available

work capacity at each process step w for a certain time interval t during the shift. We

define the work capacity at w provided by operator o as lw,o.

The maximum throughput γw,t for a process step w is defined as follows:

γw,t = max
Oi⊂Ot:mw,min6|Oi|6mw,max

∑

o∈Oi

lw,o (3.1)

The filling of the buffer βw,t = |Xw,t| is given by the amount of orders |Xw,t| the respective

buffer of process step w contains at the time interval t. Note that β1,t is always filled

directly by the incoming orders at the time interval t.

Regarding the compressed state space S∗ =
{

s∗
1, . . . , s∗

|S∗|

}

we continue by defining the

compression function h(S) = S∗. A compressed state is defined by the total available

work capacity ωw,t, the accumulated workload βw,t and the maximum throughput γw,t,

each for one process step w. We get ωw,t for a process step by adding up the possible

work output of each assigned operator:

ωw,t =
∑

o∈α

lo,w. (3.2)
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The maximum throughput γw,t and the buffer βw,t will not be compressed any further as it

is already defined by only one value per w. In total this leads to 3|W | parameters per state.

Rewards: We designed our reward function to return the profit gained after the end

of every interval t. The profit is calculated by comparing the achieved revenue with the

costs incurred. The profit is influenced by the total number of orders processed at the last

process step and therefore considered fulfilled. Hence we define β|W |,t as finished workload

on the last process step. The constant crevenue defines the revenue for a finished workload

equivalent to a single order of the amount one. Now the complete revenue can be stated

as:

revenue = β|W |,t ∗ crevenue. (3.3)

To calculate the profit, the revenue of the finished workload has to be reduced by the costs

for operators. For simplicity we define the cost per operator cnt during normal time for

t = 15min to be constant and independent of the individual operator o and their skills.

Therefore the total cost for |α| assigned operators is:

|α| ∗ cnt. (3.4)

Further, we define the additional costs for overtime in the same way using cot as additional

cost per operator per time interval:

|α| ∗ cot. (3.5)

This leads for the reward function r(s, a) to be defined as follows:

rt(s, a) = β|W |,t ∗ crevenue − |α| ∗ cnt − [|α| ∗ cot]ifovertime (3.6)

However, to provide better feedback and give priority to the completion of all orders we

add an additional penalty for not finished orders. Starting from one and a half hours into

overtime we calculate the penalty based on the total sum of remaining workload over all

given process steps. The constant cpenalty defines the penalty for a workload containing

only a single order of the amount of one:

penalty =
∑

w∈W

βw,t ∗ cpenalty (3.7)

This leads to the complete reward function:

rt(s, a) = β|W |,t ∗ crevenue − |α| ∗ cnt − [|α| ∗ cot]ifovertime −
∑

w∈W

βw,t ∗ cpenalty. (3.8)

Transition Probabilities: We now describe how a transition between two states hap-
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pens in our model. At first, depending on the action taken, operators are either shifted

from one process step to another, or a chosen amount of operators are removed from the

system (i.e.: sent home). Which operators are sent home is determined by their current

position in the leave priority cue. In our implementation the order of the operators in the

leave priority cue is set randomly before the start of the shift. Once the changes to the

operators assignments are carried out, the number of orders completed in a time interval

t is passed from the buffer of one process step to the corresponding buffer of the next

process step.

It is important to note that the number of orders at the first process step (i.e.: new in-

coming orders) are set randomly. The probability distribution that controls the number

of incoming orders is covered in section 3.2.

3.1.2 Q-learning with function approximation by an MLP

We will now use the model described above to outline the implementation of our rein-

forcement learning algorithm in detail. The implementation is inspired by [13] and [14]

and adapted to our needs. We used Python 3 with TensorFlow and Keras for the neural

networks supported by NumPy. The UML diagram in figure 3.1 provides an overview of

the classes used. After a short overview the detailed implementations are described.

• The ExplorationExploitationScheduler handles the balance between exploring

new actions and exploiting profitable ones.

• The MemoryReplay acts as a data storage for experienced transitions by the agent.

Further it returns the data in mini-batches which are used to train the neural net-

work

• The MLP provides the architecture for the neural networks.

• The Agent manages the upper three classes. It performs the actual learning by

calculating the loss and applying gradient descent to the network. It also updates

the target networks accordingly

• The TrainingLoop uses the Agent to train the neural network according to pre-

configured parameters

3.1.2.1 MLP

Based on the detailed explanation in section 2.1 we now propose our adapted neural

network. We decided to use an MLP over a Convolutional Network as it is a better fit

for our data. We also use a different network for each time interval t. This results in a

total of 49 different MLPs. Each one of these networks receives a compressed state s∗
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Name Value Description

MAX_IT 30× 106 Defines the maximum of total iter-
ations in training

MAX_EPISODE_LENGTH 1 shift
Defines the length of one training
episode

TOTAL_ITS_BETWEEN_EVAL 50× 103 Defines the number of iterations
in-between evaluations

EVAL_LENGTH 100 shifts
Defines how many shifts are evalu-
ated

TN_UPDATE_FQ 10× 103 Defines the frequency of target net-
work updates

ONLY_EXPL 50× 103 Defines how many iterations only
exploration takes place

GAMMA 1 Defines the discount factor

BATCH_SIZE 32 Defines the size of a mini-batch

LEARNING_RATE 0.0001
Defines the learning rate used for
Adam

DO_NOTHING_PREFERENCE 0.95
Defines the probability of anothing

during exploration

USE_TARGET_NETWORK True | False
Defines whether the agent uses the
target network for learning or not

C_PENALTY 90
Defines the penalty for unfinished
orders in overtime

Table 3.1: Configured hyperparamters for the training loop
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as input and is expected to output the value V (s∗). Based on those values the agent

calculates the respective Q-function in order to choose the action to take. To achieve

this we used a rather simple network architecture. In our model the input layer is a one

dimensional array containing the parameters of the compressed state defined in section

3.1. Then follows twice the combination of a hidden layer with 400 neurons with ReLU

activation followed by a batch normalization layer. The output layer has only one neuron

as the network is intended to output only the value of the final state. This final layer

uses a linear activation function. After establishing the layers, the network is compiled

for the Adam optimizer with the given LEARNING_RATE and using Huber loss. Using

the Huber loss has the advantage that it’s not as sensitive for outliers as a squared error

loss and is defines as follows:

Lδ(a) =











1
2
a2, for |a| 6 δ

δ · (|a| − 1
2
δ), otherwise

(3.9)

The Adam optimizer was used instead of the proposed RMSProp used by Google Deep-

Mind because Adam is less sensitive to different learning rates [15].

