




There are, roughly speaking, two kinds of mathematical creativity.
One, akin to conquering a mountain peak, consists of solving a
problem which has remained unsolved for a long time and has

commanded the attention of many mathematicians.
The other is exploring new territory.

— Marek Kac





A B S T R A C T

This thesis solves the weak edge-reconstruction problem for Cartesian
products. In other words, it is shown that any nontrivial finite or infi-
nite Cartesian product G with edge-set E(G) is uniquely determined
up to isomorphisms by any edge-deleted subgraph {G − e|e ∈ E(G)}.
For finite Cartesian products the thesis also presents an algorithm
for the computation of G from G − e in O(m∆2) time, where m is
the size of G and ∆ its maximal degree. It improves the straightfor-
ward algorithm for reconstruction of G, which has complexity O(mn2),
where n is the order of G. Because ∆ can be much smaller than n, the
improvement can be substantial. The algorithm needs a thoughtful
analysis of the properties of well-known Cartesian product relations,
like Θ, τ and δ, as well as some typical properties of the Cartesian
product itself. The analysis leads to the introduction of a new relation
τ̄, which modifies τ and which is essential for the improvement of the
reconstruction’s complexity. The algorithm is presented in two steps.
The first contains a detailed description of its structure and complexity,
and the second contains pseudocode for all its parts, together with the
needed data structures.

The analogous problem for weak vertex-reconstruction of nontrivial
finite or infinite Cartesian products was solved 1996 in [15]. The
paper is not algorithmic. An algorithm for the reconstruction for finite
Cartesian products was later provided by [6]. It contains a subtle error
in the computation of its complexity. As it is frequently cited it will be
discussed and corrected it in the Appendix.

The methods of the thesis can also be used to improve the com-
plexity of weak vertex-reconstruction for finite Cartesian products
to O(m∆2), which is the same as that for weak edge-reconstruction.
I intend to publish the algorithm separately.

v





P U B L I C AT I O N S

The thesis presents several results that were already introduced in the
author’s publications. For more details see [13] and [12].

vii





A C K N O W L E D G M E N T S

First and foremost, I would like to thank my supervisor, professor
Wilfried Imrich, who introduced me to the subject of graph products
and invited to the joint research for some new properties of them.
Only thanks to his insightful suggestions and support, the reader can
hold this work in her hands.

Besides my supervisor, I would like to express my gratitude to my
family and friends, who encouraged me in the moments of doubt and
pushed towards my goals, sometimes applying varied means.

ix





C O N T E N T S

i introduction

1 introduction 3

ii preliminaries

2 preliminaries 7

2.1 Cartesian product 7

2.2 Weak Cartesian product 8

2.3 Prime factorization and automorphisms 8

2.4 Convexity 9

2.5 Product relations and product colorings 9

2.6 Prime factorizations and the relations σ, Θ and τ 10

2.7 The relations δ and an alternate relation τ 10

2.8 Twisted Cartesian products 12

iii reconstruction

3 reconstruction 17

3.1 Edge-deleted nontrivial Cartesian products are
prime 17

3.2 Reconstruction when K2 is not a factor of G 18

3.3 Reconstruction when G contains a factor K2 22

3.4 Conclusion 25

iv algorithm

4 algorithm 29

4.1 Reconstruction in O(mn2) time 29

4.2 Reconstruction in O(m∆2) time 29

4.2.1 Preprocessing and computation of necessary re-
lations 29

4.2.2 G − e contains edges that are in no chordless
squares 30

4.2.3 Each edge of G− e is in a chordless square 31

v algorithm - detailed description

5 algorithm - detailed description 37

5.1 Store All Squares 37

5.1.1 Correctness 38

5.1.2 Complexity 38

5.2 Edge without square reconstruction 39

5.2.1 Correctness 41

5.2.2 Complexity 41

5.3 General Reconstruction 41

5.4 Color edges 41

xi



xii contents

5.4.1 Correctness 44

5.4.2 Complexity 44

5.5 Color squares 44

5.5.1 Correctness 48

5.5.2 Complexity 48

5.6 Refine coloring 49

5.6.1 Correctness 49

5.6.2 Complexity 49

5.7 Clean Missing Square Edge Pairs 50

5.7.1 Correctness 50

5.7.2 Complexity 51

5.8 Define Endpoints of the edge to reconstruct 51

5.8.1 Correctness 53

5.8.2 Complexity 55

vi summary

6 summary 59

6.1 Results 59

6.2 Open problems 59

vii appendix

7 weak reconstruction complexity of cartesian

products 63

7.1 Preamble 63

7.2 Introduction 63

7.3 Preliminaries 64

7.4 Complexity analysis 66

bibliography 71



L I S T O F F I G U R E S

Figure 2.1 S4 !K2 12

Figure 2.2 Möbius strip 13

Figure 2.3 Different numbers of vertices in components of
a twisted Cartesian product 13

Figure 3.1 Product square abcd in G, with removed edge
e = ad 17

Figure 3.2 G − e prime, aa′ hac color cB. 18

Figure 3.3 G − e prime, aa′ has color cA. 19

Figure 3.4 Inserted new edge f = ad 19

Figure 3.5 The induced subgraph R of G and the edge
ad 20

Figure 3.6 Missing edge e = aa′ 21

Figure 3.7 Missing edge e = a′b′ 21

Figure 3.8 Missing edge e = bb′ 21

Figure 3.9 Missing edge e = b′c′ 22

Figure 3.10 Missing edge e = b′c′ and no factor K2 23

Figure 3.11 Missing edge e = b′c′ where B = K2 23

Figure 3.12 G − b′c′ + ad, compare Fig. 3.11 for the sub-
graph spanned by {a, b, c, d, a′, b′, c, d′} 24

Figure 3.13 A − bc = N !Y and X − bc = N ! B, edges of
N in bold 25

Figure 4.1 e incident to uv in G − e 30

Figure 4.2 e opposite to uv in G − e 31

Figure 4.3 Lemma 8, G has at least three factors 31

Figure 4.4 Lemma 8, the edges ab and aa′ have the same
color 32

Figure 4.5 Lemma 8, f = ab and p = aa′ of different colors
– part 1 32

Figure 4.6 Lemma 8, f = ab and p = aa′ of different colors
– part 2 33

Figure 4.7 Product of a star S2 by a cube from which an
edge was deleted. 34

Figure 5.1 Special cases having no squares 39

Figure 5.2 Missing edge e = ad 44

Figure 5.3 Looking for square bb′cc′ 48

Figure 5.4 Found missinge square edges triple for edges
uv, uw, wv′ 54

Figure 7.1 Multiple cross-edges. 67

Figure 7.2 Step 2.1 – y1
1 and y1

k recognized as up-neighbors
of x 68

Figure 7.3 Step 2.2 – y1
1 and y1

k are good candidates 68

Figure 7.4 Step 2.3 – y1
1 and y1

k are not bad candidates. 69

xiii



xiv list of algorithms

L I S T O F A L G O R I T H M S

Algorithm 1 Algorithm overview 37

Algorithm 2 Store All Squares 37

Algorithm 3 Reconstruction for edge without square 40

Algorithm 4 General Reconstruction 41

Algorithm 5 Color edges 42

Algorithm 6 Order edges 43

Algorithm 7 Color Squares 45

Algorithm 8 Find Other Color 47

Algorithm 9 Merge Colors By Tau 50

Algorithm 10 Clean Missing Square Edge Pairs 51

Algorithm 11 Find endpoints of the edge to reconstruct 52

Algorithm 12 Group missing square edges by first edge and
color 52

Algorithm 13 Find Potential Missing Edge Endpoints 53

Algorithm 14 Update missing square edges color grouping 53

Algorithm 15 Skeleton of the algorithm 64

Algorithm 16 Construction 2 65



Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

In 1942 Kelly [16] conjectured that any finite graph on at least 3 vertices
is uniquely determined by the multiset of its subgraphs obtained by
deleting a vertex and all edges adjacent to it. This is known as the
reconstruction conjecture. It became popular after 1960, when Ulam [23]
asked whether a graph on at least three vertices is determined by its
vertex deleted subgraphs. For infinite graphs the conjecture is false,
but for finite graphs it is still open, despite the fact that it holds for
large classes of graphs. For example, it is true for nontrivial Cartesian
products, as has been shown by Dörfler [3].

If one knows that a graph G is a nontrivial Cartesian product, then
G can be reconstructed from an arbitrary vertex deleted subgraph
of G. This result is due to Sims [21], and was presented in terms of
semistability of Cartesian products in [22]. Because of the additional
information that the given graph is a vertex deleted Cartesian product,
one speaks of weak reconstruction. This was extended by Imrich and
Žerovnik [15], who showed that the weak reconstruction problem
can be solved from a single vertex-deleted subgraph for nontrivial,
connected finite or infinite Cartesian products.

There is an algorithm from 1999 due to Hagauer and Žerovnik [6]
for the weak reconstruction of finite, connected nontrivial Cartesian
products. Its complexity, see [11, 17], is now O(mn + ∆2(m + ∆4)),
where n denotes the order of G. With methods that are also used
here, see [11], it can be improved to O(m∆2), which is the same as
the complexity of the algorithm for weak edge reconstruction in this
dissertation.

An edge deleted subgraph of a graph G is formed by deletion of
exactly one edge from G. It has the same set of vertices as G. In 1964

Harary [8] conjectured that any two graphs on at least four edges
and the same decks of edge deleted subgraphs are isomorphic. This is
known as the edge-reconstruction conjecture. Just as the reconstruction
conjecture it is known to hold for several classes of graphs, in particular
for graphs on more than n(log2 n − 1) edges, see [19]. For products
this was taken up by Dörfler [2], who showed that all nontrivial strong
products and certain lexicographic products can be reconstructed
from the deck of all edge-deleted subgraphs. He did not treat the
edge-reconstruction of Cartesian products.

More important for us is the fact that reconstructability implies
edge-reconstructability. This has been shown by Greenwell [5]. By the
result of Dörfler [3] about the reconstructability of nontrivial Cartesian
products it implies that they are also edge-reconstructible.

3



4 introduction

Here we show that nontrivial connected Cartesian products are
weakly edge-reconstructible, that is, each finite or infinite connected
Cartesian product G is uniquely determined up to isomorphisms
by any edge deleted subgraph {G − e | e ∈ E(G)}. Further we show,
that from the algorithmic point of view a straightforward algorithm
checking all possibilities can deliver a result in O(mn2) time.

Using more sophisticated methods we then reduce the needed time
to O(m∆2). This algorithm and its details comprise the bulk of the
dissertation.



Part II

P R E L I M I N A R I E S





2
P R E L I M I N A R I E S

All graphs considered in this dissertation are finite or infinite undi-
rected graphs without loops or multiple edges. If G is a graph, we
shall write V(G) for its vertex set and E(G) for its edge set. E(G) shall
be considered as a set of unordered pairs xy of distinct vertices x, y of
G.

We begin by collecting the main results and concepts about products
that are used in the dissertation. For more detailed information we
refer to [7].

2.1 cartesian product

The vertex set of the Cartesian product G1 !G2 of two graphs G1 and
G2 is V(G1)× V(G2). Two vertices (u1, u2) and (v1, v2) are adjacent
precisely if u1v1 ∈ E(G1) and u2 = v2, or if u1 = v1 and u2v2 ∈ E(G2).
Hence,

V(G1 !G2) = {(v1, v2) | v1 ∈ V(G1) and v2 ∈ V(G2)},

E(G1 !G2) = {(u1, u2)(v1, v2) | u1v1 ∈ E(G1), u2 = v2, or

u2v2 ∈ E(G2), u1 = v1}.

Cartesian multiplication has K1 as a unit, is commutative and as-
sociative. This means, if we are given k graphs Gi, i ∈ [1 : k], then we
can simply write G1 ! · · · !Gk for their product, regardless of the
sequence of the factors or the order in which the multiplications are
performed. Moreover, we can identify the vertices of G1 ! · · · !Gk

with the vectors (x1, . . . xk), where xi ∈ V(Gi). Then two vertices
x = (x1, . . . xk) and y = (y1, . . . yk) are adjacent exactly if there is a
j ∈ [1 : k] such that xjyj ∈ V(Gj) and xi = yi for i ∈ [1 : k], i %= j.