3.1.2.2 Exploration-Exploitation-Scheduler

In section 2.1.1 we already introduced the problem of choosing between exploration and

exploitation when taking actions. We will now address this challenge in detail and provide

possible solutions for it. A simple algorithm to control exploration and exploitation is

called ε-greedy policy. A random action is taken with probability ε and the action yielding

the maximum Q̂(s, a) value with probability (1− ε) .

We use ε-greedy with an varying ε. At first the agent only explores and ε is kept at

εinitial = 1.0. Then the agent starts to exploit more and more as ε is now decreased

linearly to εhalfway = 0.1. Finally ε decreases to εfinal = 0.01 according to [16]. The

decay of ε is shown in figure 3.2.

3.1.2.3 Memory Replay

The MemoryReplay functions as storage for training data. It stores state transitions, the

action that led to them and the received reward. The variable ntotal determines the max-

imum number of transitions that are stored. In our case ntotal was set to 106 records.

The parameter icurrent holds the number of transitions currently stored. This is needed to

determine the upper limit of the index which could possibly be returned. When saving a

new transition, inext specifies the next index to write to. As described in section 2.2.2.3

we use mini-batches to train the neural network. The size of these batches is set via

nbatch. From the transition we store the initial state st, a snapshot of the System object

before the action is taken and all possible actions apossible at this state. We do not store

Montanuniversität Leoben 37 Martin Roth, BSc.



RL for Decision Support Chapter 3. Implementation

10
5

10
6

10
7

Iteration

0.01

0.10

1.00

ε

ε-greedy annealing policy

Figure 3.2: Linear decay of ε over time

information like the subsequent state st+1 or the action taken explicitly as these are not

needed in our case as we are able to gain this information by using the saved System.

3.1.2.4 Agent

The Agent class combines all the classes above mentioned together. The proposed ε-greedy

policy is used by the method get_action(). In order to calculate ε the Exploration-

ExploitationScheduler is utilized to select an exploitative or an exploratory action.

When the choice is exploitation we try all possible actions at in the current state st

to find the best Q̂(s, a). To do so we must perform action a, observe the new state

st+1, predict V (st+1) and calculate Q̂(s, a) for all possible actions. Finally, we return the

action with the highest Q̂ estimate. However, if exploration is made and the action is

chosen completely random with no additional boundaries we might face a bad overall

distribution of states. This is caused by the action aleave(n) which limits the action

space of all following states. There is also only one action of doing nothing in contrast

to sending operators home early actions, as the amount of these actions scale with the

number of operators currently working in the System. To balance this inequality the

parameter DO_NOTHING_PREFERENCE was established. This parameters defines a

hard coded preference for the action anothing. Each time the agent chooses exploration a

second random number is generated. Only if this number is lager than the aforementioned

parameter the System is influenced by a randomly chosen action. Otherwise anothing is

Montanuniversität Leoben 38 Martin Roth, BSc.



RL for Decision Support Chapter 3. Implementation

Algorithm 3.1 Train the neural network

1: procedure learn(System)
2: vtrue ← []
3: St, systemt, Apossible ← replay_buffer.get_minibatch()
4: i← 0
5: while i <BATCH_SIZE do
6: st+1, rt, terminal← []
7: for all a ∈ Apossible[i, :] do
8: st+1, rt, terminal← system[i].get_next_state_save(a)
9: rt << (rt)

10: st+1 << (rt)
11: terminal << (terminal)
12: end for
13: if USE_TARGET_NETWORK then
14: vt+1 ← target_nn.predict(st+1)
15: else
16: vt+1 ← main_nn.predict(st+1)
17: end if
18: vtrue << max(rt + GAMMAvt+1(1− terminal)
19: i← i + 1
20: end while
21: vpred ← main_nn.predict(st)
22: error← vpred − vtrue

23: loss← Huber(vpred, vtrue)
24: main_nn.apply_gradients(loss)
25: return loss, error
26: end procedure

chosen.

The method predict() utilizes the respective neural network to predict the value based

on the input state.

Finally the method learn(System) retrieves a mini-batch and trains the main network

as seen in algorithm 3.1. Note that every mini-batch represents the System in a certain

time interval t. First the algorithm retrieves a mini-batch from the MemoryReplay. The

mini-batch is processed by two loops. The outer loop iterates through the batch itself.

The inner loop selects each possible action which can be taken by the current System of

this mini-batch. Each of these possible actions is taken and the resulting state st+1 as

well as the reward rt are received. The value of state st+1 is predicted by the network.

For each sate of the batch the value Vt is calculated as:

Vt = rt + max Vt+1 (3.10)

The Agent can either use the target network to predicts Vt+1 or the main network. Addi-

tionally, Vt+1 is set to zero in the case that st+1 is the terminal state of the System. The
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main network is then used to predict the values Vpred for the respective states st in the

mini-batch. Now the error for each predicted value Vpred can be calculated:

error = Vpred − Vtrue (3.11)

Finally, we utilize the Huber function to compute the total loss of the predictions on

the mini-batch based on the error. The loss is utilized to apply gradient descent on the

current main network to adapt the weights within.

3.1.2.5 Training Loop

The class TrainingLoop is the core element of the learning algorithm and brings all classes

mentioned before together. It is initialized with a System and an Agent containing the

main network, target network, MemoryReplay and ExplorationExploitationScheduler.

The state number icurr is set to 0. The method run() represents the main method of the

entire learning algorithm (see algorithm 3.2). The main loop, in which the whole training

is embedded, runs until the pre-configured limit is reached, (see table 3.1.2 for details on

configured parameters). Within this loop, the training is divided into epochs. Each epoch

contains a pre-configured number of episodes. The System is reset at the beginning of each

episode. An episode lasts until the end of a shift. At each iteration of an episode an action

at is chosen and performed. The received transition is then stored in the MemoryReplay.

If one of the configured update frequencies is reached, the main network is trained or

the weights of the target network are updated. These updates are only performed after

the initial phase of total exploration. At the end of each epoch the algorithm evaluates

the current network. For evaluation the same procedure of receiving an action, taking it

and saving the reward. This is repeated until the configured evaluation iteration limit is

reached. After each evaluation loop the evaluation results are displayed.

3.2 Simulation

This section will describe the implementation of a simulated system used in this thesis, as

described in section 1.2. At first we give a brief explanation why an extensive simulation

is used. Then the implemented simulation is described in more detail.

3.2.1 Why Simulation is Needed

The process of training a reinforcement learning policy necessitates data in the form of

state transitions. The first intuition might be to generate the data upfront and feed it to

the system during training. With this approach the data would also be extendable with

data collected from a real life situation. However, this method has disadvantages which
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Algorithm 3.2 The Training Loop
1: procedure run

2: icurr ← 0
3: while icurr < MAX_IT do
4: iepoch ← 0
5: while iepoch < TOTAL_ITS_BETWEEN_EVAL do
6: System.reset()
7: while True do
8: at ← Agent.get_action(s, System)
9: st+1, rt, terminal← System.perform_action(at)

10: icurr ← icurr + 1
11: iepoch ← iepoch + 1
12: iepisode ← iepisode + 1
13: Agent.add_experience(st, System, apossible)
14: if terminal && Agent.replay_buffer.size > ONLY_EXPL then
15: Agent.learn()
16: end if
17: if icurrmod TN_UDPATE_FQ == 0 &&icurr >ONLY_EXPL then
18: Agent.update_target_network()
19: end if
20: if terminal then
21: break
22: end if
23: end while
24: end while
25: System.reset()
26: rsum ← 0
27: terminal ← False
28: reval ← []
29: while ieval < EVAL_LENGTH do
30: at ← Agent.get_action(System)
31: _, rt, terminal← System.perform_action(at)
32: rsum = rt + rsum

33: if terminal then
34: reval << rsum

35: System.reset()
36: rsum ← 0
37: terminal ← False
38: break
39: end if
40: end while
41: reval ← mean(reval)
42: print reval

43: end while
44: end procedure
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would artificially limit the reinforcement learning policy. Depending on the amount of data

and the algorithm used to generate it, the agent will take actions which lead to states not

present in the data. This is also a key disadvantage which rules out training only on real

life data. In real life only data of one specific way of handling the system would be present.

However, the reinforcement learning policy also needs data apart form this given way to

learn a good strategy. Therefore, a simulation which communicates dynamically with

the reinforcement learning policy was chosen. The main functionality of this simulation

is to receive an action and calculating the resulting state. The simulation also handles

the reward calculation and the initial assignment of the operators at the beginning of

the shift. These details of this simulation are presented in the following chapter. The

simulation was designed to be as general as possible in order to be able to be reused in

future experiments.

3.2.2 Simulation Approach

3.2.2.1 Initialization

The simulation is initialized with several parameters. First the simulation is given an order

simulation object which generates orders based on an predefined probability distribution.

The order generation and its options are presented in more detail in the subsection 3.2.3.

For now we can view the order generation as an object that outputs an array containing

the incoming orders for each time interval t. The next initialization parameter is a matrix

Mminmax containing information about the minimum and maximum assignable operators

per process step in the system:

Mminmax =











m1,min m1,max

...
...

m|W |,min m|W |,max











(3.12)

where |W | is the number of process steps the system contains. Next the maximum oper-

ator performance for each operator and process step defined as matrix:

Lperf =

















l1,1 l1,2 · · · l1,|W |

l2,1 l2,2 · · · l2,|W |

...
...

. . .
...

l|W |,1 l|W |,3 · · · l|W |,|O|

















(3.13)

using the already proposed notation lw,o for the performance of an operator o at process

step w. The input array times represents the length of the normal sift and the overtime:
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times =





timesnt

timesot



 (3.14)

where timesnt describes the duration of the normal time and timesot the duration of the

overtime of a shift. Finally the cost and revenue parameters are defined as follows:

c =











cnt

cot

crevenue











(3.15)

whereas cnt describes the cost of an operator for a time interval during normal time and

cot the cost during overtime.

Now we continue with the actual initialization of the simulated system. First, an array

representing the leave priority queue is created. The leave priority is used to determine

which operator should be send home next if a aleave(n) action is taken. Therefore, the leave

priority queue contains all operators in a random order. The simulation then performs

an initial assignment of the given operators to the process steps. We start with a simple

assignment where we loop |O| times through the process steps and assign the operator

with the highest performance to the respective process step. Then, the assigned operators

or rather their performance is summed to determine the total workforce available at each

process step. This represents half of the values of the state space. To get the other half we

call the order simulation to generate an order array. The first order is then immediately

pushed into the buffer of the first process step completing the initial state of the system.

Finally, the remaining shift time is set according to the respective input parameter.

3.2.2.2 State and Action Management

As mentioned before the core functionality of the simulation is the calculation of a new

state based on an action input. The procedure starts by determining which kind of action

needs to be executed. If an action aleave or aswap is chosen, the assignment is changed

accordingly. Either an operator and its performance are moved from one process step to

another or the chosen amount of operators are removed entirely from the system. The

simulation then performs the actual state transition. First, each process step outputs the

amount of processed orders which are then either put into the buffer of the subsequent

process step or counted as finalized workload (if the last process step is passed). Then the

new orders are populated as orders into the buffer of the first process step. Afterwards

the reward is calculated based on the finished orders and the costs incurred as described

in paragraph 3.2.2.3. The algorithm continues by checking if the shift has ended. If so, a

variable trerminal is set to true. Otherwise the remaining shift time is reduced. Finally

the system sets the resulting state by performing the chosen action as current state.
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The system can then output all actions that can be taken with respect to the current

state. Assuming the current state is not a final one the logic works as follows:

• aleave(n) : This action set provides the availability to sent home any amount of

operators that are currently present.

• anothing : This action is available anytime without any further constraints.

• aswap(o, w) : This action is only available within the given constraints of Mminmax.

Meaning if a process step only has mw,min operators currently assigned no operator

can be removed. Consequently, if already mw,max operators are assigned, no further

operators can be assigned to this process step.