We call the xi the coordinates of x, and observe that two vertices in a
product are adjacent if and only if they differ in exactly one coordinate.
We also call xi the projection pi(x) of x to V(Gi).

It is easy to extend the definition to infinitely many factors. Let Gι,
ι ∈ I, be a finite or infinite set of graphs and X the set of all functions
x : I →

⋃
ι∈I V(Gι) where x : ι '→ V(Gι). Then the Cartesian product

G = ∏
ι∈I

Gι

of the graphs Gι, ι ∈ I, has X as its set of vertices and the edges xy are
defined as those pairs of vertices x, y, for which there exists an index
κ ∈ I such that xκyκ ∈ E(Gκ) and xι = yι for all ι ∈ I \ {κ}. We call
x(ι) the ι-coordinate of x and also denote it by xι.

7



8 preliminaries

For finite I this definition coincides with definition of the Cartesian
product of finitely many factors.

Another important concept is the notion of layers. Let G = G1 ! · · ·

!Gk be a product of graphs. For any given vertex a = (a1, . . . , ak) in
G1 ! · · · !Gk the set of vertices

{(a1, . . . ai−1, x, ai+1, . . . , ak) | x ∈ V(Gi)}

induces a subgraph of G that is isomorphic to Gi. We call it the Gi-layer

Ga
i through a.

2.2 weak cartesian product

It is well known that the product of finitely many graphs is connected
if and only if every factor is connected. However, a product of infinitely
many nontrivial graphs must be disconnected because it contains ver-
tices differing in infinitely many coordinates. No two such vertices can
be connected by a path of finite length, because every edge connects
vertices differing in exactly one coordinate.

This gives rise to the notion of the so-called weak Cartesian product:
let a ∈ V(∏ι∈I Gι). Then the weak Cartesian product

G =
a

∏
ι∈I

Gι

is the connected component of G = ∏ι∈I Gι containing a. Note that
∏

a Gi = ∏
b Gi, if and only if a and b differ in at most finitely many

coordinates, and that all Gι are factors of G. Hence the concept of
layers naturally extends to the weak Cartesian product.

2.3 prime factorization and automorphisms

A nontrivial graph is called prime, if it cannot be represented as
the Cartesian product of two factors on at least two vertices. Every
connected, nontrivial finite or infinite graph G has a representation
as a Cartesian or weak Cartesian product of prime graphs, which is
unique in the following strong sense: there exists a unique partition
P = {Eι | ι ∈ I} of E(G), where I is a finite or infinite index set,
such that each Eι spans a subgraph of G, say Hι, whose connected
components are the layers of a factor, say Gι, of G. Furthermore, the Gι

are prime, and G is the Cartesian product ∏ι∈I Gι if I is finite, or the
weak Cartesian product ∏

a
ι∈I Gι, for an appropriate a ∈ V(∏ι∈I Gι), if

I is infinite.
Every automorphism of G preserves the partition P , but may per-

mute its sets. In fact, for every automorphism ϕ of ∏
a
ι∈I Gι there exists

a permutation π of I, together with isomorphisms ϕι : Gπ(ι) → Gι

such that
ϕ(x)ι = ϕι(xπ(ι)).



2.4 convexity 9

Please note that this only holds for products of connected prime
graphs.

For finite graphs these results are due to Sabidussi [20], for infinite
graphs to Miller [18] and Imrich [9].

A special case of them we will need in Section 3.3.

2.4 convexity

A helpful property for our arguments is convexity. A subgraph W ⊆ G

is convex in G if every shortest G-path between vertices of W lies
entirely in W. Convex subgraphs in products are characterized by the
following lemma.

Proposition 1 (Lemma 6.5 [7]). A subgraph W of G = G1 ! . . . !Gk is

convex if and only if W = U1 ! . . . !Uk, where each Ui is convex in Gi.

Every layer Ga
i is convex in G, because

Ga
i = {a1}! · · · ! {ai−1}!Gi ! {ai+1}! · · · ! {ak},

where {aj} denotes the subgraph of Gj consisting of the single vertex
aj ∈ V(Gj).

2.5 product relations and product colorings

With every representation of a graph G as a Cartesian product G1 ! · · ·

!Gk we associate a product relation c(G1 ! · · · !Gk), or simply c, on
E(G). We say edges e, f are in the relation c if their endpoints differ in
the same coordinate. Clearly c is an equivalence relation with k equiv-
alence classes, each of which corresponds to a factor Gi of G. We color
the edges of the ith equivalence class with color i and call this the
product coloring of G1 ! · · · !Gk.

The edges of color i induce a subgraph of G whose connected
components are isomorphic to Gi. We call them the Gi-layers of G. In
[7, Lemma 6.3] it was shown that to any two incident edges e and f

of a Cartesian product G1 ! · · · !Gk that are in different layers, that
is, one in a Gi-layer and the other one in a Gj-layer, where i %= j, there
exists exactly one square e f gh containing e and f , and that this square
has no diagonals.

In the language of product colorings this means that to any two
incident edges e and f of a Cartesian product that have different
product colors, there exists exactly one square containing e and f , and
that this square has no diagonals. This is called the square property.
Squares without diagonals are also called chordless. Chordlees squares
e f gh, where e, f have different colors, are called product squares. It
is easily seen, but also shown in [7], that opposite edges of product
squares have the same color.



10 preliminaries

For further reference we also observe the following fact: If there is
an edge uv, whose endpoints u, v are in different layers with respect
to the same factor, say in a Gi-layer Gu

i through u, and a Gi-layer G − iv

through v, then the edges between Gu
i and Gv

i induce an isomorphism.
This follows immediately from the definitions of the Cartesian product
and its layers.

2.6 prime factorizations and the relations σ , Θ and τ

In 1992 Feder [4] showed that there exists a unique, finest product
relation on the edge set of every connected graph G, which he called
σ. Let it correspond to the factorization G1 ! · · · !Gk. Clearly no Gi

can be the product of two or more graphs on at least two vertices
each, otherwise σ would not be the finest product relation. This means
that each Gi is indecomposable or, as we say, prime. This means that
G = G1 ! · · · !Gk is a representation of G as a product of prime
graphs. Because σ is unique, the prime factorization is also unique.
As replacement of a factor by an isomorphic one and a change of the
order of the multiplication produces a graph isomorphic of G, one says
that prime factorization is unique up to the order and isomorphisms
of the factors. This was first shown by Sabidussi [20].

Feder also showed that σ is the transitive closure of the union of
two relations Θ and τ, defined as follows. We say two edges e = xy

and f = uv are in the relation Θ if d(x, u) + d(y, v) %= d(x, v) + d(y, u),
where d(x, y) denotes the distance between x and y.

Furthermore, e and f are defined to be in the relation τ if they share
a common endpoint, and if there is no unique chordless square that
contains them both.

Note that opposite edges of a chordless square are in the relation
Θ, and that edges e, f that are in a triangle are in the relation Θ and
also in τ. By Feder’s result σ = (Θ ∪ τ)∗, where (Θ ∪ τ)∗ denotes the
transitive closure of (Θ ∪ τ).

Clearly it is possible that all edges in a chordless square have the
same color with respect to σ, for example if they are contained in
a K2,3. But, let us recall that in a nontrivial Cartesian product each
edge is in a product square, that product squares have no diagonals,
and that incident edges of such a square have different colors with
respect to the product coloring induced by the given decomposition.
Of course this also holds with respect to the coloring induced by σ,
because σ is the finest product coloring.

2.7 the relations δ and an alternate relation τ

Given an edge e in a nontrivial Cartesian product G, there must be
a product square containing e, say e f gh. Then, for the given product
coloring, e, g have the same color, just as f , h, but the colors of f and g



2.7 the relations δ and an alternate relation τ 11

are different. Because σ is the finest product relation, this also holds
for the coloring induced by σ.

If we could construct the edge-coloring that is induced by σ on
G − e, then it would suffice for reconstruction to look for a path f gh

that is not in a chordless square, and where f , h have the same color,
but not f and g, because the missing edge e would have to connect
the origin of the path with its endpoint.

Unfortunately we cannot use ΘG−e for the computation of such a
coloring, because the metric of G − e differs too much from that of
G. Moreover, we cannot use τG−e either, because in G − e the pairs of
edges f , g and g, h are in τG−e, and then the path f gh is monochro-
matic, but in G the edges f , g have different colors. To avoid these
difficulties we use relations δ and τ̄, an alternate of τ, that are finer
than Θ, respectively τ.

We say two edges e and f are in the relation δ, compare [7], if they
are equal or opposite edges of a chordless square. Obviously δ ⊆ Θ

and the metric of G is not needed for its computation.
Furthermore, we say two edges f ,g are in the relation τ̄ if they are

equal or if there exist chordless squares

f p f ′p′, gp′g′p′′ such that ( f , g) ∈ τ and ( f ′, g′) ∈ τ. (2.1)

Clearly δG−e and τ̄G−e are finer than ΘG|G−e, respectively τG|G−e.
Because V(G − e) ⊂ V(G) this means that two edges of G − e that

have the same color with respect to δG−e, have the same color with
respect to δG, and if they have the same color with respect to τ̄G−e,
then also with respect to τG. Therefore

(δG−e ∪ τ̄G−e)
∗ ⊂ (δG ∪ τG)

∗ ⊆ (ΘG ∪ τG)
∗ = σG. (2.2)

Thus neither f , g, nor g, h of the product square e f gh will have the
same color with respect to (δG−e ∪ τ̄G−e)

∗, because (δG−e ∪ τ̄G−e)
∗ is

finer than σG.
It may happen though that several paths pqr of length 3 in G − e

have the property that p,r have the same (δG−e ∪ τ̄G−e)
∗ color, but not

p and q. The reason is that the number of colors (equivalence classes)
increases when the relations become finer. We shall later see that the
number of equivalence classes of (δG ∪ τG)

∗ is nonetheless bounded
by the minimum degree of G, although (δG ∪ τG)

∗ may have more
colors than σ.

The next lemma bounds the number of equivalence classes of
(δG−e ∪ τ̄G−e)

∗.

Lemma 2. The number of equivalence classes of (δG−e ∪ τ̄G−e)
∗ can exceed

the number of equivalence classes of (δG ∪ τG)
∗ by at most 3∆ − 5.

Proof. We have to consider the effect of the removal of an edge to δ

and τ. If e is in triangle, say e f g, then edge pairs {e, f }, { f , g} and



12 preliminaries

{g, e} are in the same color class with respect to τG. Hence, if f , g are
in different τ̄G−e classes, then the number of colors increases by 1. As
e is in at most ∆ − 1 triangles, this adds at most ∆ − 1 colors.

If e is in a square without diagonals, say e f gh, then this square may
have one or two colors with respect to (δG ∪ τG)

∗, but up to three
colors with respect to (δG−e ∪ τ̄G−e)

∗. If the square e f gh is not the
only square without diagonals containing e f and e f h′g′ is another
chordless square containing e f , then g′h′gh is a square, so h and h′

have the same color, just as g and g′. This does not further increase the
number of colors. We can thus assume that all squares e f ′g′h′ share
only the edge e, and that the total number of colors the edges of these
squares, after removal of e, have in G − e is at most 3∆ − 3. Because
we consider all squares containing e in G, at least one is a product
square, which has two colors. Thus the increase is at most 3∆ − 5.

Because an edge f cannot both be in a triangle and in a chordless
square with e, the maximum number of colors added is bounded by
3∆ − 5.

As an example, consider the Cartesian product G = Sd !K2, where
Sd is a star with a central vertex that is incident with d edges. See
Figure 2.1 for d = 4. Suppose e is the edge connecting the two vertices
of degree d + 1 in G. G has 2 color classes with respect to (δG ∪ τG)

∗

and G − e has as many color classes as it has edges, that is 3∆ − 3 =

2 + (3∆ − 5). This shows that the result is tight.

Figure 2.1: S4 !K2

2.8 twisted cartesian products

Graphs G on which the relation ξ = (δ ∪ τ)∗ is nontrivial play an
important role here. Clearly ξ is nontrivial for any nontrivial Cartesian
product, because ξ ⊆ σ, but it can also be nontrivial for graphs that
are prime with respect to the Cartesian product.