A system in a terminal state supports no further actions.

3.2.2.3 Reward Calculation

The calculation of the reward for a performed state transition is also an essential feature

of the simulation as it provides direct feedback to the reinforcement learning policy about

the chosen action. The reward function is already defined in equation (3.8). To recap

the reward is calculated by subtracting the operator cost for normal time and overtime

from the generated revenue by finalized workload. After a configured amount of time into

overtime an additional penalty is subtracted for not completed workloads.

3.2.2.4 Cloning and Resetting

The System is used throughout the whole training process, therefore it must be a reset

upon reaching a terminal state. The reset triggers a new initialization. If a probabilistic

order generation is enabled, new orders are generated accordingly. The leave priority as

generated new at random.

3.2.3 Order Generation

The order generation method was already briefly mentioned in the section above. Now

we give a more detailed explanation on how the order influx is generated. The basic

behaviour we wanted to simulate are orders that come in early at the beginning of the

shift. To achieve this behaviour a Poisson distribution was chosen to simulate the incom-

ing orders. The Poisson distribution is generally used to determine the number of events

within an interval. The distribution uses the mean value λ to determine the amount of

events denoted as k. Figure 3.3 shows distributions for different values of λ and their

associated event distribution.
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Figure 3.3: Poisson Distribution with different values of λ

In our implementation we wanted to use a fixed amount of orders and distribute them

over several time intervals. We initialize the order generation with a constant |X| which

determines the total order influx over the whole shift and λ to configure the Poisson

distribution. As seen in algorithm 3.3 we then simply loop |X| times and assign orders

of the amount one to this time interval according to the probability distribution. This is

repeated until |X| is reached. The order generation then outputs the array o, containing

the orders for each time interval of the shift.

Algorithm 3.3 Generate Order

1: procedure get_orders(λ, |X|)
2: x← []
3: for all i← 1, |X| do
4: x← poisson(λ)
5: if x 6 |X| then
6: x[i] ← x

7: |X| ← |X| − x

8: else
9: x[i] ← |X|

10: |X| ← 0
11: end if
12: end for
13: return o

14: end procedure
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4 Validation and Results

This chapter will give an overview, how we will validate our proposed reinforcement

learning approach. The validation will be based on comparison against an upper and

a lower bound. The upper bound will be used to measure the calculated results of the

proposed reinforcement learning policy against will be provided by a linear program. The

linear program will set the optimistic optimum. However, we will not be able to model

certain points of the system like for example the startup behaviour with this approach.

For the lower bound a naive algorithm to control the system is proposed. We want to

show that it is worthwhile to utilize the reinforcement learning policy, although it is more

effort than a simple heuristic. After describing the upper and lower bound in detail, we

will describe the results for different scenarios that are used to validate the reinforcement

learning policy. As these scenarios are based on real-life scenarios encountered during

warehouse operations, they are a valid test to estimate the feasibility of our proposed

reinforcement learning approach.

4.1 Upper Bound: Linear Program

We briefly introduce the concept of linear programming. The general problem for an

instance of linear programming is defined by a matrix A ∈ R
m×n and the column vectors

b ∈ R
m and c ∈ R

n. The goal is to find a column vector x ∈ Rn that maximizes c⊤x while

Ax 6 b. Note that c⊤x denotes the scalar product of the vectors. For vectors the notation

x 6 y means that the inequality holds for each component within x and y. A linear pro-

gram can be simply written as max {cx : Ax 6 b}. A vector x with Ax 6 b is a feasible

solution for the linear program. An optimal solution is considered a feasible solution that

obtains the maximum. However, a linear program does not have a feasible solution if it

is infeasible. A linear program P is infeasible if i.e. P := {x ∈ R
n : Ax 6 b} = ∅. The

most common algorithm to solve a linear program is called simplex-algorithm. However,

given the scope of the current thesis, we will not discuss the detail of how the simplex

algorithm or others work [17].
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4.1.1 Definition of the Linear Program for Validation

We designed our linear program to minimize the total labour costs by using objective

function:
|O|
∑

i=0

|W |
∑

j=0

(xi,j + x′
i,jcot) (4.1)

where xi,j denotes how long an operator i works on process step j during normal time.

As a result an operator who works the whole normal shift creates at total cost of 1.

Equivalently x′
i,j defines the amount of work done in overtime. The parameter |O| defines

the total amount of operators available and |W | the total number of process steps. The

resulting costs are increased by a constant parameter cot. We continue by defining the

problem constraints. First we need to limit the total working time of operator i over all

process steps to 1:
|W |
∑

j=0

xi,j 6 1 (4.2)

In the same way we limit the presence for overtime to 0.5, as overtime lasts only half as

long:
|W |
∑

j=0

x′
i,j 6 0.5 (4.3)

We continue by defining

o =

















o1

o2

...

o|W |

















(4.4)

as order influx were oj represents the amount of orders for process step j. Note that due

to the fact that we want to emulate a linear system each order amount must be the same:

o1 = o2 = ... = o|W |. Now we introduce one boundary for each process step which ensures

that at each process step all orders are completed:

|O|
∑

i=0

xi,1li,1 + x′
i,1li,1 > o1

|O|
∑

i=0

xi,2li,2 + x′
i,2li,2 > o2

...

|O|
∑

i=0

xi,|W |li,|W | + x′
i,|W |li,|W | > o|W |

(4.5)

In this equation li,j denotes the total performance an operator i at process step j can

provide for the whole shift. This definition is different from previous one, where this
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performance was always related to a certain time interval within a shift. We conclude our

linear program by adding the non-negative conditions:

xi,j, x′
i,j > 0 ∀i∈{0,...,|O|},∀j∈{0,...,|W |} (4.6)

The implementation of this linear program was done using AMPL. The chosen solver was

MINOS [18].

As we now see, using this approach we cannot depict the system in the exact same way

as with the simulation presented in section 3.2. The linear program does not feature

probabilistically distributed orders, as all orders are present within the constraints in

equation (4.5) at the beginning. Further the linear program is not faced with the start

up behaviour as the reinforcement learning policy. For the linear program, work at each

process step can start immediately at the beginning. Whereas due to the linearity of the

process steps an order can only be finished after |W | time intervals, when the first order

can possibly reach the last process step. Therefore its not expected from the reinforcement

learning policy to achieve a result as good as the linear program. However, to evaluate

the efficiency of the reinforcement learning policy we are interested how close its results

come to the optimistic optimum set by the linear program.

4.2 Lower Bound: Naive Algorithm

To get a justification for the effort of training the reinforcement learning policy we design

a simple naive algorithm to control the system. If the trained policy performs worse than

the lower bound set by this naive algorithm, we will be able to tell that it would not

be worth the effort to solve this assignment problem with the proposed reinforcement

learning policy.

For the naive algorithm we start with the initial assignment as already describe in section

3.2.2.1. For shifting operators we shift an operator from the process step wsmallest with

the smallest buffer to the process step whighest with the largest one. The operator which

has the highest working capacity on whighest is chosen to be taken away from wsmallest. If

at a process step the buffer runs empty and no more orders are expected to arrive we first

try to shift these operators to other process steps still having capacity for more operators.

Once this is not possible anymore, we send all operators assigned to this process step

home.
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w\m mmin mmax

w1 0 6
w2 0 6
w3 0 6
w4 0 6
w5 0 6

Table 4.1: Scenario 1: Process step capacities

4.3 Validation Scenarios

4.3.1 General Remarks

We will always use a shift length of 480 minutes and 240 minutes of overtime. When

using intervals of 15 minutes, this results in 32 intervals in normal time and 16 intervals

in overtime, totalling 48 intervals.

During training we save all MLPs during the evaluation phase. Once the training is

completed, we will use the model yielding the highest mean evaluation reward for further

analysis. However, we want to emphasise, that the validation will always be performed

on newly generated test data. Further, we might stop training earlier if the evaluation

reward does not improve anymore over several training episodes.

4.3.2 Validation Scenario 1: Target VS Main Network

For the first experiment we crated a scenario with a high order influx concentrated at the

beginning of the shift. We loaded so many orders, that they were only able to be processed

completely just before the end of the shift. Further we trained twice. One agent uses only

the main network (see section 3.1.2.4). The other agent uses an additional target network.

We used this approach to check whether using a target network has an influence on the

convergence and stability during the training or not. Further, we wanted to get a proof

of concept and check how our network performs against the proposed linear program and

the naive algorithm.

Process Steps:

As seen in table 4.1, our system contained five process steps. On each process step six

people can work in parallel at once. Further, it is also possible to remove all assigned

operators from the process step.

Operators:

The system featured 20 operators. The possible work capacity at each process step fol-

lows a specific pattern. Each operator has one process step which is considered his main

process step. There he is able to process 0.2 orders in 15 minutes. Further, he has another

process step where he can provide 90% of the work capacity of his main process step. For

Montanuniversität Leoben 49 Martin Roth, BSc.



RL for Decision Support Chapter 4. Validation and Results

o\w w1 w2 w3 w4 w5

o1 0.2 0.18 0.1 0.1 0.1
o2 0.2 0.1 0.18 0.1 0.1
o3 0.2 0.1 0.1 0.18 0.1
o4 0.2 0.1 0.1 0.1 0.18
o5 0.18 0.2 0.1 0.1 0.1
o6 0.1 0.2 0.18 0.1 0.1
o7 0.1 0.2 0.1 0.18 0.1
o8 0.1 0.2 0.1 0.1 0.18
o9 0.18 0.1 0.2 0.1 0.1
o10 0.1 0.18 0.2 0.1 0.1
o11 0.1 0.1 0.2 0.18 0.1
o12 0.1 0.1 0.2 0.1 0.18
o13 0.18 0.1 0.1 0.2 0.1
o14 0.1 0.18 0.1 0.2 0.1
o15 0.1 0.1 0.18 0.2 0.1
o16 0.1 0.1 0.1 0.2 0.18
o17 0.18 0.1 0.1 0.1 0.2
o18 0.1 0.18 0.1 0.1 0.2
o19 0.1 0.1 0.18 0.1 0.2
o20 0.1 0.1 0.1 0.18 0.2

Table 4.2: Scenario 1: Work capacity of the operators

the remaining process step the operator has a working capacity of 50% compared to the

main process step. We designed our operators so that for every process step there are

four operators with a working capacity of 100% and four with a working capacity of 90%.

Further details on the operators can be found in table 4.2.

Cost Parameters:

The costs for an operator is 0.12 per 15 minute interval. During overtime the costs are

doubled to 0.24. A revenue of 25 is earned for each completed order.

Order Influx:

The probabilistic order arrivals are modelled with a Poisson distribution as described in

section 3.2.3 using λ = 4. A total order influx of 22 orders is configured. This order

amount is chosen based on the fact that if we consider an equally distributed order as-

signment at each process step, 0.8 orders can be processed within one time interval. To

process all orders 27 time intervals are needed. However, if we additionally consider that

it takes five time intervals for an order to be completed from start to finish we can expect

all orders to be finished after 32 time intervals. Based on this approximation all orders

can be finished just in the 32 intervals of normal shift time without the need to transition

to overtime.
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Figure 4.1: Scenario 1: Predicted cumulative reward for each time interval during training
process using only the main network

4.3.3 Results Scenario 1: Target VS Main Network

Now we present the results of the experiment described in section 4.3.2. We trained the

two reinforcement learning policies as described above.

4.3.3.1 Training

In the figures 4.1 and 4.2 we show the progress during training with respect to the pre-

dicted accumulated reward at every time interval t during a shift. When comparing the

data, one can clearly see, that using a target network provides additional stabilization.

In the target network the lines representing the expected rewards are smoother and more

stable over several evaluations. The figures 4.3 and 4.4 show the predicted cumulative

reward in detail for the best performing network respectively. In figure 4.4, which corre-

sponds to the approach using the target network, the three different parts of a shift can

be clearly differentiated. In the first part, from the the initial start until the first order

is completely processed, the expected reward rises only slightly. This is caused by the

personnel costs, which result in a negative reward. Once the first orders are completed,

the line is decreasing constantly, as the orders are processed and the remaining possible

reward lowers. Once all orders are processed, the operators are released and no further

reward is expected. The line flattens out again. In the figure 4.3, corresponding to the
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Figure 4.2: Scenario 1: Predicted cumulative reward for each time interval during training
process using the target network

main network, we see that the first part was not predicted as good as using the additional

target network. First we see, that the cumulative reward falls and then rises again before

it changes into a steadily falling line. Further we can observe, that using the target net-

work at the beginning the prediction of the reward was correctly at approximately 475

while the prediction using only the main network was underestimating the reward.