Clearly ξ is an equivalence relation and, as in the case of σ, we assign
colors to its equivalence classes (resp. the edges in the equivalence
classes). This yields a refinement of the coloring with respect to σ. An
example of a graph where ξ is a proper refinement of σ is the twisted



2.8 twisted cartesian products 13

ladder depicted in Figure 2.2. It is clearly prime with respect to the
Cartesian product.

Figure 2.2: Möbius strip

The relation ξ shares many important properties with σ. It was
investigated in [14] as the transitive closure of a relation called δ. In
order to use the results from that paper, we have to show that our ξ

and δ∗ of [14] are the same. To avoid confusion, let us use the notation
δz for the relation δ of [14]. It is defined as follows.

Two edges e and f are said to be in the relation δz if one of the
following conditions is satisfied:

(1) e and f are opposite edges of a chordless square.
(2) e and f are incident and there is no chordless square spanned by

the edges e and f .
(3) e = f .

Clearly condition (1) is equivalent to eδ f , and condition (2) stronger
than our condition for τ, which forbids only unique chordless squares.
Hence δz ∈ δ ∪ τ. On the other hand, if e and f are in more than
one chordless square, then e and f are in the relation δ∗, and hence
δ∗z = (δ ∪ τ)∗ = ξ.

Figure 2.3: Different numbers of vertices in components of a twisted Carte-
sian product

For us it will be important that δ∗z , that is, ξ, has the square property
and that to any vertex v and any arbitrarily chosen color i, there is
an edge e of color i that is incident with v, see [14, Lemma 1]. The
latter property means that the number of colors in ξ is bounded by
the minimum degree of G, and thus also by ∆.

Because of the similarity with Cartesian products we call graphs,
where ξ is nontrivial, twisted Cartesian products. Clearly each nontrivial
Cartesian product is a twisted Cartesian product.



14 preliminaries

For convenience we will retain the term product square for squares
in twisted Cartesian products that are not monochromatic.

One of the properties in which ξ differs from σ is the fact that
connected components of the spanning subgraphs who edges have
the same color need not have the same number of vertices, compare
Figure 2.3, and that these components need not be convex in G. We
note in passing that it was shown in [14] that σ is the convex closure
of ξ.



Part III

R E C O N S T R U C T I O N





3
R E C O N S T R U C T I O N

3.1 edge-deleted nontrivial cartesian products are

prime

Let G be graph and e ∈ E(G). Recall that the edge-deleted graph G − e is
defined on the same set of vertices as G and E(G − e) = E(G)− {e}.
We show that edge-deleted nontrivial Cartesian products are prime,
and begin with the following lemma.

Lemma 3. Let G be a nontrivial Cartesian product and e ∈ E(G). Let

e = ad and abcda be a product square in G. If G − e is a Cartesian product,

then the path abcd must be monochromatic in any product coloring of G − e.

Proof. Let us assume that the pair of incident edges ab and bc have
different colors in G − e. This would mean that the edges ab and bc

span a product square abcg in G − e. This leads to two squares without
diagonals spanned over ab and bc in G, contrary to the Unique Square
Lemma, see Figure 3.1. (In the figure the ! on the edges ab and cd and
the " on the edge bc and ad denote product colors in G. Actually this
symbolic representation of colors stays the same for all other figures:
! and " correspond to colors cA and cB, respectively.)

The same argument can be repeated for the pair of edges bc and cd.

a

b c

d

gh

Figure 3.1: Product square abcd in G, with removed edge e = ad

Lemma 4. Let G be a nontrivial Cartesian product and e ∈ E(G). Then

G − e is prime.

Proof. Let G = A! B and let cA, cB be the product colors of G. Suppose
that e is contained in an A-layer and let e = ad, where abcda is a
product square of A! B. This means that ad, bc have color cA and ab,
dc color cB.

We assume that G − e is not prime, say G − e = X !Y, with product
colors cX, cY, and lead this to a contradiction.

By Lemma 3 all edges of the path abcd in G − e have the same color
in any product coloring of G − e. We choose the notation such that
they are in an X-layer, so their color is cX.

17



18 reconstruction

There must be at least one edge incident to a with color cY. Let this
edge be aa′. Now we have to consider two different cases regarding
the position of aa′ in G, namely whether aa′ belongs to an A-layer or
to a B-layer.

But first we invoke Lemma 3 again to construct edges bb′, cc′ and
dd′ that are also colored cY, together with edges a′b′, b′c′ and c′d′

that are colored cX. ( Again the introduced colors cX and cY will be
represented in all figures by " and #, respectively).

Assume now that aa′ belongs to an B-layer with product color cB;
see Figure 3.2. Clearly this implies that aa′, bb′, cc′ and dd′ have color
cB. Because ab and a′b′ have color cB, the entire square aa′b′ba has
color cB, which means that it is in a B-layer. Similarly one shows that
cc′d′dc also is in a B-layer.

a

b c

d

a′

b′ c′

d′

Figure 3.2: G − e prime, aa′ hac color cB.

These B-layers have to be different, because the edge bc has color
cA. Clearly b′c′ also has color cA. As the Ca-colored edges between the
layer Ba and Bd induce an isomorphism between these layers, a′ must
have a neighbor in Bd, say d′′ such that cc′d′′dc is a square. Because
cc′d′dc is a product square in X !Y this is only possible if d′′ = d′. But
then a′d′ is an edge in X !Y. Because the path a′b′c′d′ has color cX, it
is also colored cX and the square a′b′c′d′a′ is in Xa′ . As the cY-colored
edges between Xa′ and Xa induce an isomorphism, the edge ad must
also be in X !Y, contrary to assumption.

Finally, assume that aa′ has color cA; see Figure 3.3. Then aa′, bb′, cc′

and dd′ have color cA. As bc and hence b′c′ are also colored cA. Thus
the square bcc′b′b is in the layer Ab, and because the edges ab, a′b′, dc

and d′c′ induce an isomorphism between Aa and Ab, there must be an
edge a′d′. It is also in X !Y. As before we infer that ad must also be
in X !Y, contrary to assumption.

3.2 reconstruction when K2 is not a factor of G

In this section we consider reconstruction of nontrivial Cartesian
products G from edge-deleted subgraphs for the case when G has





20 reconstruction

Observe that R is an induced subgraph of G. As abcd is a shortest
path it is induced. By the isomorphism between the layers Aa and
Aa′ in G the path a′b′c′d′ is also induced, and by the definition of
Cartesian product the only edges between abcd and a′b′c′d′ are aa′,bb′,
cc′ and dd′. So it remains to show that neither ad nor a′d′ are in G. For
f = ad this is so by definition, and if a′d′ were in G, then ad would
also have to be in G, because of the isomorphism of layers.

We now claim that R must contain e. If not, then R is a subgraph of
H. Because a′b′ and c′d′ have color cY, but not b′c′, there are product
squares a′b′c′x′a′ and b′c′d′y′b in H. Neither x′ %= d′ nor y′ %= a′ can
hold, because a′d′ %∈ E(G).

By convexity x′ and y′ are in Aa′ . But then, by the isomorphism
of layers, we have vertices x, y in Aa and squares abcxa and bcdyb.
At least one of those squares does not contain e, and is thus in H.
It contains two edges that are also in abcd, in contradiction to the
Unique Square Lemma (applied to squares in H).

Hence, R contains e. Because abcd is in H this leaves the following
possibilities for e: e = aa′, dd′, e = bb′, cc′, e = a′b′, cc′, or e = b′c′.
By the symmetry of R it suffices to treat e = aa′, bb′, a′b′, and e = b′c′.

We will show that H is prime in all these cases.

a b c d

a′ b′ c′ d′

Figure 3.5: The induced subgraph R of G and the edge ad

1. e = aa′

This case is depicted in Figure 3.6. Clearly b′c′ and c′d′ have
different colors in H and there is a product square b′c′d′y′b′.
Because a′d′ is not in E(G) the vertex y′ %= a′. By the isomor-
phism of layers we thus see that there must be a square bcdyb

without diagonals in Aa, in contradiction to the uniqueness of
the product square abcda in H.

2. e = a′b′

This is depicted in Figure 3.7. We can use exactly the same
argument as in the case e = aa′.

3. e = bb′

This is depicted in Figure 3.8. Invoking the argument from
Lemma 4 again we see that the path bcc′b′ has color cX, whereas



3.2 reconstruction when K2 is not a factor of G 21

a b c d

y

a′ b′ c′ d′

y′

Figure 3.6: Missing edge e = aa′

a b c d

y

a′ b′ c′ d′

y′

Figure 3.7: Missing edge e = a′b′

c′d′ has color cY. Now we can repeat the argument we used for
e = aa′ (and e = a′b′).

a b c d

g

a′ b′ c′ d′

g′

Figure 3.8: Missing edge e = bb′

4. e = b′c′

Part of this is depicted in Figure 3.9. We now use the assumption
that G has no factor K2. It implies that B %= K2. Suppose first that
there is an edge aa′′ in Ba. Then there are vertices b′′, c′′, d′′ such
that the subgraph induced by them and a, b, c, d is isomorphic
to R. Let it be R′. By the same arguments which we used when
considering R we infer that R′ has to contain e, which is not
possible.



22 reconstruction

If there is no such edge aa′′, then there must be an edge a′a′′ in
Ba, compare Figure 3.10. By the same arguments as in the proof
of Lemma 4 we infer that the paths b′bcc′ and b′b′′c′′c′ have to be
monochromatic in H, and by convexity their colors have to be
the same. If there existed an edge between a′′ and d′′ in G, there
would have to be one between a′ and d′ (in G) too. But this case
we have already excluded. But then we observe that b′′c′′ and
c′′d′′ have different colors in H and that there is a product square
b′′c′′d′′y′′b′′ in H, which leads to a contradiction as in the cases
treated before.

a b c d

a′ b′ c′ d′

a′′ b′′ c′′ d′′

Figure 3.9: Missing edge e = b′c′

3.3 reconstruction when G contains a factor K2

We still have to treat the case when G has a K2 as a factor, but we begin
with the observation that in the proof of Lemma 5 we only needed
the assumption that G had no factor K2 in the case e = b′c′, where we
assumed that B %= K2. Hence, we have to investigate the case when
B = K2. We begin with a somewhat technical lemma.

Lemma 6. Suppose G = A! B and we have the situation of Item 4 in the

proof of Lemma 5, except that B = K2. If the factor Y in the presentation

H = X !Y is not K2, then the reconstruction is unique. Otherwise it is

unique up to isomorphisms.

Proof. Let us have a look at Figure 3.11. Recall that H = X !Y and
that bc has color cX. Clearly X %= K2.

If Y %= K2, then we observe that G − e = H − f and that G = H −

f + e. We can thus interchange the roles of G and H. Since H = X !Y,
where neither X nor Y are a K2, we have unique reconstruction by the
previous arguments.

Now suppose that B and Y are isomorphic to a K2. If we remove
bc from G − e, then we have deleted two edges corresponding edges
of the A-layers of G through a and a′. The resulting graph is still a
Cartesian product. To be more precise, it is the product of A − pA(e),
that is, A minus the projection pA(e) of e into A, by K2.

On the other hand, if we remove f and bc from H = X !Y we
remove two corresponding edges of the X-layers of H through a and



3.3 reconstruction when G contains a factor K2 23

a b c d

y

a′ b′ c′ d′

y′

a′′ b′′ c′′ d′′

y′′

Figure 3.10: Missing edge e = b′c′ and no factor K2

a b c d

a′ b′ c′ d′

Figure 3.11: Missing edge e = b′c′ where B = K2

b. The resulting graph is still a Cartesian product. In this case it is the
product of X − pX( f ) times K2.

Notice that both pA(e) and pX( f ) are equal to bc. In both cases
the resulting graphs are the same, namely M = G − {e + bc}, but
we have two representations as a Cartesian product, namely M =

(A − pA(e))! B and M = (X − pX( f ))!Y.
(1) Let us assume first that M is connected. Then its prime factor-

ization is unique up to isomorphisms, and the fact that B ∼= Y ∼= K2

implies that A − pA(e) ∼= X − pX( f ).
But we can say even more. Both B and Y are prime factors of M,

and their sets of layers are different. From the results in Section 2.3 we
then infer that B and Y are distinct prime factors of M and

M = N ! B!Y,

where A − pA(e) ∼= X − pX( f ) ∼= N !K2; see Figure 3.13.
The case G − b′c′ + ad = (N ! B + bc)!Y is depicted in Figure 3.12.
Recall that the edge bc connects vertices of an (A − pA(e))-layer of

M and also vertices in an (X − pX( f ))-layer of H. In the first case we
consider Bb and Bc and, by adding e, join the intersection of these layers
with (A − pA(e))

a′ . In the second case we consider Yb and Yc, and by
adding f , join the intersection of these layers with (X − pX( f ))a.