Figure 4.5 shows the reward received during evaluation for each reinforcement learning

policy respectively. The training of the reinforcement learning policy using only the main

network was stopped after approximately 5× 106 iterations. This was done as the reward

stalled for nearly 1×106 iterations as can be seen in figure 4.5. For the sake of comparison

we trained the reinforcement learning policy using the additional target network for the

same amount of iterations although it converged even faster. Using the main network,

the highest achieved evaluation reward was 475.3 after 4.5 × 106 iterations. Adopting

the target network the highest achieved evaluation reward was 476.5 after 4.85 × 106

iterations. For further analysis we will use the networks at the point of achieving the

highest evaluation reward respectively.
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Figure 4.3: Scenario 1: Predicted cumulative reward of the best performing network using
only the main network
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Figure 4.4: Scenario 1: Predicted cumulative reward of the best performing network using
an additional target network
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Figure 4.5: Scenario 1: Comparison of mean evaluation rewards during training

4.3.3.2 Result

The final evaluation is performed after the training on newly generated orders and leave

queues. We evaluate each reinforcement learning policy for 100 shifts and average the

result. Further we utilize the linear program from section 4.1 and the naive algorithm in

section 4.2 to compare our results.

The reinforcement learning policy using only the main network generated an average re-

ward of 475.4 while the policy using an additional target network achieved a reward of

476.5. Therefore, the difference between those two approaches was 1.1 or 0.2%. If we

compare this difference to the operator cost it is equivalent to the saving the cost of 9.2

operators within one time interval or the cost of one operator working for 137 Minutes.

Therefore we will consider using a target network for further scenarios.

If we compare the better of both results to the lower bound, we see that the reinforcement

learning approach achieved a total of 18.9 or 4.1% more reward than the naive algorithm.

In operator context this refers to the saved cost of 4.92 operators working a normal shift

without overtime. Note that the naive algorithm was also evaluated for 100 runs using

the mean value as final result. Finally in contrast to the upper bound given by the linear

program, reinforcement learning gained a 1.35% smaller reward by 6.5 in total. However

this was expected due to the limitations of the linear program mentioned in section 4.1.1.
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Figure 4.6: Scenario 1: Achieved rewards comparing main network and target network

4.3.4 Validation Scenario 2: Existing Network with different

Operators

The first validation scenario featured a fixed set of operators and competences as can be

seen in table 4.2. However, it is much more common in day to day warehouse operation

scenarios, that the set of available operators varies from time to time. We therefore tested

the already trained network from scenario 1 using different sets of operators. For the first

set we reduced the overall working capacity to 90% compared to the capacity used in

scenario 1. This results in an operator set as depicted in table 4.3.

At the same time, we are also interested in investigating how the network reacts if the

working capacity of the operators is increased. Therefore, we also introduce an operator

set with 150% working capacity compared to scenario 1. The details can be seen in table

4.4.

4.3.5 Results Scenario 2: Existing Network with different Operators

The reinforcement learning policies as well as the naive algorithm were evaluated for 100

shifts. For the first test, using operators with 90% working capacity compared to scenario

1, the network seemed to adapt well and a reward of 465.3 was achieved sd er can see

in figure 4.7. In comparison to the naive algorithm, which produced a reward of 431.0,
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o\w w1 w2 w3 w4 w5

o1 0.18 0.162 0.09 0.09 0.09
o2 0.18 0.09 0.162 0.09 0.09
o3 0.18 0.09 0.09 0.162 0.09
o4 0.18 0.09 0.09 0.09 0.162
o5 0.162 0.18 0.09 0.09 0.09
o6 0.09 0.18 0.162 0.09 0.09
o7 0.09 0.18 0.09 0.162 0.09
o8 0.09 0.18 0.09 0.09 0.162
o9 0.162 0.09 0.18 0.09 0.09
o10 0.09 0.162 0.18 0.09 0.09
o11 0.09 0.09 0.18 0.162 0.09
o12 0.09 0.09 0.18 0.09 0.162
o13 0.162 0.09 0.09 0.18 0.09
o14 0.09 0.162 0.09 0.18 0.09
o15 0.09 0.09 0.162 0.18 0.09
o16 0.09 0.09 0.09 0.18 0.162
o17 0.162 0.09 0.09 0.09 0.18
o18 0.09 0.162 0.09 0.09 0.18
o19 0.09 0.09 0.162 0.09 0.18
o20 0.09 0.09 0.09 0.162 0.18

Table 4.3: Scenario 2a: Work capacity of operators

o\w w1 w2 w3 w4 w5

o1 0.3 0.37 0.15 0.15 0.15
o2 0.3 0.15 0.37 0.15 0.15
o3 0.3 0.15 0.15 0.37 0.15
o4 0.3 0.15 0.15 0.15 0.37
o5 0.37 0.3 0.15 0.15 0.15
o6 0.15 0.3 0.37 0.15 0.15
o7 0.15 0.3 0.15 0.37 0.15
o8 0.15 0.3 0.15 0.15 0.37
o9 0.37 0.15 0.3 0.15 0.15
o10 0.15 0.37 0.3 0.15 0.15
o11 0.15 0.15 0.3 0.37 0.15
o12 0.15 0.15 0.3 0.15 0.37
o13 0.37 0.15 0.15 0.3 0.15
o14 0.15 0.37 0.15 0.3 0.15
o15 0.15 0.15 0.37 0.3 0.15
o16 0.15 0.15 0.15 0.3 0.37
o17 0.37 0.15 0.15 0.15 0.3
o18 0.15 0.37 0.15 0.15 0.3
o19 0.15 0.15 0.37 0.15 0.3
o20 0.15 0.15 0.15 0.37 0.3

Table 4.4: Scenario 2b: Work capacity of operators
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Figure 4.7: Scenario 2a: Decreased operator working capacity to 90% on trained network

the reinforcement learning policy achieved a 7.4% higher reward. This is an even bigger

difference than in the first scenario on which the network was initially trained on. In

comparison to the linear program the reinforcement learning policy achieved on average

11.4 or 2.4% less reward. Hence overall the reinforcement learning policy adapted quite

well wo the new operator set.

However, the policy was not able to adapt to the operator set with higher working capaci-

ties. Looking at figure 4.8 we see that the average reward of 476.2 achieved on this set was

the same as in the first scenario. To better understand the reasoning behind these differ-

ences, we looked at the actions taken by the reinforcement learning policy in detail. The

results show that the reinforcement learning policy did not send operators home earlier

although all orders were already processed. In comparison, the naive algorithm achieved

an average reward of 491.8 in scenario 2 with 150% working capacity, outperforming the

reinforcement learning policy by 3.2%. Looking at the upper bound, the linear program

earned 29.8 more reward in total, surpassing the pre trained network by 6.1%. In this

case, the reinforcement learning policy was not able to adapt to the new conditions at all.

This happened as the neural network learned that these operators take longer to finish

all orders.
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Figure 4.8: Scenario 2b: Increased operator working capacity to 150% on trained network

4.3.6 Validation Scenario 3: Retraining with Higher Workload

As we saw in the previous scenario the reinforcement learning policy did not adapt well

to the operator set presented in table 4.4. We therefore investigated if we could achieve

a better result when retraining the network. In this scenario we only used the target

network as it produces more promising results and converged faster in scenario 1. All

other parameters were kept the same as in the first two scenarios.

4.3.7 Results Scenario 3: Retraining with Higher Workload

4.3.7.1 Training

The predicted accumulated reward over the shift time figure 4.9 shows as similar result

as in scenario 1. The estimated reward at the beginning of the shift settled after approx-

imately 2 × 106 iterations and did not fluctuate anymore. Looking at figure 4.9 we can

see, that the orders are now finished faster and therefore the operators can be sent home

earlier compared to scenario 1.

The same behaviour can be observed in figure 4.10. For the first 2 × 106 iterations, the

evaluation reward increased. For the remaining iterations the reward did not improve

anymore, so the training was stopped. For further evaluation we again selected the best

performing network during training. This was the network at 2.45× 106 iterations.
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Figure 4.9: Scenario 3: Evaluation reward during training

4.3.7.2 Results

When using the best performing training network from scenario 3 and using 100 newly

generated order distributions, we were able to achieve an average reward of 498.3. Com-

pared to the result in scenario 2b, this is an improvement of 22.1 or 4.5% of the average

reward. When comparing this result to the naive algorithm, the best performing rein-

forcement learning algorithm achieved, on average, a 6.5 or 1.3% higher reward. This is

in stark contrast to the greater difference (18.9 points) between the naive and the best

performing reinforcement learning algorithm in Scenario 1. This difference is most likely

explained by the premise set for scenario 1. There we set out to investigate the perfor-

mance when operating at the threshold between normal time and overtime. In Scenario

1 the naive algorithm performed poorly and dragged the system into overtime, which in

consequence, led to higher operator cost, and therefore a lower reward.

Lastly we compare the new policy learned for scenario 3 against the upper bound. This

policy was able to produce 7.7 or 1.5% less reward on average.

In the context of operator cost, this approach saves the amount of 5.75 operators working

a whole shift, compared to the approach of scenario 2. Compared to the naive algorithm

the equivalent of 1.7 operators working a whole shift is saved.
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Figure 4.10: Scenario 3: Evaluation reward during training
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Figure 4.11: Scenario 3: Predicted cumulative reward of the best performing retrained
network on 150% working capacity

Montanuniversität Leoben 60 Martin Roth, BSc.



RL for Decision Support Chapter 4. Validation and Results

Naive Algorithm
Lower Bound

Reinforcement
Learning

Target Network

Linear Program
Upper Bound

460

470

480

490

500

510

520
R
ew

a
rd

491.8

498.3

506.0

Retrained Network with Lower Working Capacity on Operators

Figure 4.12: Scenario 3: Increased operator working capacity to 150% on A retrained
network

4.3.8 Validation Scenario 4: Retraining with Reduced Workload

Scenario 2 showed that a trained network was able to adapt to a set of operators with a

reduced workload. We wanted to test the limits of the reinforcement learning policy and

see if the policy would still be able to complete all orders when working capacity was even

further lowered to 75% of the values initially set in table 4.2. Given the reduced working

capacity, we expect to see both algorithms, the previous algorithm and the newly trained

one, to use operators in overtime in this scenario. As we did not want to over penalize

the expected overtime, we adapted the artificial penalty (see equation (3.7)) from starting

after 90 minutes to starting after 165 minutes. This number was chosen as a compromise

between over penalization and and still favouring completing all orders.

4.3.9 Results Scenario 4: Retraining with Reduced Workload

4.3.9.1 Training

As expected, the fulfilment of orders took noticeable longer in Scenario 4 (see Figure

4.13). The part of the shift in which orders are processed now extended into overtime.

Nevertheless, the network converged in a similar way as we observed in the previous

results. As we can see in Figure 4.15, the evaluation reward did not noticeably improve
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o\w w1 w2 w3 w4 w5

o1 0.15 0.135 0.075 0.075 0.075
o2 0.15 0.075 0.135 0.075 0.075
o3 0.15 0.075 0.075 0.135 0.075
o4 0.15 0.075 0.075 0.075 0.135
o5 0.135 0.15 0.075 0.075 0.075
o6 0.075 0.15 0.135 0.075 0.075
o7 0.075 0.15 0.075 0.135 0.075
o8 0.075 0.15 0.075 0.075 0.135
o9 0.135 0.075 0.15 0.075 0.075
o10 0.075 0.135 0.15 0.075 0.075
o11 0.075 0.075 0.15 0.135 0.075
o12 0.075 0.075 0.15 0.075 0.135
o13 0.135 0.075 0.075 0.15 0.075
o14 0.075 0.135 0.075 0.15 0.075
o15 0.075 0.075 0.135 0.15 0.075
o16 0.075 0.075 0.075 0.15 0.135
o17 0.135 0.075 0.075 0.075 0.15
o18 0.075 0.135 0.075 0.075 0.15
o19 0.075 0.075 0.135 0.075 0.15
o20 0.075 0.075 0.075 0.135 0.15

Table 4.5: Scenario 4: Working capacity of operators

after 2.5× 106 iterations. Looking at the detailed view in figure 4.13 we can now clearly

see, that the policy keeps operators for overtime as the orders are finished just before the

end of the whole shift. As in previous Scenarios, this Scenario was also validated using

the network with the highest evaluation reward.