24 reconstruction

a

b

c

d

a∗

b∗

c∗
d∗

a′
b′

c′

d′

a′′

b′′

c′′
d′′

Figure 3.12: G − b′c′ + ad, compare Fig. 3.11 for the subgraph spanned by
{a, b, c, d, a′, b′, c, d′}

We show now that the resulting graphs are isomorphic. Both B and
Y are factors of M. Let M = B!Y ! Z, so we use three coordinates
for M. If V(B) = V(Y) = {0, 1}, then each vertex v of M has the
coordinates (v1, v2, vz), where v1, v2 ∈ {0, 1} and z ∈ V(Z).

It is easy to see that the mappings (v1, v2, vz) '→ (v1 + 1, v2, vz),
(v1, v2, vz) '→ (v1, v2 + 1, vz), or (v1, v2, vz) '→ (v2, v1, vz), additions
modulo 2, are automorphisms.

Let b = (0, 0, zb) and c = (0, 0, zc), where zbzc ∈ E(Z). Then b′ =

(1, 0, zb), and c′ = (1, 0, zc). Furthermore, a = (0, 1, zb), d = (0, 1, zc),
and a′ = (0, 0, zb).

Thus, the automorphism (v1, v2, vz) '→ (v2, v1, vz) of M fixes bc and
interchanges b′c′ with ad. Recall that bc, b′c′ are in G, that bc, ad in H,
and that G, H and M have the same sets of vertices. Thus G and H

are isomorphic.
(2) If M is not connected it has two connected components, each

component has unique prime factorization. We can use the same argu-
ments as before, but can choose the layers of cd and ba independently
of each other, which yields more possibilities for the reconstructed
graph.

For example, N could consist of two isolated vertices, and G of bc

together with the squares aa′b′ba and dcc′d′d. For f we could then
take ad, ad′, a′d, a′d′, b′d or c′a.

Nonetheless, all reconstructed graphs are isomorphic.
We wish to remark that our arguments also hold for finite and

infinite connected graphs G that are nontrivial Cartesian or weak
Cartesian products.



3.4 conclusion 25

a
b

c

d

a∗

b∗
c∗ d∗

b

c

b∗
c∗

b′

c′

b′′

c′′

Figure 3.13: A − bc = N !Y and X − bc = N ! B, edges of N in bold

3.4 conclusion

We formulate our result as a theorem.

Theorem 7. Let G be a connected, nontrivial Cartesian product. Then G

can be uniquely reconstructed up to isomorphisms from any edge-deleted

subgraph H = G − e, where e ∈ E(G).

Furthermore, in H the endpoints of the deleted edge e are uniquely deter-

mined, unless G has a representation G = A!K2, where e is in an A-layer,

and where G has at least one other factor K2. In that case one can characterize

all possibilities for the insertion of an edge f into H such that H + f is a

Cartesian product, and all reconstructions are isomorphic.





Part IV

A L G O R I T H M





4
A L G O R I T H M

4.1 reconstruction in O(mn2) time

Given a graph G − e one can try all possible extensions by an edge f

and check whether they yield a Cartesian product. If the order of G

is n, there are O(n2) possibilities for f . Because prime factorization
can be done in linear time and space in the size m of G by [10], the
reconstruction is possible in O(mn2) time and space.

Within the same time and space complexities one can also determine
all possible reconstructions.

4.2 reconstruction in O(m∆2) time

Whenever we insert an edge in G − e to test whether the new graph is
a Cartesian product we invoke the algorithm of [10], which determines
the prime factors of a graph with m edges in O(m) time.

4.2.1 Preprocessing and computation of necessary relations

We clearly have to compute the relations δ, τ, τ̄ and transitive closures
of various unions of them. For the transitive closures we simply note
that the complexity of computing the transitive closure of a relation ρ

is O(|ρ|), where |ρ| denotes the number of pairs in the relation ρ.
Let us focus on δG now. For its computation we need the squares of

G. There is an algorithm of Chiba and Nishizeki [1] that computes to
certain pairs of vertices v1, v2 a list {v3, v4, . . .}, such that each square
containing v1 and v2 is of the form v1viv2vj, where vi, vj are from the
list, and where the computed triples

{v1, v2, {v3, v4, . . .}}

encode all squares of G. The total size of the list is m a(G), where a(G)

is the arboricity of G, and the list can be computed in O(m a(G)) time.
For us it is important to note that a(G) is bounded by the maximal
degree of ∆(G) of G.

It is easy to see that all edges between any two of the vertices in
such a triple {v1, v2, {v3, v4, . . .}} have the same color with respect
to δ∗ unless the sublist {v3, v4, . . .} contains exactly two vertices that
are not adjacent. For this case, we note that v1vi and vjv2 are in the
relation δ, and also v1vj and viv2. These chordless squares v1viv2vjv1

are the candidates for product squares in ξ, and thus also candidates
for product squares in σ.

29



30 algorithm

Note that δ∗ and the list of candidates for product squares can
be computed in O(m∆) time, and that the list contains at most m∆

elements. We can also store these squares in such a way that one can
check in constant time, whether a pair e, f of incident edges is in a
unique chordless square.

Now to the computation of τ. We consider all edges e, and for every
incident edge f we check whether e and f are in a chordless square.
This can be done in O(m∆) time, and the length of the list of pairs of
edges that are in the relation τ is at most m∆.

For the computation of τ̄ we can proceed as follows. For each pair
of edges f ,g in τ we consider all edges p′ incident with the common
vertex of f and g. Then we look for chordless squares f p f ′p′ and
gp′g′p′′, and then for a chordless square f ′g′′ f ′′g′. If we find such a
configuration, then the pair f ,g is not in τ̄, otherwise it is.

There are m∆2 cases to check, and each check takes constant time.
Hence τ̄ can be computed in O(m∆2) time, and contains at most m∆

elements.
Hence, preprocessing takes at most O(m∆2) time.

4.2.2 G − e contains edges that are in no chordless squares

The length of the list of chordless squares is at most m∆. Hence, if there
are edges that are in no chordless square, we can find one in O(m∆)

time. Note that it is possible that no edge of G − e is in a chordless
square, see Figure 2.1.

Suppose uv is an edge of G− e that is in no chordless square. Clearly
uv is in a product square in G. This square must contain e, otherwise
uv is in a chordless square without diagonal in G − e. There are two
possibilities for such a product square: either e is incident with uv, or
opposite to uv.

In the first case the product square in G is of the type uvywu or
uvwyu, see Figure 4.1. For the type uvwyu, y is the other endpoint of
e. It has distance 2 from v. Thus there are at most ∆2 possibilities for
y, that is, for the insertion of e. The same holds for the other type.

u v

wy

u v

w y

Figure 4.1: e incident to uv in G − e

In the second case, where e is opposite to uv, one endpoint of e is
adjacent to u, and the other to v, see Figure 4.2. Again, this yields at
most ∆2 possibilities.



4.2 reconstruction in O(m∆2) time 31

u v

w y

Figure 4.2: e opposite to uv in G − e

If uv is known, this means that e can be found in O(m∆2) time,
because one can check in O(m) time whether a single insertion of an
edge yields a Cartesian product. Hence the overall complexity of this
part is O(m∆2).

4.2.3 Each edge of G − e is in a chordless square

We need the following two lemmas.

Lemma 8. Let G be a nontrivial Cartesian product, and e f gh a product

square of G. If each edge of G − e is in a chordless square, then f , h are in

relation ξ̄ in G − e, but not f , g.

Proof. Let us assume first that G has at least three factors. Given
a product square e f gh, where e, f , g, h are, respectively, ad, ab, bc, cd,
there must be an edge aa′ of G that is incident with ad and ab, and
whose color is different from that of ad and ab. The subproduct of
ad,ab and aa′ in G is a cube. It is easy to see (via the relation δ) that,
even after removal of ad from the cube, f = ab and h = cd have the
same color, see Figure 4.3.

a d

b c

a′ d′

b′ c′

Figure 4.3: Lemma 8, G has at least three factors

This leaves the case when G has only two factors, say G = A! B.
By assumption there is a chordless square abb′a′a in G − e. It is also
a chordless square in G, hence bb′ must be different from bc by the
square property on G. Because G has only two factors the color of aa′

(in G) is either the color of ab or of bc.
Suppose ab and aa′ have the same color, see Figure 4.4. Then abb′a′a

is monochromatic. We can choose the notation such that it is in an
A-layer. The edges ad and bc have the same color and connect the
A-layer containing abcda with the A-layer containing cd. Because the
edges between adjacent layers induce an isomorphism, there must



32 algorithm

be edges a′d′ and b′c′ such that the edges ad, bc, b′c′, a′d′ induce an
isomorphism between abb′a′a and a chordless square dcc′d′d. These
two squares, together with the edges ad, bc, b′c′, a′d′ are a cube. If we
remove e = ad from it, then one sees as in the previous case, that
f = ab and h = cd still have the same color.

a d

b c

a′ d′

b′ c′

Figure 4.4: Lemma 8, the edges ab and aa′ have the same color

Now suppose ab and aa′ have different colors. There must also be a
chordless square containing bc and one containing cd, say bxycb and
cdd′c′c. If bc and bx have the same color, or if cd and cc′ have the same
color, then the same arguments as before show that f = ab and h = cd

have the same color.
Hence we can assume that {ab, aa′}, {bc, bx} and {cd, cc′} are pairs

of edges of different colors (in G). But then we have product squares
to {bb′, bx} and to {cy, cc′}, say bxwb′b and cyzc′c, yielding the con-
figuration depicted in Figure 4.5. It is a Cartesian product of a path of
length 3 by one of length 2, the "top middle edge" being e.

a

b c

d

x y

a′

b′

d′

c′

w z

Figure 4.5: Lemma 8, f = ab and p = aa′ of different colors – part 1

If {ab, bx} are in a square without diagonal in G, say abxx′a, see
Figure 4.6, then this is also the case for {dc, cy}, let it be dcyy′d, and
there is a chordless square xx′y′yx. These squares are also in G − e

and ensure that the colors of xx′, yy′ and f = ab, h = cd are the same.
If the pair {ab, bx} is not in a square without diagonal, see Figure

4.5 again, then abτG−ebx, but also a′b′τG−eb
′w. Hence abτ̄G−ebx. By

a similar argument cdτ̄G−ecy. Thus {ab, bx} have the same ξ̄G−e and
also the pair {cd, cy}. Because {bx, cy} is a pair of opposite edges in a
chordless square, bx and cy have the same color, and thus also f = ab

and h = cd.



4.2 reconstruction in O(m∆2) time 33

a

b c

d

x′

x y

y′

a′

b′

d′

c′

w′

w

z′

z

Figure 4.6: Lemma 8, f = ab and p = aa′ of different colors – part 2

Lemma 9. Let G be a nontrivial Cartesian product and e ∈ E(G). Suppose

f gh is a path that is not in a chordless square in G − e, and where the ξG−e

colors of f and g are different, but those of f and h the same. If the completion

of f gh by an edge e′ to a square does not yield a Cartesian product, that is if

G − e + e′ is not a Cartesian product, then f and g belong to the same color

class with respect to σG.

Proof. Let G satisfy the conditions of the Lemma. If f and g belong
to different color classes with respect to σG, then they have to be part
of a product square in G. This product square also has to contain h,
because f and h have the same color. Let this square be f ghe′. If f , g

do not belong to a square in G − e, then e′ must be the removed edge
e. But then the addition of an edge e′ that completes f gh to a square
to G − e must yield a Cartesian product.

Theorem 10. Let G− e be an edge deleted subgraph of a nontrivial Cartesian

product. Then G can be reconstructed in O(m∆2) time.

Proof. In Section 4.2.2 we have already treated the case when G − e

has an edge that is in no chordless square. So we can assume that all
edges of G − e are in chordless squares.