4.3.9.2 Results

In order to compare the results of the network, we again created 100 new orders. Feeding

these orders into the shifts controlled by the newly trained network resulted in an average

reward of 438.0 as we can see in figure 4.16. The system controlled by the policy from

scenario 2, using this network achieved an average reward of 434.7. So this policy only

achieved a reward 3.3 points, or 0.75% lower than the retrained network. This shows, that

the reused network was still able to adapt to the new operator set. The naive algorithm

was not able to finish all orders until the end of the shift and therefore only produce an

average reward of 256.0 which is a deviation of 52.4% from the result achieved using the

retrained network. The comparison with the linear program showed that the reinforcement

learnings policy using the newly trained network did achieve 5.3% less reward which is

a total of 24.1. This is a bigger gap between the reinforcement learning policy and the

linear program than we observed in the previous scenarios. This difference can partially

be explained by the fact that both solutions were now (at least partially) working within
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Figure 4.13: Scenario 4: Evaluation reward during training
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Figure 4.14: Scenario 4: Predicted cumulative reward of the best performing retrained
network on 75% working capacity
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Figure 4.15: Scenario 4: Evaluation reward during training

overtime, in which the operator time costs twice as much as during normal time. This

means, that our proposed reinforcement learning policy is still able to produce viable

results while utilizing overtime. In the operator cost context the linear program saved

the equivalent of 6.3 operators working a normal shift costs. Comparing the use of the

already trained network to the newly trained, the network of scenario 1 only produced

the equivalent of 1.2 operators working a normal shift more cost, which was not expected

upfront.

Montanuniversität Leoben 64 Martin Roth, BSc.



RL for Decision Support Chapter 4. Validation and Results

Naive Algorithm
Lower Bound

Reinforcement
Learning

Reused Network

Reinforcement
Learning

Newly Trained Network

Linear Program
Upper Bound

250

300

350

400

450

R
ew

a
rd

256.0

434.7 438.0

462.1

Decreased Working Capacity in Comparison

Figure 4.16: Scenario 4: Decreased operator working capacity to 75% on A retrained
network
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5 Summary and Outlook

5.1 Summary

The goal of this thesis was to investigate if reinforcement learning can be used to support

warehouse operations and reduce the occurring personnel costs by managing work hours.

To do so, we developed a reinforcement learning policy which used a neural network as

function approximation. For the learning model an MDP was chosen. As training solely

on real-life data or even on pre-generated date was not sufficient, a dynamic simulation

was created in order to provide on-demand training data for the policy. The reinforcement

learning policy was validated using four different scenarios. These scenarios were based

on real-life scenarios which could be expected in modern warehouse operations. In all

scenarios, the results of the reinforcement learning policy were compared to an upper

and lower bound which was provided by a naive control algorithm and a linear program

respectively. The first scenario featured a moderate order influx completable slightly

within the normal working time of a shift. In this first scenario, the reinforcement learning

policy performed better than the naive algorithm and achieved a 4.1% higher reward on

average. The reinforcement learning policy performed similarly to the upper bound set

by the LP, only achieving a 1.4% lower reward on average. In the second scenario, we

investigated the adaptability of the trained networks to operators of different working

capacities. The results showed that the networks were able to adapt very well to operators

with a lower working capacity and were still able to achieve good results (7.4% better than

the naive approach; 2.4% lower than the linear program) under these conditions. However,

the policy was not able to adapt as well to operators with higher working capacity. The

results stayed in line with the results of operators with lower capacity from the previous

scenario, achieving a reward 3.2% lower than the naive approach and 6.1% lower than

the linear program. The results stem from the fact that the network did not release

the operators from the job, even when their work was finished and thereby continued to

accumulate operator costs. In the third scenario we then retrained the network using the

operators it had failed to adapt to in scenario 2 in order to proof, that a retrained network

could achieve a competitive result.

When we then used the retrained network in a scenario otherwise similar to scenario 2,

the reinforcement learning policies was able to achieve results (1.3% better than the naive

approach; 1.5% lower than the linear program) comparable to the results achieved in
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scenario 1. So we concluded that the results of this scenario were of even quality to the

ones in scenario 1. In scenario 4 the operator working capacity was lowered even further

than the reduction in scenario 2. in order to test the behaviour of the policy in situations

where overtime is needed to fulfil all open orders. In addition to training a new network,

we also tested the performance of the network from scenario 1 in order to see how well it

could adapt to this change. The results showed that the network trained in scenario 1 was

able to adapt very well (average reward of 434.7) and was only outperformed slightly by

the newly trained network (average reward of 438.0, or 0.8% higher). The naive algorithm

was not able to finish all orders until the end of the day (incl. maximum overtime) and

was therefore easily beaten by both reinforcement learning policies. The reinforcement

learnings policies were not able to come as close to the upper bound set by the LP as in

the other scenarios. This can be at least partially explained by the different cost structure

during overtime, giving negative rewards doubled emphasis.

Overall we were able to show that reinforcement learning using neural networks as function

approximation is a viable approach to reduce personnel costs and support warehouse

executives in their daily decision making.

5.2 Outlook

Although our approach showed promising first results, further research is needed in order

to investigate if it is able to function as well in more advanced and more complex real

world scenarios. For example, although in real world warehouse operations, managers

have to make decisions about different sets of personnel on a daily basis, our current ap-

proach showed some limits when it came to adapting to new operators with different skill

sets. Investigating potential solutions is beyond the scope of this thesis. Future research

is needed to investigate alternative forms of structuring the learning of the networks when

it comes to utilizing different operators or sending them home.

The current approach used in this master’s thesis is characterised by a high implemen-

tation and computation effort. Further research should therefore investigate if the use of

different heuristics could save time and effort without affecting the quality of the results.
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