By Lemma 8 the missing edge e has to be inserted as the fourth
edge of a path f gh that completes f gh to a chordless square. The path
f gh is characterized by the properties that the ξ̄G−e colors of f and g

are different, and those of f and h the same.
Clearly f , g are in τG−e, but not in τ̄G−e. Because both τG−e and τ̄G−e

have at most m∆ elements, we can find all such pairs f , g in O(m∆)

time. Now we check for all of the at most ∆ edges h that form a path
f gh of length 3 with f g whether they have the same color as f . There
can be at most one such edge because τ̄G−e refines σG, and in G this is
true because of the square property.

Hence in O(m∆2) time we can construct the list of all such configu-
rations. Note that the length of the list is at most m∆.

Now we parse the list. We complete f gh to a square by insertion
of an edge e′ and check, whether G − e + e′ is a nontrivial Cartesian
product. If this is not the case, the colors of f and g are refinements



34 algorithm

v11

v12 v13

v14

v15

v16 v17

v18

v21

v22 v23

v24

v25

v26 v27

v28

v31

v32 v33

v34

v35

v36 v37

v38

Figure 4.7: Product of a star S2 by a cube from which an edge was deleted.

of one product color, that is, of a σG-color. We call such a triplet
misleading, merge the colors and go to the next configuration, where
f gh are already checked with respect to the merged colors. By [14]
the number of colors of ξG is at most ∆, and by Lemma 2 the number
of colors in ξ̄G−e can exceed this by at most 3∆ − 5, so we cannot
delete more that 4∆ − 5 colors. Hence, although parsing the list may
take O(m∆) time, we only check at most 4∆ − 5 times whether an
inserted edge yields a product. So this part takes O(m∆) + O(m∆2)

time. Together with the construction of the list we end up with the
time complexity O(m∆2).

Figure 4.7 shows an example of a graph G − e which is colored
with respect to τ̄G−e. It contains misleading triples, like {v14v11, v11v12,
v12v13} or {v34v31, v31v32, v32v33}, but also the correct ones, namely
{v21v11, v11v12, v12v22} and {v21v31, v31v32, v32v22}. G is the product of
a of a star S2 by an edge deleted cube, and the misleading triples come
from the second factor.



Part V

A L G O R I T H M - D E TA I L E D D E S C R I P T I O N





5
A L G O R I T H M - D E TA I L E D D E S C R I P T I O N

The algorithm described in the section below allows the edge-recon-
struction of a Cartesian product of at least two nontrivial graphs from
which a single edge has been removed.

The algorithm handles a special case of a single edge deleted sub-
graphs having no remaining squares separately, and introduces a
general approach otherwise.

Algorithm 1 Algorithm overview

Require: G − e

storeAllSquares( )
if ¬edgesWithoutSingleSquare.empty() then

edgeWithoutSquareReconstruction( )
else

generalReconstruction( )
end if

5.1 store all squares

The step of storing all squares existing in graph G − e allows us to
accelerate plenty of different checks which take place at the later
stages of the main algorithm. The way we collect all squares is pretty
straightforward and not the fastest one, but by far the clearest one. As
it does not influence the overall complexity of our algorithm we stick
to it for the sake of simplicity.

Algorithm 2 Store All Squares

Require: storedSquares, edgesWithoutSingleSquare
procedure storeAllSquares

for all [u, v] ∈ E(G − e) do

for all [u, w] ∈ E(G − e) do

for all y adjacent to v and w do

storedSquares.add(uvwy)
end for

end for

if storedSquares.get(uv).empty() then

edgesWithoutSingleSquare.add(uv)
end if

end for

end procedure

37



38 algorithm - detailed description

To be able to access all squares of a given edges pair in constant
time, we need to store the squares in a three-dimensional array where
each following dimension corresponds to the next of three vertices
incident to edges e and f , that is u, v, w.

The pair of edges we use to find squares may span one square as
well as many squares, thus each entry in the array is prepared for it
and contains a list to collect all of them.

The edges of the graph are bidirectional, and to store a complete
image of all squares into an array we have to assume, for the runtime
of the procedure, that edge uv %= vu.

This procedure fulfills also another purpose, which is storing all
edges that don’t belong to any square. As soon as we encounter even
a single edge not belonging to a square, we can skip the general re-
construction procedure in the favor of a straightforward, but checking
many possibilities one, which reconstructs a square for the found
edge.

5.1.1 Correctness

It should be rather clear, that as this routine takes all pairs of incident
edges and looks among plausible vertices for those, which are incident
to both endpoints, it traverses and stores all existing squares of the
input graph.

It should be also clear, that if in this way no square has been found
for an edge uv, this edge has no square at all.

5.1.2 Complexity

The first loop iterates over all edges of the graph and takes each edge
twice, each time changing the order of vertices of the edge. This gives
us 2m possible pairs of edge endpoints. For each pair of endpoints,
we iterate over the neighborhood of one of them, let’s say v, and as
a vertex of the highest degree has no more neighbors than ∆, the
number of iterations is also limited to ∆. This way we can find our u,
v and w. Now to find y we can iterate again over the neighborhood of
another vertex incident to u, this time vertex w. There can be no more
neighbors of w than ∆ and the check whether y is adjacent to u can be
done in constant time using the adjacency matrix. The additional check
for the existence of squares for uv is also done in constant time and so
is also the storing of the edge in edgesWithoutSingleSquare collection.
Summing it up the time complexity looks as follows: O(2m∆∆C +

C) = O(m∆2).
The calculation of the space complexity needs a bit closer attention

because the mentioned three-dimensional array won’t be filled com-
pletely and so we can reduce the complexity. The first two dimensions
of the array consume n2 space, but only 2m of the cells are going



5.2 edge without square reconstruction 39

to receive entry, and only for them, the third dimension will exist.
This third dimension needs to be a vector of the length of graph’s
order – n, but also in this case we are not going to fill the complete
vector with data, but rather than that, we are going to use ∆ cells
out of it, as v cannot have more neighbors. This way we achieved the
list of possible squares for the pair of edges e and f . The length of
this list is also limited by ∆, as there cannot be more squares than
w has neighbors. The final missing piece of the space complexity for
the collection storedSquares is the size of a single square, which is
constant. Wrapping it all up O(n2 + m(n + ∆∆C) = O(m(n + ∆2).

The space complexity of the other collection used in this procedure,
edgesWithoutSingleSquare, is smaller and equal to O(m), as there are
only m edges in the graph.

It is worth to mention that there exists an algorithm for finding all
squares in O(ma(G)) introduced by Chiba and Nishizeki. For more
details, see [7].

5.2 edge without square reconstruction

We have already presented a brief yet complete description for this
part of the algorithm in Section 4.2.2, so in this section, we are just
going to extend it by some figures and the pseudocode notation of it.

Figure 4.1 and 4.2 shows three possible colocations between the
found edge without square and the edge to be reconstructed. Fgure
4.2 presenting the case for the first part of the procedure and Figure
4.1 for the rest of it.

It is also worth to mention, that this part of the algorithm inherently
solves the special case when the whole graph G − e has no squares
at all. This scenario is only possible if G was a product of only two
factors, and these factors were either K2 !K2 or K2 ! Sd, where graph
Sd is a star with d edges incident to the vertex in the center. Figure 5.1
depicts both of these cases.

a b

d c

f

e

a b

d c

g

h

Figure 5.1: Special cases having no squares



40 algorithm - detailed description

Algorithm 3 Reconstruction for edge without square

Require: edgesWithoutSingleSquare
procedure edgeWithoutSquareReconstruction

uv ← edgesWithoutSingleSquare.getAny()
for all w ∈ NG−e(u) do

for all y ∈ NG−e(v) do

if isMissingEdgeFound(wy) then

return wy

end if

end for

end for

for all w ∈ NG−e(u) do

for all y ∈ NG−e(w) do

if isMissingEdgeFound(vy) then

return vy

end if

end for

end for

for all w ∈ NG−e(v) do

for all y ∈ NG−e(w) do

if isMissingEdgeFound(uy) then

return uy

end if

end for

end for

end procedure

procedure isMissingEdgeFound( f )
reconstructedG ← reconstruct( f )
notPrime ← factorize(reconstructedG)
return notPrime

end procedure



5.3 general reconstruction 41

5.2.1 Correctness

Each edge of the original Cartesian product G need to belong to a
product square. Having found an edge without a square in G − e and
trying all possible ways of reconstructing a square for it must bring
us finally to a correct solution. We know, that we have reconstructed a
proper square when the factorization procedure returns at least two
factors for the given graph G − e + f .

5.2.2 Complexity

Each for-loop can iterate maximally over ∆ vertices, reconstruction
of a single edge is done in constant time, and the factorization need
O(m), so the overall complexity is O(m∆2).

5.3 general reconstruction

This section describes the general case of reconstruction, which is
going to be started if no edge not belonging to a square in G − e has
been found.

Algorithm 4 General Reconstruction

procedure generalReconstruction

colorEdges( )
mergeColorsByTau( )
cleanMissingSquareEdgePairs( )
findEdgeToReconstruct( )

end procedure

Briefly, in the first step our algorithm colors all edges in the graph,
merges colors belonging to the same factors, and collects all pairs of
edges that are not being a part of a square.

The second step iterates over edges and merges colors using the
properties of the relation τ̄.

The third step reduces the number of edges to be analyzed for
reconstruction, by removing from the list of edges not being a part of
a square all edges which are of the same color.

The fourth step analyzes the remaining pairs of edges not being a
part of any square and based on them, it picks out vertices, which are
the endpoints of e in G.

5.4 color edges

To color the whole graph, we start by coloring any arbitrary square
and then, we spread the coloring using the properties of relations δ



42 algorithm - detailed description

and τ̄. For every case where the already existing colors are not enough,
we introduce a new color.

One can see, that the actual application of the relations δ and τ̄

happens in the subroutine from Algorithm 7, whereas Algorithm 5

only delivers to it bundles of squares based on the same two edges.
The pairs of edges which are not a part of any square are stored in

an auxiliary structure. This structure contains a list of all such edges
as well as a three-dimensional set of vectors for instant access to all of
them.

Algorithm 5 Color edges

Require: storedSquares, adjacencyMatrix
procedure colorEdges

missingSquareEdges ← new Structure()
upcomingVertices ← new Queue()

uvwy ← storedSquares.getAny()
uv.color ← 1, wy.color ← 1

uw.color ← 2, vy.color ← 2

upcomingVertices.push(u)

while ¬upcomingVertices.empty() do

u ← upcomingVertices.poll()
edges ← orderEdges(u)

for all pair of edges uv, uw incident to u do

if uv.color = uw.color then

Continue
end if

squares ← storedSquares.get(uv, uw)
if squares.empty() ∧ adjacencyMatrix[v][w].empty() then

missingSquareEdges.add(uv, uw)
Continue

end if

colorSquares(squares)

upcomingVertices.push(v)
upcomingVertices.push(w)

end for

end while

end procedure

In Algorithm 5 we start by choosing an arbitrary square from an
already stored list of squares and coloring its opposite edges using the



5.4 color edges 43

Algorithm 6 Order edges

procedure orderEdges(Vertex u)
coloredEdges ← new List()
uncoloredEdges ← new List()
for all edges uv of u do

if ¬uv.color.empty() then

coloredEdges.add(uv)
else

uncoloredEdges.add(uv)
end if

end for

edges ← coloredEdges.appendAll(uncoloredEdges)
return edges

end procedure

same colors, as we need any starting point. Then we start an iteration
over all vertices where the vertex u from the chosen square is our
starting point, and each vertex queued for processing is a neighbor of
the one which is currently selected. The vertices to be processed are
pushed into a queue, which does not allow any duplicates.

The processing of every single vertex starts from ordering edges
from colored to uncolored ones by Algorithm 6. The procedure parti-
tions all its edges into two groups, colored and uncolored ones, and
after that, all edges are put back again into a single list, but this time
all colored edges are at the beginning of the list. Putting colored edges
in the front of the list, and starting coloring from them allows as to
spread existing coloring better. Out of this list, we select edges pair-
wise, and if they are of different colors, we look for squares spanned
over them. If one or more squares have been found, we color all of
them calling Algorithm 7.

Our input graph G − e contains also incident edges that don’t span
any square. In G, it would be a sign that these two edges should
belong to the same σG class, so we could merge their colors. However,
during the reconstruction, we have to use coloring induced by relation
ξ̄G−e as these two edges could form a square in G and only because
of the deletion of e there is no square spanned on them any longer.
See Figure 5.2, where edges ab, bc are not spanning a square because
of the missing edge ad. That is why we store such edges into the
missingSquareEdges collection for further analysis, unless they already
span a triangle, as we are not interested in reconstructing squares with
diagonals.





5.5 color squares 45

Algorithm 7 Color Squares

Require: squareOppositeEdges, colorsCounter, adjacencyMatrix
procedure colorSquares(squares)

allSquaresColored ← true
for all uvwy ∈ squares do

if uv and uw two incident colored edges then

wy.color ← uv.color
vy.color ← uw.color

else if uv colored and neither uw nor vy colored then

if wy.color = ∅ then

wy.color ← uv.color
end if

otherColor ← findOtherColor(uvwy)
uw.color ← otherColor
vy.color ← otherColor

end if

if ¬adjacencyMatrix[u][y].empty()
∨ ¬adjacencyMatrix[v][w].empty() then

uy.color ← uv.color
vw.color ← uv.color
mergeColors(uv, uw)
continue

end if

if squares.size() > 1 then

mergeColors(uv, uw)
continue

end if

squareOppositeEdges.store(uv, wy)
squareOppositeEdges.store(uw, vy)

end for

end procedure



46 algorithm - detailed description

The essential relation for this procedure, relation δ, colors opposite
edges of a square. If the given square has already two incident edges
colored, we just copy the already existing colors to the opposite, not
yet colored edges.

In another case, when the square has only one edge colored, we
look for a color of the second edge applying the relation τ̄, which is
done in the subroutine findOtherColor.

After the first two steps, all edges of the square should have been
colored, so we apply the following two Cartesian product properties
to merge some of them:

• Product square cannot have diagonals

• Two incident edges cannot be a part of more than one product
square

That is why if this square has any diagonals or there are more
squares than one, we merge the colors.

There is also a possibility to use the relation τ̄ again and merge even
more colors in this step, but to make the algorithm more coherent and
readable, this part has been moved to a separate routine, that is going
to be described later.

In the last two lines of the for-loop, we use a structure squareOpposi-

teEdges, which is described below, to store square opposite edges for
quicker access, but only if everything went well and we deal with a
square having exactly two colors.

The structure squareOppositeEdges must be introduced to achieve the
desired time complexity and it is going to store all pairs of opposite
edges of each square and arrange them in the following way: firstly,
by each of the opposite edges, creating two entries, one for each
opposite edge, and secondly, by the color of the other two edges in the
square. Given an edge and a color of the other two edges of the square,
the structure should be capable of returning the list of all suitable
opposite edges in constant time, and that is why we need to use again
a three-dimensional set of vectors.

The procedure findOtherColor is the first place, where we apply the
relation τ̄ to our algorithm. For this purpose we rename inside of
the procedure the given square uvwy to aa′b′b, ab, a′b′ remaining the
uncolored edges, and using the aforementioned relation τ̄ we try to
find a colored square bb′c′c – Figure 5.3, so that the color of the edges
bc, b′c′ could be applied also to the edges ab, a′b′. If the procedure
fails to find such a square, we have to introduce a new color into the
coloring.

Having mentioned the relation τ̄, let us take a closer look at it.
Consider the square abcd from Figure 5.2 which could have been a
product square in G. The original relation τ would assign edges ab,
bc, and cd to one equivalence class, which results in a wrong coloring.



5.5 color squares 47

Algorithm 8 Find Other Color

Require: squareOppositeEdges, storedSquares, colorsCounter
procedure findOtherColor(aa′bb′)

otherColor ← ∅

for all cc′ ∈ squareOppositeEdges.get(bb′) do

if cc′ = aa′ then

continue
end if

abcd ← storedSquares.get(ba, bc)
a′b′c′d′ ← storedSquares.get(b′a′, b′c′)
if abcd.empty() ∧ a′b′c′d′.empty() then

otherColor ← bc.color
end if

if otherColor %= ∅ then

break
end if

end for

if otherColor = ∅ then

colorsCounter ← colorsCounter+1
otherColor ← colorsCounter

end if

return otherColor
end procedure



48 algorithm - detailed description

a b c

a′ b′ c′

Figure 5.3: Looking for square bb′cc′

This example shows why we need to introduce the relation τ̄ instead
of applying the relation τ.

Let us consider a pair of edges ab, bc being in the relation τ in G − e.
If these edges are also in the relation τ in G, then there must be an
edge from each vertex a, b and c of different color than edges ab, bc.
These new edges should lead to a′b′, b′c′, parallel to the edges ab, bc

and spanning squares aa′b′b and bb′c′c. Now if neither the edges a′b′,
b′c′, nor the edges ab, bc don’t span a square, it’s clear that the edges
ab, bc are indeed in the relation τ̄ in G.

5.5.1 Correctness

The procedure uses the properties of product square, and also of
the relations δ and τ̄, which have been already explained and which
correctness has been already proved.

5.5.2 Complexity

Two incident edges can have maximally ∆ squares, so we have to run
the loop at most ∆ times. We can check the coloring of all edges in a
single square or color two edges based on the other two in constant
time, but checking the relation τ̄ needs some more effort.

We can access the list of all square-opposite edges to the colored
edge in constant time, and the list can have maximally the length of ∆.
For each entry, we have to look for squares spaned on two edges, and
because we have stored all squares in the appropriate structure, we
can find the squares we are looking for in constant time.

The other two cases, checking the diagonals and the number of
squares, can be done in constant time and so also the necessary merge
of colors. Merge of colors can be executed in constant time if we
introduce an auxiliary array mapping the original coloring to the
one after the merge rather than overriding the color of each edge
separately.

One more thing to note is that looking for edges in the relation τ̄ if
it was necessary, can happen only once because after that both uv and
uw are going to be colored and the cost of the coloring of the other
squares stays constant.

Summarizing the time complexity is O(∆ + ∆) = O(∆).



5.6 refine coloring 49

Space complexity is again defined by the most memory consuming
structure, squareOppositeEdges. We know that we have to store opposite
square edges for each edge (so we need once again an array of the
size n2) and that each such opposite edge should be accessible in a
constant time based on the opposite edge endpoints – so a vector of
size n needed. Besides, each edge can have maximally ∆ such opposite
edges so the space complexity for this structure is O(n2 +m(n+∆)) =

O(mn).

5.6 refine coloring

At this stage of the algorithm, all edges have been already colored
and all auxiliary structures have been populated with the complete
set of data. The coloring that we have calculated so far is as coarse as
it is only possible regarding relation δ, but there is still a possibility to
make the coloring even coarser using the relation τ̄.

We have used already the relation τ̄ in Algorithm 8, but it was
only to optimize the number of new colors we are introducing. At
that stage, not all edges were colored, and that is why the relation τ̄

couldn’t deliver the final result. (It could be possible as well to move
the complete application of the relation τ̄ into Algorithm 9 and let
Algorithm 8 to always generate a new color, when it is asked for one).

The objective now is to check whether the extension of the coloring
according to the relation τ̄ and delivered by Algorithm 8 is always
unique. When it is not the case, and there was more than one possibil-
ity to extend the colors from other edges, it means that these edges
could be as well colored using only one color, and current colors could
be merged.

The routine from Algorithm 9 is really straightforward to follow.
It takes every single edge bb′ from E(G − e) and based on all its square
opposite edges pairs aa′, cc′ it checks whether the relation τ̄ holds
for edges ab, bc and a′b′, b′c′ just like in the procedure findOtherColor.
If the checked edges are in the relation τ̄, then their colors could be
merged.

5.6.1 Correctness

The argumentation presented above should be clear, and the correct-
ness of this merge is strongly based on the correctness of findOtherColor

routine, and if it is correct, so is the merge.

5.6.2 Complexity

We iterate over all edges, and for each of them we get a list of squareOp-

positeEdges of the maximal length ∆, then we pick all possible pairs of
edges out of the list, which could be done in (∆(∆ − 1))/2 ways. The



50 algorithm - detailed description

Algorithm 9 Merge Colors By Tau

Require: squareOppositeEdges, storedSquares, adjacencyMatrix
procedure mergeColorsByTau

for all bb′ ∈ E(G − e) do

aa′cc′All = squareOppositeEdges[b][b′]
for all pair of edges aa′, cc′ ∈ aa′cc′All do

ab ← adjacencyMatrix[a][b]
bc ← adjacencyMatrix[b][c]
if ab.color %= bc.color then

a′b′ ← adjacencyMatrix[a′][b′]
b′c′ ← adjacencyMatrix[b′][c′]

abcd ← storedSquares.get(ba, bc)
a′b′c′d′ ← storedSquares.get(b′a′, b′c′)
if abcd.empty() ∧ a′b′c′d′.empty() then

mergeColors(ab, bc)
end if

end if

end for

end for

end procedure

further processing is done in constant time, so the time complexity of
this procedure equals O(m∆2).

5.7 clean missing square edge pairs

After the last routine has finished the processing, we reached the
coarsest coloring of the graph G − e, which we can achieve without
knowing the endpoints of the removed edge e.

The procedure Algorithm 10, which runs at this stage of the re-
construction, doesn’t bring a big value concerning the reconstruction
itself, but it cleans the data in missingSquareEdges after all possible
merges have been done and, in this way, reduces the number of entries
needed for further processing, because this collection will be of our
greatest interest to find the endpoints of the missing edge.

The routine above doesn’t need any detailed explanation. We just
iterate over each pair of edges out of missingSquareEdges and remove
those with the same color.

5.7.1 Correctness

This routine only updates the state of the missingSquareEdges to the
newest known coloring.



5.8 define endpoints of the edge to reconstruct 51

Algorithm 10 Clean Missing Square Edge Pairs

Require: storedSquares, missingSquareEdges
procedure cleanMissingSquareEdgePairs

for all uv ∈ missingSquareEdges do

for all uw ∈ missingSquareEdges[u][v] do

if uv.color = uw.volor then

missingSquareEdges.remove(uv, uw)
end if

end for

end for

end procedure

5.7.2 Complexity

The maximal number of the elements in missingSquareEdges is equal
to the maximal number of incident pairs of edges in the graph which
is O(m∆), and as we iterate over all the elements, so is also the time
complexity.

Space complexity doesn’t change.

5.8 define endpoints of the edge to reconstruct

In this final step of the reconstruction, we define two vertices of G − e

which, once connected, will form with the rest of the graph Cartesian
product. The idea is to find a triple of edges, which are not a part
of a product square in G − e but were a part of a product square in
G. The collected by us missingSquareEdges list contains the triple of
edges, which should be extended by one more edge spanning this
way a product square but because it may also contain edge triples that
should be a part of a single factor, and which are not because of the
coloring introduced so far being finer, than the coloring of G, we have
to find a way to distinguish the correct missing square edges from the
wrong ones.

In the first step of Algorithm 11, which has been extracted into the
Algorithm 12, we iterate over all missing square edges pairs and group
them by the first edge and the color of the second edge for quicker
access in the further part.

Next, we iterate over the entries from missingSquareEdges and form-
ing triples out of them in Algorithm 13. Then we connect the endpoints
of the found triple by the edge f and check, whether its insertion re-
sults in a correct Cartesian product. We do the check factorizing the
graph G− e+ f and looking for an outcome having at least two factors.
When we find a suitable edge f , the further processing is going to
be suspended and the resulting edge f is returned, but if the pro-
posed edge f doesn’t give a correct result, then colors of edges out



52 algorithm - detailed description

Algorithm 11 Find endpoints of the edge to reconstruct

Require: missingSquareEdges
procedure findEdgeToReconstruct

groupMissingSquareEdges( )
for all {uv, uw} ∈ missingSquareEdges do

if uv.color %= uw.color then

f ← findPotentialMissingEdge(uv, uw)
if f %= ∅ then

reconstructedG ← reconstruct( f )
notPrime ← factorize(reconstructedG)
if notPrime then

return f

else

updateColorGrouping(uv, uw)
mergeColors(uv, uw)

end if

end if

end if

end for

end procedure

Algorithm 12 Group missing square edges by first edge and color

Require: missingSquareEdges
procedure groupMissingSquareEdges

missingSquareEdgesByColor ← newStructure()

for all {uv, uw} ∈ missingSquareEdges do

missingSquareEdgesByColor[u][v][uw.color].add(uw)
end for

end procedure



5.8 define endpoints of the edge to reconstruct 53

of the triple used to select endpoints of f are merged, the structure
missingSquareEdgesByColor is adjusted according to the new existing
colors and the algorithm proceeds to another combination of colors.
Algorithm 14 looks after the grouping in missingSquareEdgesByColor to
stay up to date.

Algorithm 13 Find Potential Missing Edge Endpoints

Require: missingSquareEdgesByColor
procedure findPotentialMissingEdge(uv, uw)

vw′ ← missingSquareEdgesByColor[v][u][uw.color]
if vw′ %= ∅ then

return {w, w′}

else

wv′ ← missingSquareEdges[w][u][uv.color]
if wv′ %= ∅ then

return {v, v′}

else

return ∅

end if

end if

end procedure

Algorithm 14 Update missing square edges color grouping

Require: missingSquareEdgesByColor
procedure updateColorGrouping(uv, uw)

for all edgesByColor ∈ missingSquareEdgesByColor do

if uv.color < uw.color then

edgesByColor[uv.color].addAll(edgesByColor[uw.color])
edgesByColor[uw.color].remove()

else

edgesByColor[uw.color].addAll(edgesByColor[uv.color])
edgesByColor[uv.color].remove()

end if

end for

end procedure

5.8.1 Correctness

The correctness of this part of the reconstruction relies heavily on
the Cartesian product property, which says that two edges colored
differently must span a product square.

Knowing this statement, we can just try out all the possibilities we
have, and it is what we do by going through all of the entries from
missingSquareEdges.



54 algorithm - detailed description

There was only one edge e removed from the graph G, so all the
product squares in G containing e can be projected to triples of edges
in G − e and these are the triples we are looking for. Going one by
one over missing square edges pairs, we try to extend the pair by an
edge to make it to a triple. We have shown in the initial part of this
publication, that such a triple should have two edges of the same color
on both ends and a single edge of another color in the middle, what
makes finding the third edge to the triple a bit easier, but still we have
to consider both edges out of the initial pair as potential middle edge
in the triple.

Figure 5.4 shows an example for finding a triple. For a missing
square edges pair uw, uv there will be no triple taking the edge uv as
the triple’s middle edge, because of the missing edge vv′, but changing
the triple middle edge to uw will give us a correct triple uv, uw, wv′.

u v

w v′

a b

Figure 5.4: Found missinge square edges triple for edges uv, uw, wv′

Having found the desired edges triple, which doesn’t belong to any
product square in G− e, we extend it by an edge f to make the missing
product square present in the product. Factorization of the obtained
in this way graph G − e + f tells us, whether the reconstruction was
correct. However, if factorization recognizes G − e + f as a prime
graph, we can be sure that found by us triple never belonged to a
product square in G and we can merge the colors contained in the
triple.

In this case, we just move to the next pair of missing square edges,
taking the new coloring into account. Analyzing all possible edges
triples gives us certainty, that at some point the triple selected by us,
will give us correct endpoints for the edge f to reconstruct Cartesian
product.

There are also some optimizations possible, which can give us the
answer, whether selected by us endpoints are correct for the edge to
be reconstructed f , which are:

• Two or more triples of the same colors point to different end-
points for f .

• There is no third edge forming a triple with already selected
pair of missing square edges.

These cases, however, don’t exist in every input graph G − e, and
that is why they won’t improve the overall complexity of the algorithm.



5.8 define endpoints of the edge to reconstruct 55

The Figure 4.7 from the Section 4.2.3 shows already an example of a
graph G − e after the coloring, which contains misleading triples.

5.8.2 Complexity

The grouping of missing square edges pairs is done in O(m∆) time
because that is the maximal number of such pairs.

The for-loop from the beginning of the Algorithm 11 iterate over
all entries in missingSquareEdges which number cannot be bigger than
O(m∆). Having a pair of edges in different colors from the entry, we
extend it in constant time by a third edge forming with the previous
two a triple of edges, which two endpoints indicate possible endpoints
of the edge to reconstruct f . Having found such a candidate edge,
we insert it into the graph G − e in constant time and check the
correctness of selected f with the factorization algorithm from [10]
in O(m). If G − e + f is a nontrivial Cartesian product, then nothing
more needs to be done, as f is the missing edge we were looking for.
In another case, we delete the edge f out of the graph and merge
colors belonging to the triple, both in constant time. We also update
the grouping in the structure missingSquareEdgesByColor going through
all of its entries, which cannot be bigger, than the number of edges m.

One should notice, that each edges triple pointing to potential
endpoints of the missing edge f must contain edges of two different
colors, so the reconstruction of an edge and factorization can be
performed only O(∆) times because this is the number of colors we
have starting the Algorithm 11 and after each failure, we merge two
colors.

Wrapping it all up the time complexity equals to O(m∆ + ∆(m +

m)) = O(m∆).
The newly introduced structure for storing missing square edges

pairs by the first edge and the second edge’s color has moderate com-
plexity. At its first level, we have a matrix where each populated cell
corresponds to the first edge of each entry from missingSquareEdges,
and its complexity is equal to the complexity of an adjacency matrix,
which is O(n2). The cell itself contains a vector with a cell for each
color index, and inside of each such a cell we put a linked list of
second edges. We know, that at this point we have no more than ∆

colors, and each edge cannot have more than ∆ incident edges, so the
total complexity can be expressed by O(n2 + m(∆ + ∆)).





Part VI

S U M M A RY





6
S U M M A RY

6.1 results

Our research delivers some profound results regarding the edge-
reconstruction of Cartesian product graphs.

In Part II we point out, that using the results from [3] about re-
constructability of finite Cartesian products and [5] showing that
reconstructability implies edge-reconstructability, we may be certain
that the edge-reconstructability is possible.

Furthermore, in Part III we show two other important qualities
of the edge-reconstruction. First, that the edge-reconstructability is
possible also for infinite Cartesian products and second, that an edge-
reconstruction of a Cartesian product being initially a product of only
two factors and one of them being K2 may deliver many results, all of
them equal up to isomorphisms.

In Part IV we briefly present a trivial edge-reconstruction algorithm
of time complexity O(mn2), and continue with a more sophisticated
one, which uses the properties of relations δ, τ̄ and delivers the result
for the edge-reconstruction in O(m∆2) time.

In Part V we are giving the algorithm even a deeper look and
analyze every single step of the algorithm, as well as all needed data
structures that make it possible to achieve the desired time complexity.

6.2 open problems

The problem of reconstruction can be also presented, as a composition
of two problems, namely recognition and weak reconstruction. The
problem of edge-reconstructability for finite Cartesian products may
be considered as solved, but for the infinite ones, we have merely
solved the problem of the weak reconstruction leaving the problem of
recognition for further studies.

The second area containing a set of open problems are twisted Carte-
sian products. Here we can observe the following cases for further
study:

It is not known whether the deck of vertex deleted subgraphs of a twisted

Cartesian product characterizes membership in the class, nor whether twisted

Cartesian products are uniquely determined by single vertex deleted sub-

graphs.

The analogous problems for edge deleted subgraphs of twisted Cartesian

products are also open.

59



60 summary

Finally, if weak vertex- or edge-reconstruction is unique, the question

whether there exist efficient reconstruction algorithms arises.



Part VII

A P P E N D I X





7
W E A K R E C O N S T R U C T I O N C O M P L E X I T Y O F
C A RT E S I A N P R O D U C T S

7.1 preamble

This appendix pertains to the vertex-reconstruction of Cartesian prod-
ucts. It corrects a subtle error in the derivation of the complexity of
the reconstruction algorithm in [6] and can be read independently of
the remainder of the thesis.

7.2 introduction

In [23] Ulam asked whether a graph G is uniquely determined up
to isomorphisms by its deck, that is, by the set of all graphs G − x

obtained from G by deleting a vertex x and all edges incident to
it. This led to the Reconstruction Conjecture, also known as Ulam’s

Conjecture, that any two graphs on at least three vertices with the same
deck are isomorphic. Actually the conjecture was already formulated
1942 for finite graphs in the Ph.D. Thesis of Kelly [16], but this went
unnoticed for a long time. For infinite graphs the conjecture is false,
but for finite graphs it is still open. When reconstructing a class of
graphs, the problem partitions into the subproblems recognition and
weak reconstruction. The first consists of showing that membership in
the class is determined by the deck, and the latter that nonisomorphic
members of the class have different decks.

For the class of nontrivial finite Cartesian products, that is, Cartesian
product of at least two nontrivial factors, Dörfler [3] proved the validity
of Ulam’s conjecture. This was supplemented by Sims and Holton
[21, 22], who showed that the weak reconstruction problem can be
solved from a single vertex deleted subgraph for nontrivial connected,
finite Cartesian products. In [15] Imrich and Žerovnik extended this
to infnite, nontrivial connected Cartesian products.

Later Hagauer and Žerovnik [6] pubished a paper in which they
claimed that each nontrivial Cartesian product G can be reconstructed
in O(mn(∆2 + m log n) time from any vertex deleted subgraph G − x,
where m is the size, n the order, and ∆ the maximal degree of G. In
this note we correct an error in the computation of the complexity of
the algorithm of Hagauer and Žerovnik, which as such increases the
complexity to O(mn(∆4 + m log n).

However, we wish to mention that results in [10] and [17] allow to
somewhat reduce the complexity again to O(mn + ∆2(m + ∆4)). We
do not present the details, because the methods of the thesis allow

63



64 weak reconstruction complexity of cartesian products

a further improvement to O(m(n + ∆2). It will be the subject of a
separate publication.

7.3 preliminaries

The original publication [6] describes the reconstruction algorithm in
a very clear and detailed way as well as contains a solidly carried out
proof of its correctness, including all of the needed definitions. For
readers interested in this matter, we recommend going back to the
aforementioned publication, as here we are going to introduce only
the minimal information allowing us to follow the algorithm steps
and analyze its complexity.

Algorithm 15 Skeleton of the algorithm

if G − x ≃ C8 then

G = P3!P3

return G

end if

for all x′ ∈ V(G − x) do

G = Construction 1(x′)
if G is Cartesian product then

return G

end if

end for

for all s ∈ V(G − x) do

for all u, v ∈ N(s) do

G = Construction 2(s, u, v)
if G is Cartesian product then

return G

end if

end for

end for

We can distinguish three different parts of the Algorithm 15, each
focused on a different input graph case.

The first one delivers only the correct result for a particular case
where the input graph is isomorphic to the cycle of eight vertices.

The second part runs Construction 1 for each vertex out of V(G − x)

and gives a correct reconstruction if the original graph G was a product
containing at least one K2 factor among its nontrivial factors.

The third part finds a reconstruction of the input graph G − x in any
other case, and this is the part in whose complexity we are interested.

The first thing the algorithm does for any given vertex s as pre-
processing, is ordering the vertices in the BFS-order taking the vertex
s for the start vertex. This way all vertices are assigned to levels,
and the level of any vertex z ∈ V(G − x) is equal to the dG−x(s, z).



7.3 preliminaries 65

Algorithm 16 Construction 2

Require: vertices s, u, v

Start Insert cross-edges
for vertex y at level 2 which is a neighbor of u and has exactly

one more neighbor w at level 1, and vw ∈ E(G − x) do

Insert edge xy

end for

for vertex y at level 2 which is a neighbor of v and has exactly
one more neighbor w at level 1, and uw ∈ E(G − x) do

Insert edge xy

end for

End

Start Insert up-edges
for vertex y at level 3 with at least two down-edges, for which

u, v ∈ I(G−x)(s, y) do

Insert edge xy

end for

for vertex y at level 3 with exactly one down-edge, and which is
a good candidate do

Insert edge xy

end for

for vertex y at level 3 with exactly one down-neighbor w, where
y is not a bad candidate and w has no up-neighbor, which is a good
candidate do

Insert edge xy

end for

End

Check if the new graph is a Cartesian product graph



66 weak reconstruction complexity of cartesian products

Moreover, the BFS-levels allow us to group edges of each vertex, and
with edges also this vertex’ neighbors, into three groups: up-, cross-,
down-edges and up-, cross-, down-neighbors. If an edge e leads from
a vertex to another vertex of a higher, equal, or lower level, we speak
about up-, cross- and down-edge respectively. For neighbors it works
via analogy.

The interval IG−x(z1, z2) between two vertices z1, z2 ∈ V(G − x) is
the set of vertices lying on any shortest path between z1 and z2.

The last term we need to define is the term of candidate, and its
good and bad versions. A vertex y at level 3 is a candidate (for being
connected to x) if it has down-degree one in G − x, |IG−x(s, y)| = 4
and either u or v is in IG−x(s, y) (i.e. the interval between s and w, the
unique down-neighbor of y, is a path in G − x containing u or v). A
candidate y is vw-candidate if IG−x(s, y) = {s, v, w, y}. A vw-candidate

is a good candidate if there is an up-neighbor q of y such that IG−x(s, q)

contains both u and v. A vw-candidate y is a bad-candidate if y is not
good and there is an up-neighbor z of y such that N(s)∩ (IG−x(s, q)−

{u, v}) %= ∅.

7.4 complexity analysis

The first thing regarding the procedure Construction 2, which needs a
small clarification, is the breath-first search done for each vertex s in a
preprocessing before the call of the procedure itself. The question that
one can ask is: when the call of Construction 2 is already contained in a
loop over all vertices s, can the preprocessing happen in the same loop?
To answer this question, let’s take a look at the pieces of information
which are computed during this preprocessing.

For each vertex in G − x, the edges incident to it are going to be
grouped into three groups: down-, cross- and up-edges. This grouping
makes it easier to traverse the vertices of the graph in the BFS-order
during the runtime of Construction 2 and because this grouping is
reusable among all pairs of vertices u, v ∈ N(s) we can recompute it
once for each iteration over s.

The distances between vertices, which are also a result of the pre-
processing, need more attention. As one will be able to see in the
further analysis, it is not enough to calculate only the distances from s

to other vertices, because to achieve a better complexity Construction 2

needs precomputed distances between many different pairs of vertices
lying in all possible levels. That is why even before iterating over all
triples of vertices s, u, v, and calling Construction 2, we need to loop
over every single vertex, run BFS procedure for each of them and store
the distances to other vertices in a matrix.

The time complexity of the breath-first search is O(m), and repeating
it for each vertex brings us to O(nm). This precomputation does not
have any influence on the overall complexity of the algorithm because,



7.4 complexity analysis 67

as one can see, all calls of Construction 1 have the same complexity of
O(nm).

The matrix for storing the distances between each vertex is a two-
dimensional matrix, where the first dimension reflects all vertices
used as a starting point for BFS, and the second dimension stores the
distances from the starting vertex to all other vertices. It is easy to see,
that the size of the array is O(n2).

Having clarified the exact shape and complexity of the preprocess-
ing, let’s jump straight to the cumbersome complexity of Construction 2.

The complexity estimated for the reconstruction of cross-edges in
Step 1 is correct for a single vertex y and indeed constant. The checks
like whether y has only one more down-neighbor w and whether
vw ∈ E(G − x) can be done in constant time using the auxiliary
structures of grouped edges and the distance matrix. However, there
can be up to O(∆) such y vertices, and for each of them, we have to
perform the same set of checks.

This observation sets the time complexity of Step 1 to O(∆) but
doesn’t change the overall complexity of the procedure.

s

v w1 w2 . . . wku

x y1 y2 . . . yk

Figure 7.1: Multiple cross-edges.

Step 2 is comprised of three different sub-steps, which allow us to
reconstruct the up-edges of x. Each sub-step takes a specific vertex y

from level 3 as a parameter and depending on the number of down-
edges, either Step 2.1 or Step 2.2 or Step 2.3 is going to be called.

Step 2.1 takes a vertex y with two and more down-neighbors and
checks if u, v ∈ IG−x(s, y). This test is relatively easy, we know that u

and v are direct neighbors of s, so if only d(y, u) = 2 and d(y, v) = 2
we can be sure, that the desired condition is met. (Actually, as we
probably have used either u or v to get to the vertex y, only the distance
check for the other vertex is necessary). Having the distances between
every two vertices precomputed, it is clear, that this distance check is
done in constant time.

In the Figure 7.2 u, v belong to IG−x(s, y1
1) and IG−x(s, y1

k), which is
not true for other two relevant intervals, IG−x(s, yl

1) and IG−x(s, yl
k).

That is why only y1
1 and y1

k are recognized as up-neighbors of x.
Step 2.2 and 2.3 take as an input parameter a vertex y with only

a single down-neighbor, which is a candidate. We say that y is a
vw-candidate if IG−x(s, y) = {s, v, w, y}. We know already, that s is a
single down-neighbor of v as well as w is a single down-neighbor of y.



68 weak reconstruction complexity of cartesian products

s

u v

x w1 wk

y1
1 y1

k yl
1 yl

k

Figure 7.2: Step 2.1 – y1
1 and y1

k recognized as up-neighbors of x

That is why only the check whether v is a single down-neighbor of
w defines y as vw-candidate or not and can be done in constant time
thanks to the edges that have been pre-grouped.

For vertices y recognized as vw-candidates we can proceed with
Step 2.2, whose objective is to find a y which is a good candidate. To
perform this test, we have to examine all up-neighbors of y, say q, and
check if for any q u, v ∈ IG−x(s, q). To answer this question, it is again
enough to check some distances, namely d(q, u) = 3 and d(q, v) = 3.
Of course, it can be done in constant time for each single q and for all
vertices q being an up-neighbor of a single y in O(∆) time.

s

v

w1

yl
1

wk

yl
k

u

x

y1
1

q∗1

y1
k

q∗k
q1

1

q1
k

Figure 7.3: Step 2.2 – y1
1 and y1

k are good candidates



7.4 complexity analysis 69

Figure 7.3 shows y1
1 and y1

k as good candidates because the interval
from the vertex q1

1, and q1
k respectively, to the vertex s contains both u

and v. Other vertices q don’t have this property.
Step 2.3 is needed only when among some sets of vertices y, being

vw-candidates, no good candidates have been found. In this case, we
have to reexamine the aforementioned candidates and find the ones
which are not bad.

To check whether a given vw-candidate y is a bad one we have to
again iterate over its up-neighbors q and in each iteration check if
N(s) ∩ (IG−x(s, q)− {u, v}) %= ∅. This check requires from us to go
over all vertices r ∈ N(s)− {u, v} and for each r test if d(q, r) = 3.
Having found any such r, we can mark y as a bad candidate and move
to the next one.

The time complexity for a single y is O(∆2) as we have to consider
all its up-neighbors q, which could be in the number of O(∆), and for
each q iterate again over the neighborhood of s, also with the potential
size of O(∆), and finally do the distance check for the pair q, r in
constant time.

s

v

w1

y2
1 yl

1

wk

y2
k yl

k

u

x

y1
1

q′1 q′′1

y1
k

q′k q′′k

r

q2
1 ql

1 q2
k ql

k

Figure 7.4: Step 2.3 – y1
1 and y1

k are not bad candidates.

Figure 7.4 shows y1
1 and y1

k as candidates not being bad because
only these two vertices have up-neighbors q, such that r /∈ IG−x(s, q).

Having all sub-steps of Step 2 summarized, we see, that the most
expensive sub-step is the one excluding each single y being a bad
candidate in O(∆2) time. That is exactly the time proposed by Hagauer
and Žerovnik in [6], but we shouldn’t forget that this is the time
complexity for a single vertex y and it must be multiplied by the
number of vertices y being in our concern.



70 weak reconstruction complexity of cartesian products

We see that all vertices y are the second-line neighbors of u and v,
and we can use both of them to find appropriate vertices y. Each of
u and v can have O(∆) suitable up-neighbors w with following O(∆)

suitable up-neighbors y, so the total number of vertices y is equal to
O(∆2) and thus the complexity of Step 2 equals to O(∆4). (One can
also take all vertices from level 3 and consider them as vertices y but
then there is no better way to estimate their number than O(n)).

The figures included along the analysis of each sub-step help to
visualize the reasoning concerning the number of suitable vertices y.
Considering the Figure 7.2 and adding to vertex s edges of type "

or ! increases the number of vertices w and y respectively. In the
graphs from Figure 7.3 and Figure 7.4, adding to the vertex v "-edges
increases the number of vertices w and adding to any vertex w "-edges
increases the number of vertices y.

The complexity of Step 3 has already been mentioned, and as it is the
call to recognize a graph as a Cartesian product, its time complexity is
O(m).

Taking the above calculation into consideration, one can see that the
actual time complexity of Construction 2 is O(∆) + O(∆4) + O(m).



B I B L I O G R A P H Y

[1] N. Chiba and T. Nishizeki. “Arboricity and subgraph listing
algorithms.” In: SIAM J. Comput. 14 (1985), pp. 210–223.

[2] W. Dörfler. “On the edge-reconstruction of graphs.” In: Bull.

Austral. Math. Soc. 10 (1974), pp. 79–84.

[3] W. Dörfler. “Some results on the reconstruction of graphs. In-
finite and finite sets (Colloq., Keszthely, 1973; dedicated to
P. Erdős on his 60th birthday).” In: Colloq. Math. Soc. János Bolyai

10 (1975), pp. 361–363.

[4] T. Feder. “Product graph representations.” In: J. Graph Theory 16

(1992), pp. 467–488.

[5] D.L. Greenwell. “Reconstructing graphs.” In: Proc. Amer. Math. Soc.

30 (1971), pp. 431 –433.

[6] J. Hagauer and J. Žerovnik. “An algorithm for the weak re-
construction of Cartesian-product graphs.” In: Combin. Inform.

System Sci. 24 (1999), pp. 87–103.

[7] R. Hammack, W. Imrich, and S. Klavžar. Handbook of product

graphs - Second edition. CRC Press, 2011.

[8] F. Harary. “On the reconstruction of a graph from a collection
of subgraphs. In Theory of Graphs and its Applications (Proc.
Sympos. Smolenice, 1963).” In: Publ. House Czechoslovak Acad.

Sci., Prague (1964), pp. 47–52.

[9] W. Imrich. “Über das schwache kartesische Produkt von Graphen.”
In: J. Combinatorial Theory Ser. B 11 (1971), pp. 1–16.

[10] W. Imrich and I. Peterin. “Recognizing Cartesian products in
linear time.” In: Discrete Mathematics 307 (2007), pp. 472–483.

[11] W. Imrich and M. Wardyński. “An Algorithm for the Weak
Reconstruction of Cartesian-Product Graphs.” In: ().

[12] W. Imrich and M. Wardyński. “An Algorithm for the Weak Edge-
Reconstruction of Cartesian Product Graphs.” In: submitted for

publication (2020).

[13] W. Imrich and M. Wardyński. “Weak Edge-Reconstruction for
Cartesian Product Graphs.” In: submitted for publication (2020).

[14] W. Imrich and J. Žerovnik. “Factoring Cartesian-Product Graphs.”
In: J. Graph Th. 18 (1994), pp. 557–567.

[15] W. Imrich and J. Žerovnik. “On the weak reconstruction of
Cartesian-product graphs.” In: Discrete Math. 150 (1996), pp. 167–
178.

71



72 bibliography

[16] P.J. Kelly. “On Isometric Transformations.” PhD thesis. Madison:
The University of Wisconsin, 1942.

[17] T. Kupka. “A Local Approach for Embedding Graphs into Carte-
sian Products.” PhD thesis. Ostrava, Czech Republic: Tech. Univ.
Ostrava, 2013.

[18] D.J. Miller. “Weak Cartesian product of graphs.” In: Colloquium

Math. 21 (1970), pp. 55–74.

[19] V. Müller. “The edge reconstruction hypothesis is true for graphs
with more than n log2 n edges.” In: J. Combinatorial Theory Ser. B

22 (1977), pp. 281 –283.

[20] G. Sabidussi. “Graph Multiplication.” In: Math. Z. 72 (1960),
pp. 446–457.

[21] J. Sims. “Stability of the cartesian product of graphs.” MA thesis.
University of Melbourne, 1976.

[22] J. Sims and D.A. Holton. “Stability of cartesian products.” In:
Combin. Theory Ser. 25 (1980), pp. 258–282.

[23] S. M. Ulam. A Collection of Mathematical Problems. 1960, p. 29.



colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Thank you very much for your feedback and contribution.

Final Version as of May 28, 2020 (version 1.0).


